Skip to main content

Table 4 Keller and Japan data results

From: Fast and robust imputation for miRNA expression data using constrained least squares

Classification AUC F1 score ACC
(a) Classification results
Multiple sclerosis .96 .85 .93
Melanoma .97 .88 .93
HCC .99 .93 .97
Bladder cancer \(\sim 1\) .97 .99
Classification \(t_{\mu }\) \(t_{\sigma }\) \(t_M\)
(b) Imputation times
Multiple sclerosis .008 .004 .102
Melanoma .009 .006 .128
HCC .273 .155 .922
Bladder cancer .298 .161 1.15
  1. (a) Mean values over curves shown in Fig. 9a–c. (b) Mean (\(t_\mu\)), standard deviation (\(t_\sigma\)), and maximum (\(t_{\text {max}}\)) imputation times (in seconds) over all test patients. In table (a), \(\sim 1\) indicates that the AUC is strictly greater than .995