From: AttentionDDI: Siamese attention-based deep learning method for drug–drug interaction predictions
Model score | DS1 | DS2 | DS3 (CYP) | DS3 (NCYP) | ||||
---|---|---|---|---|---|---|---|---|
AUC | AUPR | AUC | AUPR | AUC | AUPR | AUC | AUPR | |
AttentionDDI\(\ddag\) | 0.954 | 0.924 | 0.986 | 0.904 | 0.989 | 0.775 | 0.986 | 0.890 |
AttentionDDI (without siamese)\(\ddag\) | 0.944 | 0.907 | 0.965 | 0.791 | 0.945 | 0.277 | 0.907 | 0.443 |
AttentionDDI (without Attention & siamese)\(\ddag\) | 0.944 | 0.909 | 0.926 | 0.596 | 0.962 | 0.491 | 0.953 | 0.639 |
NDD* | 0.954 | 0.922 | 0.994 | 0.890 | 0.994 | 0.830 | 0.992 | 0.947 |
Classifier ensemble* | 0.956 | 0.928 | 0.936 | 0.487 | 0.990 | 0.541 | 0.986 | 0.756 |
Weighted average ensemble* | 0.948 | 0.919 | 0.646 | 0.440 | 0.695 | 0.484 | 0.974 | 0.599 |
RF* | 0.830 | 0.693 | 0.982 | 0.812 | 0.737 | 0.092 | 0.889 | 0.167 |
LR* | 0.941 | 0.905 | 0.911 | 0.251 | 0.977 | 0.487 | 0.916 | 0.472 |
Adaptive boosting* | 0.722 | 0.587 | 0.904 | 0.185 | 0.830 | 0.143 | 0.709 | 0.150 |
LDA* | 0.935 | 0.898 | 0.894 | 0.215 | 0.953 | 0.327 | 0.889 | 0.414 |
QDA* | 0.857 | 0.802 | 0.926 | 0.466 | 0.709 | 0.317 | 0.536 | 0.260 |
KNN* | 0.730 | 0.134 | 0.927 | 0.785 | 0.590 | 0.064 | 0.603 | 0.235 |
ISCMF\(\dag\) | 0.899 | 0.864 | – | – | 0.898 | 0.767 | 0.898 | 0.792 |
Classifier ensemble\(\dag\) | 0.957 | 0.807 | – | – | 0.990 | 0.541 | 0.986 | 0.756 |
Weighted average ensemble\(\dag\) | 0.951 | 0.795 | – | – | 0.695 | 0.484 | 0.974 | 0.599 |
Matrix perturbation\(\dag\) | 0.948 | 0.782 | – | – | – | – | – | – |
Neighbor recommender\(\dag\) | – | – | – | – | 0.953 | 0.126 | 0.904 | 0.295 |
Label propagation\(\dag\) | – | – | – | – | 0.952 | 0.126 | – | – |
Random walk\(\dag\) | – | – | – | – | – | – | 0.895 | 0.181 |