
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
On finding minimal absent words
Armando J Pinho*, Paulo JSG Ferreira, Sara P Garcia and 
João MOS Rodrigues

Address: Signal Processing Lab, DETI/IEETA, University of Aveiro, 3810-193 Aveiro, Portugal

Email: Armando J Pinho* - ap@ua.pt; Paulo JSG Ferreira - pjf@ua.pt; Sara P Garcia - spgarcia@ua.pt; João MOS Rodrigues - jmr@ua.pt

* Corresponding author    

Abstract
Background: The problem of finding the shortest absent words in DNA data has been recently
addressed, and algorithms for its solution have been described. It has been noted that longer absent
words might also be of interest, but the existing algorithms only provide generic absent words by
trivially extending the shortest ones.

Results: We show how absent words relate to the repetitions and structure of the data, and
define a new and larger class of absent words, called minimal absent words, that still captures the
essential properties of the shortest absent words introduced in recent works. The words of this
new class are minimal in the sense that if their leftmost or rightmost character is removed, then
the resulting word is no longer an absent word. We describe an algorithm for generating minimal
absent words that, in practice, runs in approximately linear time. An implementation of this
algorithm is publicly available at ftp://www.ieeta.pt/~ap/maws.

Conclusion: Because the set of minimal absent words that we propose is much larger than the
set of the shortest absent words, it is potentially more useful for applications that require a richer
variety of absent words. Nevertheless, the number of minimal absent words is still manageable
since it grows at most linearly with the string size, unlike generic absent words that grow
exponentially. Both the algorithm and the concepts upon which it depends shed additional light on
the structure of absent words and complement the existing studies on the topic.

Background
There has been recent interest in absent words in DNA
sequences, which are words that do not occur in a given
genome. At the individual level, such words can be used
as biomarkers for potential preventive and curative medi-
cal applications as derived from personal genomics
efforts, while at the group level the comparison of genetic
traits may impact, for example, on population genetics, or
evolutionary profiles obtained from comparative genom-
ics. It is therefore not surprising that absent words have
been the subject of recent studies [1-3].

Hampikian and Andersen [1] used the term "nullomer" to
designate the shortest words that do not occur in a given
genome and the term "prime" to refer to the shortest words
that are absent from the entire known genetic data.
Herold et al. [3] used the term "unword" also to designate
the shortest absent words. According to the definition,
any given DNA sequence has nullomers/unwords of a cer-
tain size, that are uniquely defined for that sequence, and
also of the shortest possible size.
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The algorithm used by Hampikian and Andersen [1] to
obtain the absent words tracks the occurrence of all possi-
ble words up to a user-specified length limit n, using a set
of 4n counters for the 4n possible words of length n. This
yields the existing absent words up to the given length
limit, n. The approach taken by Herold et al. [3] has some
computational advantages over that of Hampikian and
Andersen [1], by being less demanding in terms of mem-
ory needs and processing time.

In this paper, we generalize the concept of nullomer/
unword, such that other words, not necessarily the short-
est ones, can be included (for a precise definition see Def-
inition 3). In fact, the original definition adopted by
Hampikian and Andersen [1] and by Herold et al. [3]
might be too limiting, because there are sequences that
have only a few nullomers/unwords. For example, and
according to the results presented in [3], the genome of
the worm, Caenorhabditis elegans, has two nullomers/
unwords, whereas the genome of the extreme ther-
mophile, Thermococcus kodakarensis, has only one.

As stated by Herold et al. [3], longer absent words may
also be of interest. For generating those longer absent
words, they propose adding all unwords (say, of size k) as
additional sequences to the genome and re-running the
program. These additional absent words, which we call

generic absent words and denote by , also include

extended nullomers/unwords, i.e., words that contain
nullomers/unwords. However, not all generic absent
words are trivial extensions of nullomers/unwords.

Nullomers/unwords satisfy the following property, P.

Property 1 (P). If the leftmost or the rightmost character of a
given nullomer/unword is removed, then the resulting word is
no longer an absent word.

This property P does not hold for the absent words
obtained by trivially extending nullomers/unwords nor
for the longer absent words suggested by Herold et al. [3].
In other words, for a generic absent word, there is no way
of knowing in advance if the elimination of some charac-
ters from one of the extremities of the word yields an
absent word or not.

These observations motivated this paper, leading us to the
definition of what we call minimal absent words, denoted
by S, which are absent words (although not necessarily the

shortest ones) for which property P holds. Figure 1
presents a diagram showing the relation between the
generic absent words, the minimal absent words pro-
posed in this paper, and the nullomers/unwords (denoted

by ). Note that, as the size n of the word grows, the

number of generic absent words of size n approaches 4n.
On the contrary, as we will show later, the total number of
minimal absent words of a string S is upper bounded by

|S|||2, where |S| denotes the size of the string and || is
the alphabet size.

We have developed an efficient algorithm for computing
these minimal absent words, which, in practice, runs in
approximately linear time. Our work can be regarded as a
complement to the works of Hampikian and Andersen [1]
and of Herold et al. [3], in the sense that it provides a gen-
eralization of the nullomer/unword concept previously
introduced, and helps to clarify their structure.

Methods
Basic definitions
Let S be a string over a finite alphabet . We denote by
S[p], 1  p  |S| the pth character of S, where |S| designates
the length (i.e., number of characters) of S, and by
S[p1..p2], p1  p2 the substring of S that starts at position p1
and ends at position p2. Therefore, S[1..p] denotes a prefix
of S and S[p..|S|] a suffix. Sr indicates the concatenation of
character r to the right end side of string S, whereas lS indi-
cates the concatenation of character l to the left end side
of S.

For convenience, we define two additional virtual charac-
ters, # and $. They are virtual in the sense that they do not
belong to the alphabet . By definition, the character to
the left of the first character of the string is #, and the char-

S

 S

Relation between the sets of nullomers/unwords, , minimal absent words, S, and generic absent words, , of a given string SFigure 1
Relation between the sets of nullomers/unwords, 

, minimal absent words, S, and generic absent 

words, , of a given string S.
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acter to the right of the last character of the string is $. In
other words, we define S[0] = # and S[|S| + 1] = $.

Let , where  is a substring of S, to be the set of posi-

tions of S where  occurs, so that S[p..p + || - 1] = , p

  and S[p..p + || - 1]  , p  . We define 

and  to be the sets of characters that appear, respec-

tively, to the immediate left and right of the several occur-

rences of , and the sets  and .

We also denote by    ×  the set of all pairs of characters

(S[p - 1], S[p + ||]), p  , i.e., all pairs of characters

"enclosing" the occurrences of .

Definition 1 (Maximal repeated pair [4]). A maximal

repeated pair in a string S is a triple (p1, p2, ), such that p1 

p2, p1, p2  , S[p1 - 1]  S[p2 - 1] and S[p1 + ||]  S[p2 +

||].

Definition 2 (Maximal repeat [4]). A substring  is a max-
imal repeat of S if there is at least a maximal repeated pair in
S of the form (p1, p2, ).

Characterization
We are now ready to formally introduce the concept of
minimal absent word.

Definition 3 (Minimal absent word). A string , ||  3, is
a minimal absent word of S if  is not a substring of S, but
[2..||] and [1..|| - 1] are substrings of S.

Example 1. Consider the following example, where  = {A, C,
G, T} and S = ACTAACTG. According to Definition 3, the set
of minimal absent words of S is

Note that the set of nullomer/unwords (of size at least three) is

and that the set of generic absent words, , is too large to be

of any practical interest.

Theorem 1. If lr is a minimal absent word of string S, then
 is a maximal repeat in S.

Proof. According to Definition 3, if lr is a minimal absent
word of S, then l and r are substrings of S, i.e., l =
S[p1..p1 + ||] and r = S[p2..p2 + ||], with p2  p1 + 1 (if p2
= p1 + 1 then lr would be a substring of S, contradicting

the assumption that it is a minimal absent word). Now
consider that the character to the immediate right of l is
r' = S[p1 + || + 1] and that the character to the immediate
left of r is l' = S[p2 - 1]. Because lr does not exist in S,
then l' cannot be the same character as l and r' cannot be
the same character as r, implying that (p1 + 1, p2, ) is a
maximal repeated pair and, therefore,  is a maximal
repeat in S. �

Note that this applies to minimal absent words with at
least three characters, according to Definition 3. The
restriction could be removed by allowing  to be the
empty string. For the sake of clarity, we do not consider
this case here. In fact, directly finding minimal absent
words of length two requires ||2 string matching opera-
tions, which can be performed in a reasonable time,
unless the size of the alphabet is unusually large. This is
why in Definition 3 we restricted the size of a minimal
absent word to be at least three.

Theorem 2. A string lr is a minimal absent word of S if and
only if (l, r)  , for l   and r  .

Proof. If (l, r)  , then in none of the occurrences of  in
S we have, simultaneously, a l character to the immediate
left of  and a r character to its immediate right, implying
that lr does not occur in S. On the other hand, since l 
, then there is at least one position in S where the sub-
string l occurs, the same holding for the r substring,
because l  . Therefore, according to Definition 3, lr is
a minimal absent word of S.

Now, consider that lr is a minimal absent word of S and
(l, r)  . In that case, there would be a substring lr in S,
contradicting the assumption that lr is a minimal absent
word. �

Finding the minimal absent words
Theorem 1 states that all minimal absent words are asso-
ciated with maximal repeats. Therefore, finding all mini-
mal absent words may be associated to finding all
maximal repeats in a string, which can be done using suf-
fix trees in O(|S|) time [4]. Moreover, suffix trees can be
built and stored also in O(|S|) time/memory, respectively
[5-7]. See [4] for an introduction to suffix trees.

Suffix trees
A suffix tree of a string S is a rooted directed tree with
exactly |S| leaves (numbered 1 to |S|). Each internal node,
other than the root, has at least two children and each
edge is labeled with a nonempty substring of S. No two
edges out of a node can have edge-labels beginning with
the same character. For any leaf p, the concatenation of the
edge-labels on the path from the root to leaf p corresponds
to the suffix that starts at position p, i.e., to S[p..|S|].



  ′

′

  = ′ \{#}   = ′ \{$}





S AAA TAC AACTA= { , , }.

 S AAA TAC= { , }

S
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The condition stating that each internal node, other than
the root, should have at least two children, implies that
some strings do not have a suffix tree representation. In
fact, this condition is violated in strings having a suffix
that is a prefix of another suffix. To remedy this, a charac-
ter that does not appear in any other position of S is usu-
ally appended at the end of the string (the "$" character is
frequently used for this purpose [4]).

Figure 2 shows the suffix tree corresponding to the string
of Example 1, using "$" as the terminating character.

Definition 4 (Left character [4]). For each position p in S,
character S[p - 1] is called the left character of p. The left char-
acter of a leaf of the suffix tree is the left character of the suffix
represented by that leaf.

The characters appearing inside parentheses near the
leaves of the suffix tree of Fig. 2 are the corresponding left
characters. Notice the # character associated with leaf
number one, corresponding to S[0].

Definition 5 (Left diverse [4]). A node v of the suffix tree is
called left diverse if at least two leaves in v's subtree have dif-
ferent left characters.

In the suffix tree depicted in Fig. 2, nodes v1 and v2 are the
only left diverse nodes. According to Theorem 7.12.2 of

[4], the string  labeling the path to a node v of the suffix
tree is a maximal repeat if and only if v is left diverse.
Therefore, in Fig. 2, the substrings formed along the paths
from the root node to each of the two nodes v1 and v2 cor-
respond to maximal repeats. Those strings are A and ACT,
which are the base of the minimal absent words AAA, TAC
and AACTA. Recall that, in a string S, there might be, at
most, |S| maximal repeats (Theorem 7.12.1 in [4]). This
implies that the number of minimal absent words of a
string S is upper bounded by |S|||2.

Suffix arrays
Suffix trees are a powerful data structure that allowed
important advances in string processing [4]. However, the
space required by a suffix tree, although growing linearly
with the size of the string, might still be excessive for some
applications [8,9].

Suffix arrays are an alternative data structure that is more
space efficient (4 bytes per input character for strings of
size up to 232, in its basic form). However, to increase the
efficiency of certain tasks, they might require auxiliary
information [9]. Introduced in [10,11], the suffix arrays
can be constructed in linear time from the corresponding
suffix tree [4] or using direct algorithms [12-14].

Basically, a suffix array is an array of integers, pk, 1  pk 
|S|, 1  k  |S|, each pointing to the beginning of a suffix

Suffix tree for string S$ = ACT AACT G$Figure 2
Suffix tree for string S$ = ACT AACT G$.
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of S, such that S[pi..|S|] lexicographically precedes than
S[pj..|S|], i <j. Table 1 shows the suffix array of string S =
ACTAACTG (pk column), as well as two auxiliary arrays:
the longest common prefix array, lcp-array, and the left
character array, bwt-array, which corresponds to the Bur-
rows and Wheeler transform [15].

The lcp-array contains the lengths of the longest common
prefix between consecutive ordered suffixes, i.e., lcpk indi-
cates the length of the longest common prefix between
S[pk-1..|S|] and S[pk..|S|], 2  k  |S|. By convention, lcp1 =
lcp|S|+1 = 0.

The bwt-array is a permutation of S, such that bwtk = S[pk -
1]. Remember that the character to the immediate left of
S[1] has been defined to be #, a convention that explains
the value of bwtk for pk = 1. Conceptually, the bwt-array
does not provide additional information, because the left
character of any character of S can be determined by direct
access to S. In fact, in this paper, we use both notations,
bwtk and S[pk - 1], interchangeably. However, in practice,
the bwt-array allows sequential memory access and hence
improves the performance, due to better cache use [16].

Definition 6 (Lcp-interval). Interval [i..j], 1  i <j  |S|, is
an lcp-interval of lcp-depth d, denoted �d, i, j�, if

1. lcpi <d,

2. lcpk  d, i <k  j,

3. lcpk = d, for at least one k in i <k  j,

4. lcpj+1 <d.

The lcp-intervals of the example string S = ACTAACTG are
�1, 1, 3� and �1, 7, 8� of lcp-depth 1, �2, 4, 5� of lcp-depth 2,
and �3, 2, 3� of lcp-depth 3. Note that each of these lcp-
intervals correspond to a distinct internal node of the suf-
fix tree (see Fig. 2). For example, the lcp-interval �1, 1, 3� is
associated with node v1, whereas the lcp-interval �3, 2, 3�

corresponds to node v2. Therefore, we can think of a vir-
tual tree of lcp-intervals having a structure similar to the
corresponding suffix tree [16].

This correspondence between lcp-intervals and internal
nodes of the suffix tree is important, because it helps map-
ping some concepts from the suffix tree data structure into
the suffix array approach. For example, the notion of left
diverse node can be mapped directly into the lcp-inter-
vals. Finding if a node, associated with lcp-interval �d, i, j�,
is left diverse, is the same as finding if at least two charac-
ters of bwtk differ, for i  k  j. Moreover, in that case, the
corresponding maximal repeat is, for example,  = S[pi..pi
+ d - 1] (note that all substrings S[pk..pk + d - 1], i  k  j,
are identical).

Algorithm 1 (adapted from [16,17]) generates all lcp-
intervals using the lcp-array and a stack. The "Push" and
"Pop" operations have the usual meaning when associ-
ated to stack processing. The variable "top" refers to the
lcp-interval, �d, i, j�, on the top of the stack.

Algorithm 1. Computation of lcp-intervals.

Push �0, 0, 0�

for k = 2 to |S| do

i  k - 1

while lcpk<top.d do

lcpint  Pop

lcpint.j  k - 1

Table 1: Suffix array pk and auxiliary information, in this case the 
lcp and bwt arrays, for S = ACTAACTG.

k pk lcpk bwtk S[pk..|S|]

1 4 0 T AACTG
2 1 1 # ACTAACTG
3 5 3 A ACTG
4 2 0 A CTAACTG
5 6 2 A CTG
6 8 0 T G
7 3 0 C TAACTG
8 7 1 C TG

Table 2: Generalized suffix array pk and auxiliary information for 
strings S1 = ACTAACTG and S2 = CGTACTA.

k pk lcpk bwtk S[pk..|S|]

1 16 0 T A
2 4 1 T AACTG
3 13 1 T ACTA
4 1 4 # ACTAACTG
5 5 3 A ACTG
6 10 0 # CGTACTA
7 14 1 A CTA
8 2 3 A CTAACTG
9 6 2 A CTG
10 8 0 T G
11 11 1 C GTACTA
12 15 0 C TA
13 3 2 C TAACTG
14 12 2 G TACTA
15 7 1 C TG
Page 5 of 11
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Process lcpint

i  lcpint.i

end while

if lcpk > top.d then

Push �lcpk, i, 0�

end if

end for

In order to find the minimal absent words, the function
"Process" in Algorithm 1 executes Algorithm 2, that builds
the ,  and  sets, determines if the lcp-interval is left
diverse, and, if true, outputs the minimal absent words
associated with the lcp-interval �d, i, j�.

Algorithm 2. Computation of the minimal absent words for a
given lcp-interval �d, i, j�, where  = S[pi..pi + d - 1].

  

  

  

for k = i to j do

    {S[pk - 1]}

    {S[pk + d]}

if S[pk - 1]  # and S[pk + d]  $ then

    {(S[pk - 1], S[pk + d])}

end if

end for

if | | > 1 then {Left diverse}

for all l   do

for all r   do

if (l, r)   then

Substring lr is a minimal absent word

end if

end for

′

′

′ ′

′ ′

′

Number of minimal absent words for random stringsFigure 3
Number of minimal absent words for random strings. Plots of the number of minimal absent words as a function of the 
string length, for random strings with || = 2, 4, 8, 16, 32.
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end for

end if

Our results remain valid for sets of strings  = {S1, S2,...,

Sz} over a finite alphabet . In this case, the minimal

absent words are generated through the concatenation of
the strings using a delimiting character not belonging to
the alphabet. The delimiter avoids the creation of artificial
substrings across string boundaries.

For example, with  = {S1, S2}, where

and

the set of minimal absent words of  is

whereas the sets of minimal absent words for each string
are

and

Table 2 shows the (generalized) suffix array [18] associ-
ated to strings S1 and S2.

Results and discusion
In this section, we present some experimental results
obtained both with random and real data. Figures 3 and 4
show, respectively, the total number of minimal absent
words, |S|, and the total time required for computing
them, for random strings over alphabets with || = 2, 4, 8,
16, 32. Each point in the graphics is the average of ten
independent runs. These results have been obtained with
an Intel Core 2 Duo laptop computer (clocked at 1.66
GHz and with 2 GByte of RAM).

The graphic displayed in Fig. 4 shows an apparently curi-
ous behavior: the time taken by the algorithm increases as
the size of the alphabet decreases. This might be due to the
fact that, for the same string length, strings over smaller
alphabets imply deeper suffix trees and, since the lcp-
intervals are related to the internal nodes of the suffix tree,
generating them for smaller alphabets takes longer.

From the curves presented in Fig. 4, it can be seen that, in
practice, the running time of the algorithm is approxi-
mately linear with the length of the string. Moreover, the





S ACTAACTG1 =

S CGTACTA2 = ,



S AAA ACG GTG TGT CTAC GTAA

AACTA TACTG TACTAA

= { , , , , , ,

, , },

S AAA TAC AACTA
1
= { , , }

S ACG CTAC
2
= { , }.

Total time for generating all minimal absent words for random stringsFigure 4
Total time for generating all minimal absent words for random strings. Plots of the total time required for generat-
ing all minimal absent words (including the time needed for reading the data and creating the suffix and lcp arrays), as a function 
of the string length, for random strings with alphabet size || = 2, 4,8, 16, 32.
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number of minimal absent words (displayed in Fig. 3)
also shows a similar behavior, contrasting with the expo-
nential growth of the number of generic absent words of
a string.

In Table 3, we present the number of minimal absent
words and the number of generic absent words, i.e., all
absent words, even those composed of shorter absent
words, for the same organisms used in [3]. We have

adopted the notation  and  for designating,

respectively, the number of minimal absent words and the
number of generic absent words of length n associated
with string S. Our method provided the same number of
nullomers/unwords (which coincides with the number of
smallest minimal absent words) reported in [3], except for
the budding yeast, Saccharomyces cerevisiae, (two, instead
of the reported four) and the mouse, Mus musculus, (190

| |S
n | |S

n

Table 3: Number of minimal absent words and generic absent words for some genomes.

Organism Reference Genome size Length, n

104 104 11
H. sapiens Release 36.1  2.9 Gb 44 149 44 970 12

2 039 862 2 368 682 13

190 190 11
M. musculus Release m36.1  2.6 Gb 52 087 53 573 12

2 192 708 2 579 838 13

104 104 11
D. melanogaster FB 5  162 Mb 172 849 173 674 12

10 040 282 11 335 034 13

2 2 10
C. elegans WB 170  100 Mb 7 664 7 680 11

1 092 286 1 151 728 12

2 262 2 262 11
N. crassa Assembly 7  39 Mb 1 064 938 1 082 787 12

20 213 298 27 903 272 13

2 2 9
S. cerevisiae S228C SGD 1  12 Mb 6 435 6 450 10

414 520 462 882 11

248 248 8
S. aureus MSSA476 NC002953  2.8 Mb 11 908 13 744 9

162 113 251 497 10

1 1 8
T. kodakarensis NC006624  2.09 Mb 2 314 2 322 9

136 917 154 340 10

3 3 6
M. jannaschii NC000909  1.66 Mb 126 150 7

3 790 4 834 8

5 5 6
M. genitalium NC000908  0.58 Mb 340 380 7

6 156 8 733 8

The notation  corresponds to the number of minimal absent words of length n associated with string S, whereas  has a similar meaning 

but for the case of generic absent words. The generic absent words have been generated using publicly available software provided by Herold et al. 
3. The organisms are sorted according to decreasing genome size, which refers to the number of unambiguous bases of the genome. The reversed 
complement of the sequences has been considered in the generation of the results.

| |S
n | |S

n

| |S
n | |S

n
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instead of 192). Nevertheless, the software provided by
Herold et al. [3] reported two unwords for the S. cerevisiae
and 190 for the M. musculus data that we used. Figures 5
and 6 show the total number of minimal absent words
and the running time for some of the DNA sequences
mentioned in Table 3. For comparison, those figures also
include the results obtained with random strings over an
alphabet of size four. As can be seen, the total number of
minimal absent words obtained with real DNA sequences
is slightly less than the number obtained with random
strings, whereas the time required for producing the min-
imal absent words is roughly identical to the time
required when using random data.

Figure 7 shows how the number of generic absent words
and minimal absent words grow as a function of the
length of the word, n. As can be observed, the number of
minimal absent words grows until a maximum value and
then decreases beyond that point. In opposition, the
number of generic absent words grows exponentially. This
is confirmed by the 4n curve also plotted in Fig. 7.

Conclusion
Words absent from DNA data have been the subject of
recent studies [1-3]. In this paper, we provided a precise
characterization of a class of absent words, named mini-
mal absent words, that extends the class previously dis-

cussed of nullomers/unwords. Our minimal absent words
share with nullomers/unwords the property of being min-
imal, that is, the removal of one character from either end
of a nullomer/unword yields an existing word. The set of
minimal absent words is much larger than the set of nul-
lomers/unwords, and, therefore, potentially more useful
for applications that require a richer variety of absent
words. We also proposed an algorithm for generating the
minimal absent words that is based on suffix arrays and
that, in practice, runs in approximately linear time. We
hope that this algorithm and the concept of minimal
absent word may shed some more light on the structure of
absent words and complement the existing studies on the
topic.
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Number of minimal absent words for several nucleotide sequencesFigure 5
Number of minimal absent words for several nucleotide sequences. Plots of the number of minimal absent words, as 
a function of the string length, for several nucleotide sequences ("dna" curve). The number of minimal absent words for ran-
dom strings with alphabet size || = 4 is also included for comparison ("rnd" curve).
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Total time for generating all minimal absent words for several nucleotide sequencesFigure 6
Total time for generating all minimal absent words for several nucleotide sequences. Plots of the total time 
required for generating all minimal absent words (including the time needed for reading the data and creating the suffix and lcp 
arrays), as a function of the string length, for several nucleotide sequences ("dna" curve). The total time required for generating 
all minimal absent words for random strings with alphabet size || = 4 is also included for comparison ("rnd" curve).
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Example of the growth of the number of generic absent words and minimal absent words as a function of word size, nFigure 7
Example of the growth of the number of generic absent words and minimal absent words as a function of word 
size, n. Plots of the number of generic absent words and minimal absent words for the case of the M. genitalium organism. It 
can be seen that the number of minimal absent words grows until a maximum and then decreases towards zero. On the con-
trary, the number of generic absent words grows exponentially. For comparison, we also included the graphic of the function 
4n. This behavior has also been observed in the other sequences.
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