Skip to main content

Table 5 CNN hyperparameter space explored with hg19 and hg38 data through Bayesian optimization. A. Architecture and learning hyperparameters of the fixed-CNN; B. Architecture and hyperparameter space of the Bayesian-CNN models trained on the hg19 dataset; C. Architecture and hyperparameter space of the Bayesian-CNN models models trained on the hg38 dataset

From: Boosting tissue-specific prediction of active cis-regulatory regions through deep learning and Bayesian optimization techniques

Layers

Type

Units

Kernel

Activation

Notes

A: fixed-CNN 

3

Convolutional

64

5

ReLU

1

Max pooling 1D

size 2

3

Convolutional

128

3

ReLU

1

Max pooling 1D

size 2

3

Convolutional

128

3

ReLU

1

Average pooling 1D

1

Dropout

Probability 0.5

2

Dense

10

ReLU

1

Dropout

Probability 0.5

1

Dense

1

Sigmoid

Learning parameters

     

   Learning rate

0.002

    

   Batch size

256

    

   Optimizer

Nadam

    

   Epochs

100

    

Layers

Type

Units

Kernel

Activation

Notes

  

Hyperparameter space

Hyperparameter space

  

B: Bayesian-CNN (hg19 dataset)

3

Convolutional + batch norm

{32, 64, 128}

5

ReLU

1

Max pooling 1D

Size 2

1

Convolutional + batch norm

{32, 64, 128}

{5, 10}

ReLU

1

Max pooling 1D

Size 2

1

Flatten

1

Dense

{10, 32, 64}

ReLU

1

Dropout

- -

Probability 0.1

1

Dense

{10, 32, 64}

ReLU

1

Dropout

Probability 0.1

1

Dense

1

Sigmoid

   Learning parameters

     

   Learning rate

0.002

    

   Batch size

256

    

   Optimizer

Nadam

    

   Epochs

100

    

Layers

Hyperparameter space

Activation

   

C: Bayesian-CNN (hg38 dataset)

No. of convolutional groups

\([0 \ldots 2]\)

    

No. of hidden convolutional layers, composing the group

\(\{0, \ldots , 3\}\)

ReLU

   

No. of filters in the convolutional layer

\([0 \ldots 128]\)

    

2D kernel size in the convolutional layer

\([2 \ldots 8] \times [1,2]\)

    

Max pooling 2D

\([1 \ldots 8] \times [1,2]\)

    

Dropout

\([0 \ldots 0.5]\)

    

No. of dense groups

\([0 \ldots 2]\)

    

No. of hidden dense layers, composing the group

\(\{0, \ldots , 3\}\)

ReLU

   

No. of units in dense layer

\([0 \ldots 64]\)

    

Dropout

\([0 \ldots 0.5]\)

    

Output

1

Sigmoid

   

Learning parameters

   Learning rate

0.002

    

   l1 regularizer

0.0001

    

   l2 regularizer

0.0001

    

   Batch size

256

    

   Optimizer

Nadam

    

   Epochs

100

    
  1. In Tables B and C, for each otpimized hyperparameter, the search hyperparameter space is shown, where square brackets are used for continuous hyperparameter spaces, while curly brackets are used for discrete ones. “Max Pooling 1D” and “Max Pooling 2D” refer, respectively, to max-pooling 1D and 2D layers, “Average Pooling 1D” refers to average-pooling 1D layer, “Dropout” refer to dropout layers, and “Batch Norm” refers to batch normalization layer