Skip to main content

Table 1 {H1,H6}, {H2}, {H3}, {H4} and {H5} are the five possible independent embedding sets of the motif M (Fig. 1) in network G (Fig. 2). The table shows the number of embeddings occurring at each deterministic network for each independent embedding set and its expected value in G

From: ProMotE: an efficient algorithm for counting independent motifs in uncertain network topologies

 

\(G_{1}^{o}\)

\(G_{2}^{o}\)

\(G_{3}^{o}\)

…

Expected motif count

{H1,H6}

2

1

0

…

\(2\times \mathcal {P}(G_{1}^{o}|G)+1\times \mathcal {P}(G_{2}^{o}|G)+0\times \mathcal {P}(G_{3}^{o}|G)+\dots \)

{H2}

1

1

1

…

\(1\times \mathcal {P}(G_{1}^{o}|G)+1\times \mathcal {P}(G_{2}^{o}|G)+1\times \mathcal {P}(G_{3}^{o}|G)+\dots \)

{H3}

1

1

0

…

\(1\times \mathcal {P}(G_{1}^{o}|G)+1\times \mathcal {P}(G_{2}^{o}|G)+0\times \mathcal {P}(G_{3}^{o}|G)+\dots \)

{H4}

1

1

0

…

\(1\times \mathcal {P}(G_{1}^{o}|G)+1\times \mathcal {P}(G_{2}^{o}|G)+0\times \mathcal {P}(G_{3}^{o}|G)+\dots \)

{H5}

1

1

0

…

\(1\times \mathcal {P}(G_{1}^{o}|G)+1\times \mathcal {P}(G_{2}^{o}|G)+0\times \mathcal {P}(G_{3}^{o}|G)+\dots \)