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Abstract

Background: Genome median and genome halving are combinatorial optimization problems that
aim at reconstructing ancestral genomes as well as the evolutionary events leading from the
ancestor to extant species. Exploring complexity issues is a first step towards devising efficient
algorithms. The complexity of the median problem for unichromosomal genomes (permutations)
has been settled for both the breakpoint distance and the reversal distance. Although the
multichromosomal case has often been assumed to be a simple generalization of the
unichromosomal case, it is also a relaxation so that complexity in this context does not follow
from existing results, and is open for all distances.

Results: We settle here the complexity of several genome median and halving problems, including
a surprising polynomial result for the breakpoint median and guided halving problems in genomes
with circular and linear chromosomes, showing that the multichromosomal problem is actually
easier than the unichromosomal problem. Still other variants of these problems are NP-complete,
including the DCJ double distance problem, previously mentioned as an open question. We list the
remaining open problems.

Conclusion: This theoretical study clears up a wide swathe of the algorithmical study of genome
rearrangements with multiple multichromosomal genomes.

Background
The gene order or syntenic arrangement of ancestral
genomes may be reconstructed based on comparative
evidence from present-day genomes – the phylogenetic
approach – or on internal evidence in the case of
genomes descended from an ancestral polyploidisation
event, or from a combination of the two. The computa-
tional problem at the heart of phylogenetic analysis is
the median problem, while internal reconstruction inspires
the halving problem, and the combined approach gives
rise to guided halving. How these problems are

formulated depends (1) on the karyotypic framework:
the number of chromosomes in a genome and whether
they are constrained to be linear, or if circular chromo-
somes are also permitted, and (2) on the objective
function used to evaluate possible solutions. This
function is based on some notion of genomic distance,
either the number of adjacent elements on a chromo-
some in one genome that are disrupted in another – the
breakpoint distance – or the number of evolutionary
operations necessary to transform one genome to
another.
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While the karyotypes allowed in an ancestor vary only
according to the dimensions of single versus multiple
chromosome, and linear versus circular versus mixed, the
genomic distances of interest have proliferated according
to the kinds of evolutionary operations considered, from
the classic, relatively constrained, reversals/transloca-
tions distance to the more inclusive Double Cut-and-Join
(DCJ) measure, and many others [1].

The computational complexity of some of these pro-
blems has been settled for some specific distances and
karyotypic contexts, and it is sometimes taken for
granted that these results carry over to other combina-
tions of context and distance. This is not necessarily the
case. In this paper, we survey the known results and
unsolved cases for three distance measures in three kinds
of karyotype. We include several results presented here for
the first time, as well as discussions on the definitions of
the distances. The results contain both new polynomial-
time algorithms and NP-hardness proofs. This paper is
the full version of an extended abstract that has appeared
in [2], which announced the results without giving all the
proofs. In particular, a full discussion on the breakpoint
distance definition, as well as the proofs of Theorem 2,
Theorem 4, and Theorem 6 are added here, which makes
this version a complete and definitive one.

Genomes, breakpoints and rearrangements
Multichromosomal genomes
We follow the general formulation of a genome in [3]. A
gene A is an oriented sequence of DNA, identified by its tail
At and its head Ah. Tails and heads are the extremities of the
genes. An adjacency is an unordered pair of gene
extremities. A genome Π is a set of adjacencies on a set of
genes. Each adjacency in a genome means that two gene
extremities are consecutive on the DNA molecule. In a
genome, each gene extremity is adjacent to zero or one
other extremity. An extremity x that is not adjacent to any
other extremity is called a telomere, and can be written as an
adjacency x∘ with a null symbol ∘. The adjacency x∘ is called
a telomeric adjacency. For a genome Π on a set of genes G ,
consider the graph GΠ whose vertices are all the extremities
of the genes, and the edges include all the non telomeric
adjacencies inΠ as well as an edge joining the head and the
tail of each gene. This graph is a set of disjoint paths and
cycles. Every connected component is called a chromosome
of Π. A chromosome is linear if it is a path, and circular if it
is a cycle. A genome with only linear, or only circular,
chromosomes is called a linear or circular genome,
respectively. An example of a graph GΠ is given in Figure 1.

A Genome can also be represented as a set of strings, by
writing the genes for each chromosome in the order in
which they appear in the paths and cycles of the graph

GΠ, with a bar over the gene if the head of the gene
appears before the tail (we say it has negative sign), and
none if the tail appears before the head (it has positive
sign). For each linear chromosome, there are two
possible equivalent strings, according to the arbitrary
chosen starting point. One is obtained from the other by
reversing the order and switching the signs of all the
genes. For circular chromosomes, there are also two
possible circular string representations, according to the
direction in which the cycle is traversed. For example,
chromosome C1 of the genome Π of Figure 1 may be
written (12 4 14 1 7 8) or ( 8 7 1 14 4 12 ).

A genome with only one chromosome is called
unichromosomal. These correspond to signed permutations:
the two string representations are (linear or circular)
signed permutations.

Genomes with duplicates
A duplicated gene A is a couple of homologous oriented
sequences of DNA, identified by two tails A1t and A2t,
and two heads A1h and A2h. An all-duplicates genome Δ is
a set of adjacencies on a set of duplicated genes.

For a genome Π on a gene set G , a doubled genome Π ⊕ Π
is an all-duplicates genome on the set of duplicated
genes from G such that if AxBy (x, y Œ {t, h}) is an
(possibly telomeric) adjacency of Π (Ax or By may be ∘),
either A1xB1y and A2xB2y, or A2xB1y and A1xB2y, are
adjacencies of Π ⊕ Π.

Note the difference between a general all-duplicates
genome and the special case of a doubled genome: the
former has two copies of each gene, while in the latter
these copies are organised in such a way that there are
two identical copies of each chromosome when we
ignore the 1's and 2's in the A1x's and A2x's: it has two
linear copies of each linear chromosome, and for each
circular chromosome, either two circular copies or one
circular chromosome containing the two successive
copiesNote also that for a genome Π, there is an
exponential number of possible doubled genomes Π ⊕
Π (exactly two to the power of the number of non-
telomeric adjacencies in Π). These definitions corre-
spond to duplicated and perfectly duplicated genomes
found in [4], and slightly differs from the perfectly
duplicated genome definition found in [5], as discussed
in [4]. An example of an all-duplicates genome and a
doubled genome is shown in Figure 2. Doubled
genomes are the immediate result of an evolutionary
event called Whole Genome Duplication (WGD), which is
known to have occurred in many evolutionary lineages,
from protists [6] to yeasts, to plants, to fish, to
amphibians and even to mammals [7]. All-duplicates
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genomes derive from doubled genomes through a series
of rearrangement events. Typically, all-duplicates gen-
omes pertain to extant species, while doubled genomes
are ancestral configurations inferred to exist immediately
after the WGD, and that are to be reconstructed.

In discussing all-duplicates genomes, we will sometimes
contrast them with ordinary genomes which have a single
copy of each gene.

The breakpoint distance
The breakpoint distance has been well-studied for
permutations, i.e., unichromosomal genomes [8,9], but
only a few published discussions have focused on how it
should be defined for multichromosomal genomes (see
[10] for one suggestion). The distance should depend
not only on common adjacencies, or rather their
absence, but also on common telomeres (or lack
thereof) in two genomes. Here we propose a definition
that we wish valid for all types of karyotypes, based on a

most general approach integrating all possible informa-
tions from the two genomes. For two genomes Π and Γ
on a set G of n genes, suppose Π has NΠ chromosomes,
and Γ has NΓ chromosomes. Let a(Π, Γ) be the number
of common adjacencies, e(Π, Γ) be the number of
common telomeres of Π and Γ. Then insofar as it should
depend additively on these components, we may
suppose the breakpoint distance has form

d n a e N N N NBP( , ) ( , ) ( , ) ( ) (| |) ,Π Γ Π Γ Π Γ Π Γ Π Γ= − − + + + −b q g y

where b, θ and g are positive parameters, while ψ may
have either sign. Taking Π = Γ and imposing dBP (Π, Π) =
0 yields the relations b = 1 and 1 - 2θ + 2g = 0, so θ =
g + 1/2, and the distance formula reduces to:

d n a e N N N NBP( , ) ( , ) ( / ) ( , ) ( ) (| |) .Π Γ Π Γ Π Γ Π Γ Π Γ= − − + + + + −g g y1 2

It is most plausible to count a total of 1 breakpoint for a
fusion or fussion of linear chromosomes, which implies
g = ψ = 0, so the most natural choice of breakpoint distance
between Π and Γ is

d n a
e

BP( , ) ( , )
( , )

.Π Γ Π Γ Π Γ= − −
2

It might be argued that a fussion or fusion should count for
as many as 2 breakpoints, or anything between 1 and 2, so
that alternate values of g and ψ might be entertained,
provided g Œ [0, 1

2 ], and ψ Œ [0,1 - g]. This may have an
influence on how to calculate the number of breakages
within a scenario, as discussed in [11]. For example, the
parameters chosen in [10] are g = 1

2
and ψ =

d dBP BP( , ) min ( , ).Π Δ Π Π Δ
Π Π

= ⊕
⊕

, giving rise to the disad-

vantage of there possibly being more breakpoints between
two genomes than adjacencies in either one. For example,
in comparing Π = (1 2 3 4 5) and Γ in which five linear
chromosomes each contain one gene i Œ {1,...,5}, the
definition in [10] would count 9 breakpoints, which seems
counterintuitive, while our definition counts 4,which seems
more reasonable. Whether all the results presented in this
paper also hold for the definition in [10] is open.

The definition of the breakpoint distance is easily
transposable to the comparison of two all-duplicates
genomes. For one all-duplicates genome Δ and one
ordinary genome Π, the breakpoint distance between Π
and Δ is the minimum breakpoint distance between Δ
and a doubled genome Π ⊕ Π, that is,

d dBP BP( , ) min ( , ).Π Δ Π Π Δ
Π Π

= ⊕
⊕

The Double Cut-and-Join distance
Given a genome Π, a double-cut-and-join (DCJ) is an
operation r acting on two adjacencies pq and rs (possibly

Figure 1
The graph GΠΠ of a genome Π. Π is a genome on the set
of genes {1,...,14}, containing three chromosomes, two of
them being linear and one circular. Its adjacencies are the
union of C1 = {12h4h, 4t14t, 14h1t, 1h7h, 7t8t}, C2 = {3t11t,
11h10t, 10h6t, 6h13h, 13t3h} and C3 = {9h2t, 2h5h}. It has four
telomeres.

Figure 2
The graphs and GΔ GΠ⊕Π of an all-duplicates genome
Δ and a doubled genome Π ⊕ Π. (a) Δ has three
chromosomes, while (b) Π ⊕ Π has four, and consist of two
copies of two chromosomes, that have the same set of
duplicated genes {1,...,7}.
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some of p, q, r, s are ∘ symbols, so that telomeric adjacencies
are considered; one adjacency can even be ∘∘). The
DCJ operation replaces pq and rs either by pr and qs, or ps
and qr. An example of DCJ operation on the genome Π of
Figure 1 is drawn in Figure 3.

A DCJ can reverse an interval of a genome, may cause the
fussion of one chromosome into two, or the fusion of
two chromosomes into a one, or a reciprocal transloca-
tion: the exchange of two telomere-containing segments
between two chromosomes. Two consecutive DCJ
operations, excising and circularising a chromosomal
segment followed by a re-linearisation of the circular
intermediate and reintegration on the same chromosome,
using two new cut-points, results in a block interchange:
two segments of the genome appear to simply exchange
their positions. In the case these two segments are
consecutive, the two DCJs result in a transposition, the
apparent movement of a segment from one place on a
chromosome to another. The DCJ operation is thus a
very general framework, introduced by Yancopoulos
et al. [12], as well as by Lin et al. in a special case [13],
and since been adopted by Bergeron et al. [3,14] and
many others, sometimes under other names such as
spring [15] or "2-break rearrangement" [16].

If Π and Γ are two genomes on a set G of n genes, the
minimum number of DCJ operations needed to trans-
form Π into Γ is called the DCJ distance and noted
dDCJ(Π, Γ).

This DCJ distance is easily defined also for two all-
duplicates genomes. For one all-duplicates genome Δ

and one ordinary genome Π, the DCJ distance between Π
and Δ is dDCJ(Π, Δ) = minΠ⊕Π dDCJ(Π ⊕ Π, Δ).

The reversal/translocation distance
The reversal/translocation distance was introduced by
Hannenhalli and Pevzner [17], and is equivalent to the
DCJ distance constrained to linear genomes.

If Π is a linear genome, a linear DCJ operation is a DCJ
operation on Π that results in a linear genome. This
allows reversals, chromosome fusions, fussions, and
reciprocal translocations. DCJs that create circular inter-
mediates, temporary circular chromosomes, and thereby
mimic block interchanges and transpositions, are not
allowed. Chromosome fusions and fussions are parti-
cular cases of translocations in this framework, justifying
the appellation RT-distance. If Π and Γ are linear
genomes, the RT distance between Π and Γ is the
minimum number of linear DCJ operations that trans-
form Π into Γ, and is noted dRT (Π, Γ).

Computational problems
The classical literature on genome rearrangements aims
at reconstructing the evolutionary events and ancestral
configurations that explain the differences between the
organization of extant genomes. The focus has been on
the genomic distance, median and halving problems.
More recently the doubled distance and guided halving
problems have also emerged as important. In each of the
ensuing sections of this paper, these five problems are
examined for a specific combination of distance d
(breakpoint, DCJ or RT) and kind of multichromosomal
karyotype (linear, circular, mixed).

1. Distance. Given two genomes Π, Γ, compute d(Π,Γ).
Once the distance is calculated, an additional
problem in the cases of DCJ and RT is to reconstruct
the rearrangement scenario of length d(Π, Γ), i.e. the
putative events that differentiate the genomes.

2. Double distance. Given an all-duplicates genome Δ
and an ordinary genome Π, compute d(Δ, Π). This
computation evaluates the evolutionary distance
posterior to a WGD of the given genome Π,
leading to an all-duplicates genome Δ, and locates
the genes of the all-duplicates genome on chromo-
somes in one of the two ancestral copies of the
ordinary genome. Because the assignment of labels
"1" or "2" to the two identical (for our purposes)
copies of a duplicated gene in Δ is arbitrary, the
double distance problem is equivalent to finding
such an assignment that minimises the distance
between Δ and a genome Π ⊕ Π considered as
ordinary genomes, where all the genes on any one

Figure 3
A DCJ operation on the genome Π of Figure 1.
Adjacencies 1h7h and 10t11h of the genome represented in
(a) are cut and adjacencies 1h10t and 11h7h are joined to
construct the genome represented in (b). This example
shows how a DCJ operation can fuse two chromosomes
into one.
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chromosome in Π ⊕ Π are uniformly labeled "1"
or "2" [16,18]. The double distance function is not
symmetric because Δ is an all-duplicates genome
and Π is an ordinary one, thus capturing the
presumed asymmetric temporal and evolutionary
relationship between the ancestor Π and the
present-day genome Δ.

3. Median. Given three genomes Π1, Π2, Π3, find a
genome M which minimises d(Π1, M) + d(Π2, M)
+ d(Π3, M). The median problem estimates the
common ancestor of two genomes, given a third
one as an outgroup. This is meaningful even in the
"unrooted" case, where it is not specified which of
the three genomes is the outgroup, because of the
symmetry of the sum to be minimised.

4. Halving. Given an all-duplicates genome Δ, find an
ordinary genome Π which minimises d(Δ, Π), the
double distance mentioned above. The goal of a
halving analysis is to reconstruct the ancestor of an
all-duplicates genome at the time of a WGD event.

5. Guided halving. Given an all-duplicates genome Δ
and an ordinary genome Π, find an ordinary genome
M which minimises d(Δ, M) + d(M, Π). The guided
halving problem is similar to the genome halving
problem for Δ, but it takes into account the ordinary
genome Π of an organism presumed to share a
common ancestor with M, the reconstructed
undoubled ancestor of Δ. A variant of the guided
halving problem introduced in [19] is to find an
ordinary genome M that is a solution to genome
halving, that is, minimises d(Δ, M), and which in
addition minimises d(M, Π). This helps choosing,
among the numerous solutions to the genome
halving problem, the one that is closest to the
outgroup. We do not study this variant here, and it
is open for all genomic distances.

We will survey these five computational problems for the
three distances that we have introduced, in the cases of
multichromosomal genomes containing all linear chro-
mosomes, all circular chromosomes, or permitting both.
The latter are refered as mixed genomes.

While many problems are open for multichromosomal
genomes, there is a huge amount of research on these
problems for unichromosomal genomes, whether circu-
lar or linear (the two cases are often equivalent up to
some transformations [1]). They are not systematically
particular cases of the multichromosomal problems, as
the constraint of keeping only one chromosome along a
rearrangement scenario can result in more difficult
problems. More precisely, unichromosomal DCJ

problems reduce to RT multichromosomal ones. Indeed,
the RT operations always transform a unichromosomal
genome into a unichromosomal one. As this paper
contains very few results on the RT distance, practically
the unichromosomal cases are often independent and
not generalized here. Results on unichromosomal
genomes are summarised in Table 1, together with the
results for the multichromosomal case we review or
present here. A complete survey on these problems can
be found in [1].

Results
Breakpoint distance, circular and mixed genomes
In this section, d = dBP, and genomes are considered in
their most general definition, that is, multichromosomal
with both circular and linear chromosomes allowed. All
the results also stand for circular genomes, but not always
for linear genomes, which will be considered in a
following section. As the nuclear genome of a eukaryotic
species, a mixed karyotype is rarely observed, so probably
unstable. Nevertheless this case is of great theoretical
interest, as it is the only combination of distance and
karyotype where all five problems mentioned in the
previous section prove to be polynomially solvable,
including the median problem which is hard for almost
every other variant. Furthermore, the solutions in this
context may suggest approaches for other variants of the
problems, as well as providing a rapid bound for other
distances, through the Watterson et al. bound [8].

Distance and double distance
The distance computation follows directly from the
definition, and is easily achievable in linear time. The
double distance computation is also easy: let Π be a
genome and Δ be an all-duplicates genome. Let a(Π, Δ)
be the sum, for every adjacency xy in Π, of the number of
adjacencies among x1y1, x1y2, x2y1, x2y2 in Δ. Let
e(Π, Δ) be the sum, for every telomere x in Π, of the
number of telomeres among x1 and x2 in Δ.

Then we obtain

d n a
e

( , ) ( , )
( , )

.Π Δ Π Δ Π Δ= − −2
2

Indeed, it is a lower bound on the distance, because
a(Π, Δ) and e(Π, Δ) are upper bounds on the number of
common adjacencies and common telomeres, respec-
tively, between Δ and any Π ⊕ Π. This lower bound is
attained by constructing Π ⊕ Π in the following way: let
xy be a possibly telomeric adjacency in Π (either x or y
may be ∘ symbols); if x1y1 or x2y2 is an adjacency in Δ,
choose x1y1 and x2y2 as adjacencies in Π ⊕ Π; If x1y2 or
x2y1 is an adjacency in Δ, choose x1y2 and x2y1 as
adjacencies in Π ⊕ Π; the two cases are either mutually
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exclusive if xy is not telomeric, or identical if xy is
telomeric, so the assignment is made without ambiguity.
For all adjacencies that have not been assigned, assign
them arbitrarily.

Median
The following result contrasts with the NP-completeness
proofs of almost all median problems in the literature
[20-22] (see [23,24] for tractability results on some
variants). The problem is NP-complete for unichromo-
somal genomes, that is, when the median genome M is
required to be unichromosomal, whether the genomes
are linear or circular [20,21], but the multichromosomal
case happens to be easier.

Theorem 1. There is a polynomial time algorithm for the
breakpoint median problem for multichromosomal genomes.

Proof. Let Π1, Π2, Π3 be three genomes on a gene set G of
size n. For any genome M on G , let s(M) = d(Π1, M) +
d(Π2, M) + d(Π3, M) be the median score of M.

Draw a graph G on the vertex set containing (1) all
extremities of genes in G , and (2) one supplementary
vertex tx for every gene extremity x. For any pair of gene
extremities x, y, draw an edge xy weighted by the number
of genomes, among Π1, Π2, Π3, for which xy is an
adjacency. Then there is an edge between each pair of
gene extremities, weighted by 0, 1, 2, or 3. Now for any
vertex x, draw an edge xtx weighted by half the number of
genomes, among Π1, Π2, Π3, having x as a telomere. Each
edge xtx is then weighted by 0, 1

2 , 1, or 3
2 . Finally, put

an edge of weight 0 between tx and ty for all pairs of
gene extremities x, y. Let M be a perfect matching in G.
Clearly, the edges joining gene extremities in M define
the adjacencies of a genome, which we also call M. The
relation between the weight of the perfect matching M
and the median score of the genome M is easy to state:

Claim 1. The weight w(M) of the perfect matching M in G is
3n - s(M).

Indeed, for any genome Πi, d M n ai i
ei( , ) ( )Π = − + 2

,
where ai = a(Πi, M) is the number of common
adjacencies between M and Πi, and ei = e(Πi, M) is the
number of common telomeres between M and Πi. If M
and Πi have a common adjacency or a common
telomere, this accounts for 1 or 1

2
, respectively, in the

weight of the perfect matching M. So the weight of the
matching M is w M a a a e e e( ) = + + + + +

1 2 3
1 2 3

2
, which

yields d(Π1, M) + d(Π2, M) + d(Π3, M) = 3n - w(M).

Conversely, any genome M can be extended to a perfect
matching M in G such that s(M) = 3n - w(M): construct

the matching M by including the edges xy and txty for
each adjacency xy and an edge xtx for each telomere x.

Claim 1 implies that a maximum weight perfect
matching M is a minimum score median genome. As
the maximum weight perfect matching problem is
polynomial [25], so is the breakpointmedian problem. □

If the three genomes in the instance are circular, then it is
possible to constrain the result to also be circular by
restricting the graph G to the extremities of the genes.
Then, in the same way, a perfect matching gives a circular
solution to the median problem. This is not the case for
linear genomes, since there is no way to guaranty that no
chromosome in an instance is circular.

Note that a generalisation of this algorithm remains
valid if the median of more than three genomes is to be
computed. The phylogeny problems, both "big" and
"small" versions, which also generalise the median
problem for three genomes, remain open. The big
problem is the search for a Steiner tree in the space of
genomes, minimising the sum of the distances on its
branches, while in the small problem, presumably easier,
the graph-theoretical structure of the tree, namely its
vertex set and edge or branch set, are given, and only the
genomes corresponding to the extra vertices (not
corresponding to the given genomes) need to be
reconstructed.

Halving
To our knowledge, the genome halving with breakpoint
distance has not yet been studied. In this framework,
it has an easy solution, using a combination of elements
from the maximum weight perfect matching technique
in the solution of the median problem presented
above, and the double distance computation. Let Δ be
an all-duplicates genome on a gene set G , and G be the
graph on the vertex set containing (1) all the extremities
of the genes in G , and (2) one supplementary vertex tx
for every gene extremity x. For any pair of gene
extremities x, y, draw an edge in G weighted by zero,
one or two according to the number of adjacencies in
Δ among x1y1, x1y2, x2y1, and x2y2. Now for any
vertex x, draw an edge xtx weighted by half the number
of telomeres among x1 and x2 in Δ. Finally, put an
edge of weight 0 between txty for all pairs of gene
extremities x, y.

For a genome M on G , define a perfect matching, also
called M, by including edges xy and txty for each
adjacency xy, and an edge xtx for each telomere x. Let
w(M) be the weight of the matching M.
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Claim 2. For a genome M on G , the perfect matching M thus
constructed satisfies w(M) = 2n - d(Δ, M).

Indeed, the score of the perfect matching M is
a M e M( , ) ( , )Δ Δ+ 2

, that is, 2n - d(Δ,M), according to the
double distance formula (see above in this section).

Conversely, it is easy to see that any perfect matching on
G defines a genome M such that w(M) = 2n - d(Δ, M).
This implies that the maximum weight perfect matching
solves the genome halving problem in the breakpoint
distance context.

Again, it is possible to solve the problem on only circular
genomes by restricting the graph G to the gene
extremities, dropping the tx supplementary vertices.

Guided Halving
As is the case for the median problem, this context
provides the only polynomial result for the guided
genome halving problem up to our knowledge. The
solution combines elements of the three previous results,
on the double distance, median and halving problems.

Let Δ be an all-duplicates genome on a gene set G , andΠ be
an ordinary genome on G . Let G be the graph on the vertex
set containing (1) all the extremities of the genes in G , and
(2) one supplementary vertex tx for every gene extremity x.

For any pair of gene extremities x, y, there is an edge in G
weighted by the number of adjacencies among x1y1,
x1y2, x2y1, x2y2 in Δ, and xy in Π. Now there is an edge
xtx for any gene extremity x weighted by half the number
of telomeres among x1, x2 in Δ and x in Π. So each edge
between gene extremities has an integer weight in {0, 1,
2, 3}, and xtx edges may have weight 0, 1

2
, 1, or 3

2
. Add

0-weight edges txty for all pairs x, y of gene extremities.

For any genome M, let s(M) = d(Δ, M) + d(M, Π). It is
possible to construct a perfect matching M in G from
genome M by choosing edges xy and txty for every
adjacency xy in M. Its weight is denoted w(M).

Claim 3. For a genome M, the perfect matching thus
constructed satisfies w(M) = 3n - s(M).

Indeed, the weight of the perfect matching M is

w M a M a M e M e M( ) ( , ) ( , ) ( , ) ( , )= + + +Π Δ Π Δ
2

. According to

the double distance formula (see above in this section),
this yields w(M) = 3n - s(M).

Conversely, if M is a perfect matching in G, its edges
between gene extremities define the adjacencies of a

genome M which satisfies s(M) = 3n - w(M). This implies
that the maximum weight perfect matching solves the
guided genome halving problem in the breakpoint
distance context.

As is the case for the median problem, it is possible to
generalise this statement for an arbitrary number of
ordinary outgroup genomes. The phylogenetic problems
are open.

Again, we can solve the problem on circular genomes by
dropping the tx supplementary vertices in the graph G.

Breakpoint distance, linear case
In this section, d = dBP and all genomes must be linear, as
is most appropriate for modeling for the eukaryotic
nuclear genome. In contrast to the model of the previous
section, all the problems concerning at least three
genomes are NP-complete.

Distance and double distance
The solutions to these problems are the same as in the
previous section, where circularity was allowed. In the
double distance computation, it is guaranteed that Π ⊕
Π is linear if Π is linear, because if x is a telomere in Π,
then both x1 and x2 are telomeres in Π ⊕ Π.

Median
Whereas the median is polynomial in the circular and
mixed cases, it changes complexity as soon as median
genomes are required to be linear. This does not prevent
the use of the polynomial algorithm described above as a
lower bound, but all biologically relevant median
problems seem in fact to be NP-complete.

Theorem 2. The breakpoint median problem for multi-
chromosomal linear genomes is NP-hard.

Proof. We use a reduction from the 2-chromosome
breakpoint median, for which NP-hardness is proved in
Lemma 2.

The 2-chromosome breakpoint median problem takes as
input three unichromosomal linear genomes Π1, Π2, and
Π3 on a set G of genes, all having the same pair of
telomeres. It asks for a linear genome M on G with at
most two chromosomes, which minimises its median
score s(M) = d(Π1, M) + d(Π2, M) + d(Π3, M). The
following lemma states the difficulty of the breakpoint
median problem compared to the 2-chromosome break-
point median problem, and thus, together with Lemma
2, proves Theorem 2.
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Lemma 1. Let Π1, Π2, Π3, be three unichromosomal linear
genomes Π1, Π2, and Π3 all having the same pair of telomeres
on the gene set G = {1,...,n}, and k be a positive integer.
There exists a genome M on G with at most two linear
chromosomes such that s(M) ≤ k if and only if there exists a
multichromosomal linear genome M' on G with s(M') ≤ k.

(⇒): This direction is trivial: simply take M' = M.

(⇐): Let M' be a linear multichromosomal genome
satisfying s(M') ≤ k, that has as few chromosomes as
possible. We will prove that M' has at most two
chromosomes. Suppose M' has at least three chromo-
somes. Then it has at least six telomeres v1,...,v6. Among
them, it is possible to identify two telomeres (say
without loss of generality v1 and v2), that belong to
different chromosomes and are not telomeres in Π1, Π2,
or Π3, because by hypothesis, they all have the same two
telomeres. Then the genome constructed from M' by
adding the adjacency v1v2 has at most the same median
score as M' and fewer chromosomes, contradicting the
hypothesis on M'. So choosing M = M' gives a genome
with at most two chromosomes such that s(M) ≤ k. □

We now need to prove the NP-hardness of the 2-chromo-
some breakpoint median problem. We use a reduction from
the hamiltonian cycle problem for directed graphs with
vertex degree at most three, similar to the proof of Bryant
[21] for the breakpoint median problem for unichro-
mosomal circular genomes.

Lemma 2. The 2-chromosome breakpoint median
problem is NP-hard.

Proof. Given a directed graph with maximum degree 3,
deciding if it has a hamiltonian directed cycle is an NP-
complete problem [26]. Let thus G0 be such a digraph.
We will construct an instance of the 2-chromosome
breakpoint median problem from G0.

First, let G be the directed graph with vertex set V (G) =
V (G0) ∪ {xe : e Œ E(G0)} ∪ {p, q}, and arc set

E G ux x v uv E G pquv uv( ) { , : ( )} { }.= ∈ ∪0

Note that G0 has a hamiltonian cycle if and only if there
is a cycle in G covering all vertices but p and q. Given a
subset X ⊆ E(G) of the arcs of a graph G, let GX denote
the graph with vertex set V(G) and arc set X.

Construct three subsets A, B, C of arcs of G such that
every arc of G belongs to exactly one of A, B, C, and A, B,
C are either hamiltonian cycles of G or sets of vertex
disjoint paths in G. The procedure is straightforward: for
all vertex v of G which is a vertex of G0, put all incoming

arcs in different subsets, and all outgoing arcs in different
subsets. It can be done independently for every vertex
because from the construction of G, no two vertices of G0

are neighbors. Eventually put arc pq in any subset.

Now perform a series of modifications of G to obtain a
graph with three hamiltonian cycles A, B, and C. Along
these modifications, we maintain a subset of arcs called
supplementary arcs, noted S. Before any transformation, S
is empty. The goal is to maintain the property that there
exists a cycle covering all vertices of G except p and q and
not using supplementary arcs if and only if there is a
hamiltonian cycle in G0. As already remarked, the
property is true at the beginning. Choose X Œ {A, B,
C} such that X is not a hamiltonian cycle in G (it is a set
of disjoint paths). Choose two vertices a and b such that
adding the arc ab to G and X would either give a graph in
which X is a hamiltonian cycle, or a set of disjoint paths
with fewer components. Then choose any vertex x of G
different from a and b. Perform the following transfor-
mation illustrated in Figure 4: add two new vertices y and
z. For each arc xw of G, replace it by the arc zw, and add
zw to Y Œ {A, B, C} whenever xw Œ Y. Add arcs xy, yz, xz,
ay, yb to G. Add xz, ay, yb to X. Also add xz, ay, yb to S, and
add xy, yz to all {A, B, C}\X. Clearly, the property that
there exists a cycle covering all vertices of G except p and
q and not using supplementary arcs if and only if there is
a hamiltonian cycle in G0 is still true after this
transformation.

Repeat this process until A, B and C are all hamiltonian
cycles in the resulting graph, which we call G'. The weight
of an arc of G' is the number of hamiltonian cycles
among A, B and C which contain this arc. Note that G'
has only weight 1 and 2 arcs.

Let v be an arbitrary vertex of G, different from p and q.
Let G = V(G')\{v} ∪ {v1, v2} be a set of genes (v1 and v2
are two new genes). For every X Œ {A, B, C}, construct a
genome ΠX on G such that xhyt is an adjacency in
genome X if xy is an arc of X in G' and x, y are different
from v; If xv and vy are the arcs of X covering v, add the
adjacencies x vh t

1 and y vt h
2 . This gives three linear

unichromosomal genomes on G with the same pair of
telomeres ( vh1 and v t2 ), thus an instance of the 2-
chromosome breakpoint median problem. For any genome
M on G , the weight of an adjacency xy is the number of
genomes, among ΠA, ΠB and ΠC, which contain this
adjacency. Adjacencies uhwt in M such that uw is an arc in
S are called supplementary adjacencies.

Let li be the number of arcs of weight i in the graph G',
for each 0 ≤ i ≤ 3. For any genome M on G , note s(M) =
d(ΠA, M) + d(ΠB, M) + d(ΠC, M). The following is
inspired by a result from [9] used in [21].
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Claim 4. Let n = |V (G')|. A genome M with NM linear
chromosomes on G satisfies s(M) ≥ 2n - 1 + NM - l2, where
equality holds if and only if M contains all adjacencies of
weight 2, and no adjacency of weight 0.

Indeed, for a genome M, denote by w(xy) the weight of
the adjacency xy, and li = |xy adjacency of M: w(xy) = i|,
for each 0 ≤ i ≤ 3. Let t1 = 1 if M has vh1 as a telomere,
and t1 = 0 otherwise, and t2 = 1 if M has v t2 as
a telomere, and t2 = 0 otherwise. Then we may
write s M l l l t t( ) | | ( )= − + + + +3 3 2 33 2 1

1 2
2G . As genome

M has NM chromosomes, we have l3 + l2 +
l 1 + l 0 = | G |NM a n d | G | = n + 1 , s o

s M n N l l l n NM M
t t( ) = + + − − − + ≥ − + − −+2 2 2 3 2 1 23 2 0 3 2
1 2
2 l l .

As by construction no arc of G' has weight 3, we may
write s(M) ≥ 2n - 1 + NM - l2. Equality holds if and only
if l2 = l2, l0 = 0, and 3 31 2

2
t t+ = , that is, if and only if M

contains all adjacencies of weight at least 2, and no
adjacency of weight 0, because l0 = 0 implies that vh1
and v t2 are telomeres of M, thus 3 31 2

2
t t+ = .

Claim 5. There is a linear genome M on G with at most two
chromosomes, with s(M) = 2n - 1 + NM - l2 if and only if
there is a hamiltonian cycle in G0.

(⇒) Suppose there is a linear genome M on G with at
most two chromosomes, with s(M) = 2n - 1 + NM - l2.
This implies by Claim 4 that M contains all adjacencies
of weight 2, no adjacency of weight 0, and that vh1 and
v t2 are telomeres of M. From the construction of G', M
cannot contain any supplementary adjacency, since the
extremities of supplementary adjacencies all are also

extremities of weight two adjacencies, which are all
contained in M. Note that in G', paths between vertices p
and q to other vertices of the graph necessarily contain
supplementary arcs. This yields that M has two chromo-
somes, one containing gene extremities from p and q,
and the other containing the gene extremities from the
other vertices, with telomeres vh1 and v t2 . Let H ⊆ E(G')
contain the arcs xy such that xhyt is an adjacency in M,
plus the arcs xv and vy for adjacencies of type vh1 and v t2
in M.

H ∩ E(G0) yields a hamiltonian cycle in G0.

(⇐) Suppose there is a hamiltonian cycle in G0. Then
there is a cycle H covering all vertices of G' except p and q.
Construct genome M on G by adding (1) adjacencies
xhyt whenever xy is in H and x, y are different from v (2)
adjacencies x vh t

1 and v yh2 whenever xv or vy are arcs of
H, (3) all weight two adjacencies, and (4) the adjacency
ptqh. It is easy to check that M is a genome on G , and by
construction it contains all weight 2 adjacencies and no
weight 0 adjacencies.

This proves that it is NP-complete to decide if a median
genome reaches the lower bound of Claim 4 for its score,
thus computing the minimum score median genome is
NP-hard. □

A byproduct of this proof is the NP-hardness of the
2-chromosome breakpoint median problem. The result
implies NP-completeness of the general case, where the
genomes in the instance do not necessarily have the
same pairs of telomeres. A consequence is that for any
fixed k, it is also NP-hard to compute a best linear
median genome with at most k chromosomes.

Halving
Surprisingly, this problem has not been treated in the
literature. We conjecture it has a polynomial solution,
because the halving problem for all other rearrangement
distances is polynomial. Constructing a solution is
beyond the scope of this paper, and the problem
remains open.

Guided Halving
This problem is NP-hard, as proved in [27], using the
NP-completeness result for the median proved just
above in this section.

DCJ distance, general case
In this section, d = dDCJ. Genomes can have several
chromosomes, circular or linear. This is the most general
context in which the DCJ distance has been explicitly
formulated [3]. Genomes rarely contain both circular

Figure 4
Reduction of hamiltonian cycle in directed graph to
breakpoint median for linear genomes. This figure is
redrawn from [21]. Vertex a has no outgoing arc with X =
A in its label set, and b has no incoming arc with A in its label
set. We choose a, b such that adding arc ab to G[A] would
not give a non-Hamiltonian circuit. We choose an another
vertex x and insert two new vertices y and z. The incoming
arcs of x in the right hand graph are the same as in the left
hand graph. The outgoing arcs of z are the same as the
incoming edges of x in the left hand graph. The remaining
edges reduce the number of components in G[A] but leave
the same number of components in G[B] and G[C].
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and linear chromosomes; eukaryote nuclear genomes
contain multiple linear chromosomes while prokaryotes
generally contain one large circular chromosome, some-
times with additional plasmids.

Nevertheless, the simplicity of the computational frame-
work where both genomes may contain both circular
and linear chromosomes makes it attractive to mathe-
matical study.

Note that the complexity of the median problem is not
established by the work of Caprara [22], who proved the
unichromosomal result only. We show the NP-hardness
of the multichromosomal case here. Alekseyev and
Pevzner [16] mention that the complexity of the double
distance problem in the context of circular genomes is
open; we show here that it is NP-hard as well.

Distance
There is an easy linear solution, both for the distance and
the scenario computation [3,12]. We briefly recall the
formula for computing the distance, because the under-
lying principle will be used in our proofs later on in this
paper.

The breakpoint graph of two genomes Π and Γ on a gene
set G , denoted by BP(Π, Γ), is the graph whose vertex set
is the set of extremities of the genes in G , where there is
an edge between two vertices x and y if xy is an adjacency
in either Π (these are Π-edges) or Γ (Γ-edges). Note that
we do not invoke any ∘ symbols in the construction of
the breakpoint graph. Vertices in this graph have degree
zero, one or two, so that the graph is a set of paths
(possibly including some with no edges) and cycles. It is
also the line-graph of the adjacency graph, an alternate
representation in [3]. Figure 5 shows an example of a
breakpoint graph. Theorem 3 shows how to obtain the
distance directly from the graph. The formula is
presented in [3] with the cycles and odd paths of the
adjacency graph. This corresponds to cycles and even
paths of the breakpoint graph, as it is the line-graph of
the adjacency graph.

Theorem 3. [3]For two genomes Π and Γ on a gene set G of
size n, let c(Π, Γ) be the number of cycles of the breakpoint
graph BP(Π, Γ), and p(Π, Γ) be the number of paths with an
even number of edges. Then

d n c
p

( , ) ( , )
( , )

.Π Γ Π Γ Π Γ= − −
2

Note the similarity to the breakpoint distance formula in
the background section on page 5. The number of genes
n is the same in both formulae, the parameter c is related
to parameter a in the breakpoint formula in that each
common adjacency is a cycle of the breakpoint graph
(with two parallel edges), and parameter p is related to
parameter e, as each shared telomere is an even path
(with no edge) in the breakpoint graph. Although these
two measures of genomic distance were derived in
different contexts and through different reasoning, their
formulae show a remarkably similar form. They differ in
that the DCJ formula also counts non-trivial cycles and
paths, but for distant genomes, both measures tend to
give similar values.

Double distance
The NP-completeness proof for the double distance
problem follows the principles of Caprara's hardness
proof for the median problem in the unichromosomal
case [22].

Theorem 4. The DCJ double distance problem is NP-hard for
multichromosomal mixed or circular genomes.

Proof. The reduction is from the breakpoint graph
decomposition (BGD) problem (see [22]). A graph G is
bicoloured if all its edges are coloured either red or blue; it
is balanced if it has only degree 2 or degree 4 vertices,
every vertex is incident to the same number of red and
blue edges, and there is no cycle formed by only red or
only blue edges. Given a balanced bicoloured graph G,
the breakpoint graph decomposition problem is to find
a partition of the edges of G into a maximum number of
edge-disjoint cycles, each alternating between red and
blue edges. Caprara [22] first proved the NP-hardness of
this problem, and Berman and Karpinski [28] extended
this by proving APX-hardness.

Let G be a balanced bicoloured graph on n vertices,
defining an instance of the BGD problem. Let w2 be the
number of degree 2 vertices of G, and w4 be the number
of degree 4 vertices of G. Define the gene set G as the
vertex set of G. Construct an all-duplicates genome Δ and
a genome Π on G in the following way, as illustrated in
Figure 6. First, for each gene X of G , let XtXh be an
adjacency in Π. Then, for every vertex X of G, let X1t, X1h,
X2t and X2h, be the extremities of the duplicated gene X.

Figure 5
A Breakpoint Graph. The breakpoint graph of the
genomes Π (see Figure 1) and Γ, given by the union of C1 =
{T 12t, 12h14h, 14t7h, 7t4t, 4h1h, 1t8t, 8h2t, 2h6t, 6hT} and C2 =
{T 9t, 9h3t, 3h10t, 10h5t, 5h11h, 11t13h, 13tT}. Π-edges are
dotted lines, and Γ-edges are plain lines.
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If X has degree two in G, add the adjacency X1tX2h in Δ
(if X has degree four, no adjacency is added at this
point). Then for each blue edge XY in G, choose among
X1h and X2h an extremitiy that is not yet involved in an
adjacency, and another among Y1h and Y2h (arbitrarily if
neither is involved in an adjacency yet). Add an
adjacency between the two chosen extremities in Δ.
Then for each red edge XY in G, choose among X1t and
X2t an extremitiy that is not yet involved in an adjacency,
and another among Y1t and Y2t (arbitrarily if neither is
involved in an adjacency yet). Add an adjacency between
the two chosen extremities in Δ.

We then have an all-duplicates genome Δ, and a genome
Π. Note that Π is composed of n circular chromosomes,
one for each gene, and that neither Π nor Δ have
telomeres.

Claim 6. The maximum number of edge-disjoint alternating
cycles in G is equal to 2n - d(Δ, Π) - w2.

(This claim implies the theorem).

We first prove that the maximum number of edge-
disjoint alternating cycles in G is at least 2n - d(Δ, Π) -
w2. Let Π ⊕ Π be the doubled genome such that d(Δ, Π ⊕
Π) = d(Δ, Π). As no genome has a telomere, by Theorem
3, d(Δ, Π ⊕ Π) = 2n - c(Δ, Π ⊕ Π). Therefore there are
c(Δ, Π ⊕ Π) edge-disjoint cycles in BG(Δ, Π ⊕ Π)

alternating between Π ⊕ Π-edges and Δ-edges. Among
them, w2 cycles are containing only two edges: if a vertex
X of G has degree 2, then Π ⊕ Π has the adjacency X1tX2h

and X2tX1h because the other possibility systematically
has one cycle less in BG(Δ, Π ⊕ Π). The Δ edges of all the
other cycles are the edges of an alternating blue-red cycle
in G. Indeed, every blue edge defines an adjacency in Δ
containing two gene heads, and every red edge defines an
adjacency containing two gene tails. The Π ⊕ Π-edges all
join one tail and one head, so two consecutive Δ-edges in
a cycle of BG(Δ, Π ⊕ Π) have different colours. This
means there are at least 2n - d(Δ, Π) - w2 alternating
cycles in G.

Conversely, if there are k edge-disjoint alternating cycles
in G, then d(Δ, Π) ≤ 2n - k - w2. Indeed, let C be any cycle
of this partition. For every covered vertex X of degree 4 in
G, let e and f be two consecutive edges of C (say e is blue
and f is red) which are both incident to X. If e defines an
adjacency in Δ which contains X2h and f defines an
adjacency which contains X2t, choose X1hX1t and X2hX2t

as adjacencies for Π ⊕ Π. If e defines an adjacency which
contains X2h (or X1h) and f defines an adjacency which
contains X1t (or X2t), choose X1hX2t and X2hX1t as
adjacencies for Π ⊕ Π. For vertices of degree 2, always
choose X1hX2t and X2hX1t as adjacencies for Π ⊕ Π. In
this construction, each red-blue alternating cycle in G is a
Π ⊕ Π-Δ alternating cycle in BP(Π ⊕ Π, Δ) that has at
least k cycles. And there are w2 additional length 2 cycles
at each degree 2 vertex. So d(Δ, Π) ≤ 2n - k - w2. □

Median
Though effective exact algorithms [29] and heuristics
[30,31] are available, we have:

Theorem 5. The DCJ median problem for multichromosomal
genomes is NP-hard, even for circular genomes.

Proof. We use a reduction from the breakpoint graph
decomposition defined in the proof of Theorem 4, in a
way very similar to part of Caprara's proof [22] for the
unichromosomal case.

Let G be a balanced bicoloured graph on n vertices.
Define the gene set G as a set containing one gene X for
every degree 2 vertex of G, and two genes X and Y for
every degree 4 vertex of G.

Then construct the genomes Π1, Π2, Π3 in the following
way, which is similar to the transformation in [22], as
illustrated in Figure 7.

For each degree 4 vertex v ofG, add the two adjacencies XtXh

and YtYh toΠ1, and the two adjacencies XtYh and YtXh toΠ2.

Figure 6
Reduction of BGD to DCJ double distance problem.
The left hand graph is the balanced bicoloured graph G, and
the right hand graph represents the adjacencies of the
duplicated genomes Δ and Π ⊕ Π. In the case of a degree 2
vertex in G, the adjacencies of Π ⊕ Π are determined, as one
solution gives more cycles. In the case of a degree 4 vertex in
G, the two possibilities for the adjacencies of Π ⊕ Π are
shown (Π ⊕ Π contains either the vertical or horizontal
dotted adjacencies).
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Now fo every blue edge vw in G, add to Π3 an adjacency
between heads of genes contructed from v and w (choose
one duplicated gene head arbitrarily if v or w have degree
4). And for every red edge vu in G, add to Π3 an
adjacency between tails of genes contructed from v and u
(choose one duplicated gene tail arbitrarily if v or u have
degree 4).

It is easy to see that Π1, Π2, and Π3 define genomes on
the set of genes G , and they have no telomeres. Let w2
be the number of degree 2 vertices of G, and w4 be the
number of degree 4 vertices of G.

Claim 7. There exists a genome M on G such that d(M, Π1)
+ d(M, Π2) + d(M, Π3) ≤ w2 + 3w4 - k if and only if there
exists at least k edge-disjoint alternating cycles in G.

(This claim implies the theorem.)

(⇐): Suppose there are k edge-disjoint alternating cycles in
G. We will construct a median genome M such that d(Π1,
M) + d(Π2, M) + d(Π3, M) = w2 + 2w4 - k. First, for each
degree 2 vertex v of G, let XtXh be in M. Then, let v be a
degree 4 vertex inG, and vw be a blue edge incident to v. In
an alternating cycle, edge vw is consecutive with a red
edge, say uv. To vw is associated a constructed Π3

adjacency, say XhWh. Then either the Π3 adjacency
associated to uv contains the gene extremity Xt, or it
contains the extremity Yt. In the first case, let XhXt and YhYt

be in M, and in the second case, let XhYt and XtY h be in
M. The matching M defines the adjacencies of a circular

genome on G , that we also call M. There are w2 + 2w4
genes, so by Theorem 3, d(Π1,M) + d(Π2,M) + d(Π3,M) =
3(w2 + 2w4) - (c(Π1, M) + c(Π2, M) + c(Π3, M)). By
construction, we have c(M, Π1) + c(M, Π2) = 2w2 + 3w4,
and c(M,Π3) = k, so d(Π1,M) + d(Π2,M) + d(Π3,M) =w2 +
3w4 - k.

(⇒): Suppose M is a genome such that d(Π1, M) + d(Π2,
M) + d(Π3, M) ≤ w2 + 3w4 - k. Suppose M is chosen such
that d(Π1, M) + d(Π2, M) + d(Π3, M) is minimum, and
among all such genomes, choose M with a maximum
number of edges parallel to Π1-edges or Π2-edges. A
circular genome is said to be canonical if it only has
adjacencies that belong to Π1 or Π2. We will prove thatM
is canonical.

Subclaim. M is canonical.

Suppose M is not canonical. Suppose first that there is a
degree 2 vertex v in G, such that M does not contain the
adjacency XtXh. Suppose M contains adjacencies Xta and
Xhb, where a and b are gene extremities or ∘ symbols if Xt

or Xh is a telomere in M. Then replace Xta and Xhb by XhXt

and ab (simply XhXt if both Xt and Xh are telomeres in
M). By this operation, c(M, Π1) and c(M, Π2) both
increase by at least 1, and c(M, Π3) decreases by at most
1, so d(Π1, M) + d(Π2, M) + d(Π3, M) decreases by one,
contradicting the hypothesis.

Now suppose that there is a degree 4 vertex in G, such
thatM does not contain any of the adjacencies XhXt, YhYt,
XhYt, YhXt. Say it contains adjacencies Xha, Xtb, Y hc, Ytd,
where a, b, c, d may be null symbols if any of Xh, Xt, Y h,
Yt is a telomere in M. Then replace Xha, Xtb, Yhc, Ytd by
XhXt, YhY t, and either ab, cd, or ac, bd, or ad, bc, according
to the combination that creates the largest number of
cycles in BP(M, Π3). Suppose now that M contains only
one among the adjacencies XhXt, YhY t, XhYt, YhXt, say
XhXt, and M has adjacencies Ytb and Y hc. Then replace
edges Ytb and Y hc by YhYt and bc. All these operations
decrease d(Π1, M) + d(Π2, M) + d(Π3, M) or maintain it
constant, while increasing the number of edges parallel
to Π1 and Π2, contradicting the hypothesis. So the
subclaim is proved.

Now, since M is canonical, there are c(Π3, M) edge-
disjoint alternating cycles in G, since an adjacency of M
always joins a head and a tail, so the corresponding edge
in G is adjacent to one red edge at one of its vertices and
one blue edge at the other. By Theorem 3, c(Π3, M) =
3(w2 + 2w4) - (d(Π1, M) + d(Π2, M) + d(Π3, M) + c(Π1,
M) + c(Π2, M)) and, by hypothesis, c(Π3, M) ≥ 3(w2 +
2w4) - (w2 + 2w4 - k + 2w2 + 3w4), that is, c(Π3, M) ≥ k,
which proves the claim. □

Figure 7
Reduction of BGD to DCJ median problem. The left
hand graph is the balanced bicoloured graph G, and the right
hand graph represents the adjacencies of the genomes Π1, Π2
and Π3. Again, in the case of a degree 2 vertex in G, the
choice for M is determined. But in the case of a degree 4
vertex in G, either the edges of Π1 or Π2 can be chosen for
the median M.
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Halving
This problem has a polynomial solution, as recently
stated for unichromosomal genomes by [16] and in the
general case by [4,5]. All these algorithms are simplified
versions of the algorithm by El-Mabrouk and Sankoff
[32], developed for the RT rearrangement distance,
which allows reversals, translocations, fusions and
fissions, but not the other DCJ operations.

Guided Halving
Theorem 6. The DCJ guided halving problem is NP-complete
for multichromosomal genomes.

Proof. Again, we use a reduction of the breakpoint graph
decomposition problem, as in the proofs of Theorems 4
and 5.

Let G be a balanced bicoloured graph on n vertices.
Define the gene set G as a set containing one gene X for
every degree 2 vertex of G, and two genes X and Y for
every degree 4 vertex of G. From G, we define one
genome Π and one all-duplicates genome Δ on G as
illustrated in Figure 8.

For every degree 2 vertex v of G, let X be the
corresponding gene in G and Xt and Xh its extremities.
For every degree 4 vertex v of G, let X and Y be the two
genes in G , and Xt and Xh, Y t and Yh their extremities.
For every blue edge uv in G, construct an adjacency in Π
between the heads of the genes constructed from u and v,
choosing arbitrarily between the heads of vertices X and
Y if u or v have degree 4, in such a way that no two
adjacencies share an extremity (choose a different head

for the two blue edges incident to a degree 4 vertex). For
every red edge tv in G, construct an adjacency in Π
between the tails of the genes constructed from t and v,
again choosing arbitrarily between the tails of vertices X
and Y if t or v have degree 4. This defines a genome Π on
G that has no telomere.

Now, define the genome Δ in the following way. For each
degree 2 vertex of G, Δ contains the adjacencies X1hX1t

and X2hX2t defined by the extremities of the two copies of
gene X. For each degree 4 vertex in G, Δ contains the
adjacencies X1hX1t, Y2hY2t, X2hY1t, and X2tY1h defined by
the extremities of the two copies of the two genes X and Y.
This defines an all-duplicates genome Δ on G that has no
telomere. Let w2 be the number of degree 2 vertices of G,
and w4 be the number of degree 4 vertices of G.

Claim. There exists a genome M such that d(M, Π) +
d(M, Δ) ≤ w2 + 3w4 - k if and only if there exists at least k
edge-disjoint alternating cycles in G. (This claim implies
the theorem.)

(⇐): Suppose there are k edge-disjoint alternating cycles
in G. We will construct a genome M and a doubled
genome M ⊕M such that d(M, Π) + d(M, Δ) ≤ w2 + 3w4 -
k. First, for each degree 2 vertex v of G, let XtXh be in M,
and M ⊕ M be constructed so that X1tX1h and X2tX2h are
in M ⊕ M. Then, for every vertex v of degree 4 of G, either
the blue edge incident to Xh is followed by the red edge
incident to Xt in one alternating cycle, or it is followed by
the red edge incident to Yt. In the first case, let XhXt and Y
hYt be in M, and X1hX1t, X2hX2t, Y1hY1t, Y2hY2t be in M
⊕M. In the second case, let XhYt and XtYh be in M, and
X2hY1t, X1hY2t, X1tY2h, X2tY1h be in M ⊕ M.

The matching M defines a genome without telomeres,
andM⊕M is one of its doubled genomes. There are w2 +
2w4 genes, so by Theorem 3, d(Π, M) = w2 + 2w4 - c(Π,
M) = w2 + 2w4 - k; and d(Δ, M ⊕ M) = 2(w2 + 2w4) - (2 ×
w2 + 3 × w4). So d(Π, M) + d(Δ, M) = w2 + 3w4 - k.

(⇒): Suppose M is a genome such that d(Π, M) + d(Δ, M)
≤ w2 + 3w4 - k. Suppose M is chosen such that d(Π, M) +
d(Δ, M) is minimum, and among all such genomes,
choose M with a maximum number of edges of type XtXh

for a degree 2 vertex in G, or XhXt, YhYt, XhYt and XtYh for
degree 4 vertices of G. A genome is said to be canonical if
it has no telomeres and has only edges of type XtXh for a
degree 2 vertex in G, or XhXt, YhYt, XhYt and XtYh for
degree 4 vertices of G. We will prove that M is canonical.

Subclaim. M is canonical.

Suppose M is not canonical. Suppose first that there is a
degree 2 vertex v in G, such that M does not contain the

Figure 8
Reduction of BGD to DCJ guided halving problem.
The left hand graph is the balanced bicoloured graph G, and
the right hand graph represents the adjacencies of the
genomes Δ and Π. Adjacencies of Π are doubled in the
drawing to be presented with the doubled genes.

BMC Bioinformatics 2009, 10:120 http://www.biomedcentral.com/1471-2105/10/120

Page 13 of 15
(page number not for citation purposes)



edge XtXh. Suppose M contains edges Xtu and Xhv, where
u and v are gene extremities or ∘ symbols if Xt or Xh is a
telomere in M. Then replace Xtu and Xhv by XhXt and uv
(simply XhXt is both Xt and Xh are telomeres in M). By
this operation, c(M, Π) decreases by at most one, while
defining M ⊕ M as containing X1hX1t and X2hX2t makes
c(M ⊕ M, Δ) increase by at least 2. This contradicts the
hypothesis.

Now suppose that there is a degree 4 vertex in G, such that
M does not contain any of the edges XhXt, YhYt, XhYt, YhXt.
Say it contains edges Xht, Xtu, Yhv, Ytw, where t, u, v, wmay
be null symbols if any of Xh, Xt, Yh, Yt is a telomere in M.
Then replace Xht, Xtu, Yhv, Ytw by Xh, Xt, YhYt, tu, vw or XhYt,
tw, XtYh, uv, depending on the cycles in c(M ⊕ M, Δ).

Suppose now that M contains only one among the edges
XhXt, YhYt, XhYt, YhXt say XhXt, and M has edges Ytu and
Yhv. Then replace edges Ytu and Yhv by YhYt and uv. All
these operations decrease d(Π, M) + d(Δ, M) or maintain
it constant, while increasing the number of edges of type
XtXh for a degree 2 vertex in G, or XhXt, YhYt, XhY t and
XtYh for degree 4 vertices of G, contradicting the
hypothesis. At the end of this process, M is canonical,
so the subclaim is proved.

Now, sinceM is canonical, there are c(Π,M) edge-disjoint
alternating cycles in G, since an edge of M always joins a
head and a tail, so that it is adjacent to one red and one
blue edge. By Theorem 3, c(Π, M) = 3(w2 + 2w4) - (d(Π,
M) + d(Δ, M ⊕ M) + c(Δ, M ⊕ M)), and by hypothesis,
c(Π3,M) ≥ 3(w2 + 2w4) - (w2 + 3w4 - k + 2w2 + 3w4)), that
is, c(Π3, M) ≥ k, which proves the claim. □

DCJ distance, linear chromosomes
In the original formulation of the DCJ distance [12], it
was shown that there is a solution where each excision of

a circular intermediate could be followed directly by its
reinsertion. Thus the median and halving problems can
be stated in terms of exclusively linear chromosomes in
both the data genomes and the reconstructed ancestor.
They all remain open.

Reversal/Translocation distance
Hannenhalli and Pevzner proposed a polynomial-time
algorithm for calculating dRT (Π, Γ) for two genomes Π
and Γ [17], after solving the problem for unichromsomal
genomes [39]. This was reformulated in [33], minor
corrections were added in [34] and [35], and Bergeron et
al. simplified the formula [14] and investigated the
relations between dRT and dDCJ.

A polynomial time genome halving algorithm was given
in [32]. Though the constrained DCJ distance in the
previous section is arguably just as realistic, because of
the long history of dRT, effective heuristics for RT have
been developed and applied for the double distance
[18,36], median [31,37] and guided halving problems
[18,19,36], but their complexities remain open ques-
tions. Note that [38] gives an NP-completeness result on
a problem which slightly generalizes the reversal double-
distance probem on unichromosomal genomes.

Discussion and conclusion
Table 1 summarises the current knowledge of the
complexity of the five genome rearrangement problems,
including the new results in this paper. Note that all the
results on general multichromosomal genome (that is,
circular or linear) also hold for exclusively circular
genomes, as the polynomial algorithms can always
provide a circular solution to a circular instance, and
all NP-completeness proofs are constructed with circular
chromosomes.

Table 1: Results summary

problem context:
distance, #chr, linear, circular or mixed

distance halving double distance median guided halving

breakpoint unichr, circular or linear P open open NP [20,21] open
breakpoint multichr, circular and mixed P new P new P new P new P new
breakpoint multichr, linear P new open P? P new NP new NP [27]

DCJ unichr, circular or linear P [3,12] P [16] open NP [22] open
DCJ multichr, circular and mixed P [3,12] P [4,5] NP new NP new NP new
DCJ multichr, linear P [12] open open open NP? open NP?

RT unichr P [39] open open NP [22] open
RT multichr P [17,33-35] P [32] open NP? open NP? open NP?

Status of complexity questions for five problems related to ancestral genome reconstruction, for eight genomic distances in the unichromosomal and
multichromosomal contexts. Note that unichromosomal problems require that both input and output genomes be unichromosomal, so all problems
involving doubled genomes are computationally defined in the circular case, when the doubled genome consists in a single circular chromosome
composed of two successive occurences of the ordinary genome. Other versions of the halving problem are less restrictive [5,16,32]. P and NP stand
for polynomial and NP-hard, respectively, and when followed by ?, represent our conjectures.
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