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Abstract
Background: Mass spectrometry-based biomarker discovery has long been hampered by the
difficulty in reconciling lists of discriminatory peaks identified by different laboratories for the same
diseases studied. We describe a multi-statistical analysis procedure that combines several
independent computational methods. This approach capitalizes on the strengths of each to analyze
the same high-resolution mass spectral data set to discover consensus differential mass peaks that
should be robust biomarkers for distinguishing between disease states.

Results: The proposed methodology was applied to a pilot narcolepsy study using logistic
regression, hierarchical clustering, t-test, and CART. Consensus, differential mass peaks with high
predictive power were identified across three of the four statistical platforms. Based on the
diagnostic accuracy measures investigated, the performance of the consensus-peak model was a
compromise between logistic regression and CART, which produced better models than
hierarchical clustering and t-test. However, consensus peaks confer a higher level of confidence in
their ability to distinguish between disease states since they do not represent peaks that are a result
of biases to a particular statistical algorithm. Instead, they were selected as differential across
differing data distribution assumptions, demonstrating their true discriminatory potential.

Conclusion: The methodology described here is applicable to any high-resolution MALDI mass
spectrometry-derived data set with minimal mass drift which is essential for peak-to-peak
comparison studies. Four statistical approaches with differing data distribution assumptions were
applied to the same raw data set to obtain consensus peaks that were found to be statistically
differential between the two groups compared. These consensus peaks demonstrated high
diagnostic accuracy when used to form a predictive model as evaluated by receiver operating
characteristics curve analysis. They should demonstrate a higher discriminatory ability as they are
not biased to a particular algorithm. Thus, they are prime candidates for downstream identification
and validation efforts.
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Background
The advent of mass spectrometry-based proteomic
biomarker discovery augurs an increased output of diag-
nostic disease markers due to its ability to interrogate a
complex constellation of proteins simultaneously. A typi-
cal proteomic biomarker discovery process comprises two
major steps: data acquisition and data analysis. Data
acquisition encompasses everything from sample collec-
tion, handling, and processing to the eventual production
of mass spectra where proteins and peptides are repre-
sented as peaks with mass-to-charge (m/z) ratios and their
corresponding signal intensities.

Technical issues pertaining to this step of the process are
well-documented [1,2]. The ultimate goal is reproducibil-
ity of the mass spectra across replicates and the alignment
of peaks across samples. To this end, next-generation mass
spectrometers with high mass accuracy have been
employed, along with efforts to standardize sample col-
lection and processing protocols [3,4].

The data analysis phase of the process seeks to identify
mass peaks that are differentially present between the
groups of samples being compared. As with any expres-
sion data analysis, an array of pattern profiling systems
exist that can reliably discover sets of classifying mass
peaks. Unfortunately, a common and frustrating occur-
rence in proteomic biomarker discovery is the production
of non-overlapping sets of biomarker peaks when differ-
ent laboratories studying the same disease employ differ-
ent statistical methods on the same data set. All data
analysis methods have their strengths and weaknesses.
The caveat lies in the realization of their statistical power
only when applied to data sets where the underlying data
distribution assumptions are met. As is often the case with
mass spectrometry data, the data distribution is unknown.

Comparisons of different statistical methods on the same
mass spectrometry data have been reported previously [5-
7]. However, the ultimate goal of these reports was the
selection of a method whose prediction model outper-
forms the rest of the methods under investigation when
applied to a given set of experimental data and the subse-
quent recommendation of the method that prevailed for
future analyses. This introduces bias in the selected
marker peaks which are unique to a statistical method and
are most often a result of overfitting. This is also true when
peak reduction was performed using a predefined statisti-
cal method prior to submitting the remaining peaks for
model building comparisons. In addition, a majority of
these studies were performed using low-resolution mass
spectrometer data with significant mass drifts across spec-
tra within a single experimental run that further compli-
cate analysis.

Therefore, in the proposed workflow, four unique statisti-
cal modeling approaches (parametric and non-paramet-
ric) are employed concurrently for the analysis of the raw
peaks from the same high-resolution data set to obtain a
set of consensus biomarkers. Consensus biomarkers are
defined as mass peaks with discriminatory power between
the groups being compared that end up on the list of dif-
ferential peaks across at least two or more of the statistical
strategies employed in the data mining analysis. The rea-
soning is that in lieu of the data distribution knowledge,
mass peaks that survive stringent conditions across multi-
ple statistical methods are more likely to be true "biomar-
kers" and not artefacts as a consequence of bias inherent
to a particular algorithm. Convergence upon this distinct
set of biomarkers using multiple analytical platforms will
confer higher confidence in these markers as robust enti-
ties and will increase the chance that these markers may
be adopted as diagnostic entities where subsequent iden-
tification and validation efforts should be directed.

The novelty of our approach lies in both the experimental
design and the statistical evaluations. First, we used a mass
spectrometer with high mass accuracy and low mass drift
to generate high-resolution data, which is essential for
accurate peak-to-peak comparison across spectra. Second,
there was no biased peak selection prior to model build-
ing by the four statistical algorithms under investigation;
all raw peaks within the 1,000 to 10,000 mass range were
subject to each algorithm. Furthermore, to assure a fair
comparison between the methods, the best discrimina-
tory peaks from each method underwent the same diag-
nostic accuracy testing via receiver operating characteristic
(ROC) curve analysis, as did the model consisting of only
the consensus peaks. ROC confers a better sense of diag-
nostic performance of the biomarker peaks as it evaluates
all possible cutoff values and produces the best trade-off
between the rates of false-negative and false-positive
results. In addition, the diagnostic accuracy measures will
provide an indication of the clinical utility of the statisti-
cally significant differential peaks discovered.

This study has two objectives. The first is to perform
biomarker data mining on the same data set using four
different statistical platforms and compare the list of can-
didates from each platform to determine if the resulting
peaks are specific to each method and whether it is at all
possible to find peaks that are robust enough to exist
across two or more platforms. The second objective is to
group the consensus peaks and compare their diagnostic
performance collectively against the best individual
model from each statistical method. Our results reveal
that even in the case of comparable performance between
different statistical platforms, the model incorporating the
consensus biomarkers across multiple platforms confers a
more dependable set of peaks for further investigation.
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Results and Discussion
Biomarker Selection
Logistic Regression
We used our modified, AIC-optimal logistic regression
protocol to analyze the narcolepsy data set and compared
the diagnostic power of the best model from this
approach to the best model obtained using the default
single-step calling of the PROC LOGISTIC in SAS. The
diagnostic measures are shown in Table 1. The final
model from the default stepwise procedure has a higher
Akaike Information Criterion (AIC) statistic of 69.646
with two variables incorporated while the AIC-optimal
model from the modified procedure has an AIC statistic of
57.798 with five variables incorporated. This means that
the default stepwise model incorporated three predictors
less than necessary to form a better predictive model. This
is indicated by its lower Hosmer-Lemeshow goodness of
fit statistic (0.669 for default versus 0.882 for AIC-opti-
mal). The resulting default model also has a poorer dis-
criminatory power than the AIC-optimal model as
indicated by the lower area under the ROC curve. As for
diagnostic accuracy, both models have comparable sensi-
tivity, positive predictive value (PPV) and negative predic-
tive value (NPV), but the default model lacks in specificity
and the percentage of cases accurately predicted (Table 1).
This demonstrates that the modified procedure performs
better than the default in producing good predictive mod-
els, and was thus adopted in subsequent logistic regres-
sion analyses.

In the comparison between narcoleptic and non-nar-
coleptic samples, four optimal models were obtained, as
listed in Table 2. The mass peaks from these four models
were pooled as potential biomarkers selected from logistic
regression.

Classification and Regression Tree (CART)
The narcolepsy data set was analyzed using Ciphergen's
Biomarker Patterns Software 5.0. Tree-building was first

performed using the default Gini splitting criterion to
obtain the best tree with the minimal cost. This was
repeated with the remaining split criteria – Symgini, Two-
ing, Ordered Twoing, Class Probability, and Entropy. 10-
fold cross-validation was used for testing. The best tree
from CART is the tree with the lowest cost across all six
splitting criteria. This optimal tree with a cost of 0.322 was
obtained from the Twoing criterion and is shown in Fig-
ure 1. The diagnostic measures of this model are listed in
Table 3.

T-test
In the t-test method, a peak is deemed differential if it is
populated by statistically significant data points. The max-
imum p-value was set to 0.05 and the minimum signal
intensity ratio was set to the default value of 1.5. Peaks
that best distinguish the two groups under comparison
were selected by increasing the stringency of the criteria by
decreasing the minimal p-value or increasing the minimal
fold-change. In this study, the default conditions were
found to be optimal as decreasing the p-value below 0.05
and increasing the fold-change above 1.5 did not result in
differential peaks. Only three possible candidate biomar-
kers were identified in the spectra – 1740.94 Da, 3598.07
Da, and 5078.90 Da. They were all higher in the nar-
colepsy samples. The diagnostic performance of this
three-peak model is shown in Table 4.

Hierarchical clustering
Differential peaks from unweighted pair group method
with arithmetic mean (UPGMA) clustering were first
selected with a p-value < 0.05, followed by trimming of
the remaining mass peaks based on fold-change between
the two conditions under comparison. The three differen-
tial peaks obtained from this platform only had a fold-
change of at least 10% (Table 5). Peaks that demonstrated
a greater than 10% fold-change did not meet the p-value
requirement. Their diagnostic accuracy measures were
determined and are shown in Table 6.

Consensus Peaks
Consensus peaks across at least two or more of the four
platforms are defined as robust biomarkers. Even though
the ideal scenario is to have consensus peaks across all
four platforms, the two peaks that were considered truly
robust in this study were mass peaks at m/z 1809.98 and
3826.00 which were selected as statistically differential in
three of the four approaches. No marker peaks appeared
as differential across all four platforms. These two robust,
consensus peaks were grouped collectively to form an
independent diagnostic model. When used for diagnosis,
these two peaks have a sensitivity of 63.16%, a specificity
of 82.22%, a PPV of 85.96%, a NPV of 84.09%, and a per-
centage of cases correctly classified of 76.56%. The area
under the ROC curve was 0.79 (Table 7).

Table 1: Diagnostic accuracy measures from the default and 
AIC-optimal models in logistic regression

Logistic Regression Model Default AIC-Optimal

Number of variables in final model 2 5
Goodness of Fit 0.669 0.882
AIC Statistic 69.65 57.80
Area under ROC curve 0.793 0.910
Sensitivity (%) 63.16 57.89
Specificity (%) 82.22 95.56
PPV (%) 85.96 84.62
NPV (%) 84.09 84.31
Percent accuracy (%) 76.56 84.38

AIC = Akaike Information Criterion, ROC = Receiver Operating 
Characteristic, PPV = Positive Predictive Value, NPV = Negative 
Predictive Value
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In this study, UPGMA and the t-test produced predictive
models that did not perform as well as those from logistic
regression and CART, even though the model from
UPGMA included the two consensus peaks. In contrast,
the consensus model has the diagnostic potency in some
diagnostic measures that is comparable to, if not better
than, the individual models from each statistical platform
(Figure 2).

Depending on the clinical applications (e.g. screening or
confirmatory diagnostics), different diagnostic measures
will take precedence. For example, high sensitivity is
needed for screening but high specificity is needed for
confirmation and subcategorization. Ideally, both need to
be greater than 70% [8]. Sensitivity is a measure of how
well the diagnostic test correctly identifies the disease
cases whereas specificity is how well it correctly identifies
the non-disease cases from the whole test population.
Although admittedly limited in sample size, our compar-
ison between narcolepsy samples versus all non-nar-
colepsy samples in this pilot study served to emulate
general population screening, where these biomarkers are
intended for. In this case, sensitivity is of more impor-
tance than specificity. Logistic regression suffers from low
sensitivity (57.89%). CART prevailed in these measures
with 78.95% sensitivity and 88.89% specificity, followed
by the consensus model with a reasonable sensitivity of

63.16% and a specificity of 82.22%. This is very encourag-
ing as the current genetic marker for narcolepsy in general
is based on the presence of HLA DQB1*0602 which itself
only has a specificity of 40% [9]. Genetic markers confer
susceptibility but are not ideal disease biomarkers as most
people who are positive for the HLA DQB1*0602 gene do
not develop narcolepsy.

The more important diagnostic measures to consider are
PPV and NPV, which evaluate the applicability of the diag-
nostic test on the target population. The precision of the
test is measured by the PPV where a positive test reflects
the probability that a subject will have the diagnosed con-
dition (narcolepsy in this study). On the other hand, NPV
reflects the probability that a negative test means the sub-
ject is disease free. The consensus model displays the high-
est PPV of 85.96% and an NPV of 84.09%, comparable to
the best logistic model. CART has the highest NPV of
90.91% but lacks in PPV with only 75%.

To surmise, CART seems to produce the best model in this
pilot study when all five diagnostic accuracy measures are
considered collectively (Figure 2), followed by logistic
regression. UPGMA and the t-test did not fair as well. Of
interest is the performance of the consensus model which
seems to be a good compromise between both CART and
logistic regression. Albeit models from logistic regression

Table 2: Discriminatory mass peaks from AIC-optimal models in logistic regression analysis on narcolepsy data set

Logistic Regression Model 1 2 3 4 Pooled

Number of variables 5 1 2 2 9

Mass peaks (m/z) 1431.80 1809.98 1809.98 1722.93 1431.80
1839.98 3826.00 1740.94 1722.93
2225.14 1740.94
3986.99 1809.98
5857.74 1839.98

2225.14
3826.00
3986.99
5857.74

Table 3: Diagnostic accuracy measures of optimal CART model

CART Optimal Model

Number of variables in final model 6
Mass peaks (m/z) 1014.32, 1690.96, 1809.98, 3043.43, 3826.00, 3986.99
Area under ROC curve 0.984
Sensitivity (%) 78.95
Specificity (%) 88.89
PPV (%) 75.00
NPV (%) 90.91
Percent accuracy (%) 85.94

ROC = Receiver Operating Characteristic, PPV = Positive Predictive Value, NPV = Negative Predictive Value
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and CART in this study performed better in a few of the
diagnostic measures, not all peaks in those models war-
rant subsequent identification and validation efforts. This
is because spurious peaks that are only specific to those
models might be a reflection of overfitting and biases to
the respective algorithm. These biases could be the reason
why the logistic and CART models appear to perform bet-
ter than the consensus model. Therefore, downstream val-
idation efforts and resources will be better off directed at
the consensus peaks.

An added advantage of the consensus model is the higher
level of confidence in the true discriminatory traits of the
peaks as they managed to survive various data distribution
assumptions across statistical platforms to appear as sta-
tistically significant differential peaks. Another advantage
of forming a consensus model is the trimming of the long
list of potential biomarkers to be sequenced to the
selected few with true discriminatory power. The ideal
clinical assay will only need to focus on assaying the min-
imal number of biomarkers to accurately diagnose a dis-
ease state.

The methodology described here can be applied to any
MALDI-TOF derived data set to reconcile the disparate
potential biomarker mass peaks reported by different
studies on the same disease, provided the same standard
operating procedure is employed during data acquisition
and the studies are significantly powered. This requires
the incorporation of a sizeable sample set that is repre-
sentative of the target population to impart confidence in
the differential peaks discovered. A limitation of this
approach is when there are no overlapping peaks across
the statistical platforms used. However, when there are
overlapping marker peaks, these consensus peaks will no
doubt expedite efforts to identify robust biomarkers for
clinical applications as their true discriminatory trait is
reflected in their selection as differential biomarkers
across several statistical platforms. Our laboratory is cur-
rently pursuing the identification of the consensus peaks
via Fourier transform mass spectrometry.

Tree diagram of best model from CART analysisFigure 1
Tree diagram of best model from CART analysis.

Table 4: Diagnostic accuracy measures of optimal t-test model

T-test Optimal Model

Number of variables in final model 3
Mass peaks (m/z) 1740.94, 3598.07, 5078.90
Sensitivity (%) 33.30
Specificity (%) 84.20
PPV (%) 50.00
NPV (%) 72.70
Percent accuracy (%) 67.90

All differential peaks have a p-value less than 0.05. PPV = Positive 
Predictive Value, NPV = Negative Predictive Value

Table 5: Statistically differential peaks from UPGMA model

Mass peak (m/z) Fold change p-value

1781.99 1.13 0.046
1809.98 1.15 0.007
3826.00 1.13 0.017

Peaks are presented with their respective fold change and p-value.

Table 6: Diagnostic accuracy measures of optimal UPGMA 
model

UPGMA Optimal Model

Number of variables in final model 3
Mass peaks (m/z) 1781.99, 1809.98, 3826.00
Area under ROC curve 0.788
Sensitivity (%) 36.84
Specificity (%) 95.56
PPV (%) 77.78
NPV (%) 78.18
Percent accuracy (%) 78.13

ROC = Receiver Operating Characteristic, PPV = Positive Predictive 
Value, NPV = Negative Predictive Value
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Conclusion
We have applied four distinct statistical approaches to the
same high-resolution mass spectral data set from our nar-
colepsy study to discover mass peaks that are statistically
differential. Even though each approach has its own
assumptions on the data distribution of the data set, sev-
eral of the mass peaks that have inherent discriminatory
power appeared as potential biomarkers across platforms.
In particular, peaks 1809.98 Da and 3826.00 Da were
selected as discriminatory peaks across three of the four
platforms and thus, deemed robust biomarkers.

When these two peaks were combined into a diagnostic
model, they performed as well if not better than the indi-
vidual models. They confer a specificity of 82% which is
far greater than the current genetic marker HLA
DQB1*0602 for narcolepsy in general. While we are
aware we have analyzed only a limited number of patient
samples thus far, our results are encouraging; this reiter-
ates the promise that mass spectrometry-based biomarker
discovery is capable of delivering potential biomarkers
between disease states that can add on to the current bat-
tery of diagnostic tools, once validated in a larger sample
size that is more representative of the screening popula-
tion of course. Furthermore, with our methodology, con-
sensus biomarkers with higher confidence in their ability
to discriminate can be discovered and hence, should be
the main candidates where downstream identification
and validation efforts should be focused on to assess their
suitability to be adopted in a diagnostic assay or as thera-
peutic targets.

Methods
The method described here is intended for biomarker dis-
covery based on high-resolution matrix-assisted laser des-
orption/ionization time-of-flight (MALDI-TOF) mass
spectrometry proteomic data. A flowchart depicting the
methodology is shown in Figure 3.

Mass spectral data
The methodology described here can be applied to any
MALDI-TOF derived data set for any disease, provided the
same standard operating procedure (from biological sam-
ple procurement, processing, and complexity reduction to
actual mass spectrometry data acquisition) is employed.
We chose to demonstrate this analysis process on nar-
colepsy, a disease of interest to some of the authors, and
for which every step from sample processing to data
acquisition has been conducted by the group.

Narcolepsy is a neurological disorder known to affect
sleep states. It is estimated to affect 3 million people
worldwide and 200,000 people in the United States (prev-
alence of 1:2000). Studies have shown that narcolepsy is
a result of defective hypocretin transmission due to selec-
tive damage to hypocretin neurons [10,11]. The current
diagnosis is symptom-based which can result in false pos-
itives [12]. Discovery of novel biomarkers will enable
early detection of narcolepsy either before or at the begin-
ning of irreversible neuronal loss.

The mass spectral data set used in this pilot study was gen-
erated from 30 serum samples from narcoleptic and non-
narcoleptic patients, courtesy of Dr. Emmanuel Mignot
from the Stanford Center for Narcolepsy. The narcolepsy
samples were obtained from patients diagnosed with nar-
colepsy and are positive for the HLA DQB1*0602 suscep-
tibility gene. The control samples were obtained from
patients not diagnosed with narcolepsy and are either pos-
itive or negative for the HLA DQB1*0602 susceptibility
gene. Narcolepsy diagnosis was confirmed by measuring
the level of hypocretin in the patient's cerebrospinal fluid.

All samples were stored at -80°C before analysis. In an
effort to simplify the complexity of the serum proteome,
only the cargo bound to the carrier protein albumin was
analyzed. Briefly, serum albumin was selectively captured,
followed by the elution of the bound protein and peptide
fragments using ProXPRESSION Biomarker HT Enrich-
ment Kit (PerkinElmer). These fragments were then
applied onto a Bio-Rad ProteinChip with IMAC capture
surface charged with nickel. Unbound species were
washed away before the bound species were introduced to
the mass spectrometer. Mass spectra were acquired on a
high-resolution prOTOF 2000 MALDI-OTOF Mass Spec-
trometer (PerkinElmer/SCIEX). The orthogonal design
allows the use of a single external mass calibrant to
achieve better than 10 ppm mass accuracy from 1–10
kDa. In this study, a 2-point external calibration of the
prOTOF instrument was performed before acquiring the
spectra in a batch mode from 96 sample wells. A total of
30 serum samples were run in triplicate to measure and
enhance the reliability of MALDI protein profiling [13].
Each spectrum contains on the average 1 million data

Table 7: Diagnostic accuracy measures of consensus model

Consensus Model

Number of variables in final model 2
Mass peaks (m/z) 1809.98, 3826.00
Area under ROC curve 0.793
Sensitivity (%) 63.16
Specificity (%) 82.22
PPV (%) 85.96
NPV (%) 84.09
Percent accuracy (%) 76.56

Consensus peaks included in this model are peaks selected as 
statistically differential across three of the four algorithms. ROC = 
Receiver Operating Characteristic, PPV = Positive Predictive Value, 
NPV = Negative Predictive Value
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points. The narcolepsy mass spectral data set is available
upon request.

Data preprocessing
Two serum samples that appeared reddish were noted and
may have been contaminated with cellular components
(e.g. hemoglobin from hemolysis), so their spectra were
omitted from the study. The spectrum-to-spectrum align-
ment was checked for 6 different peaks across the m/z
range of 1–10 kDa and found to be acceptable (< 10
ppm). Figure 4 shows peak alignment across representa-
tive spectra before and after preprocessing. In order to
enhance the reproducibility of the peaks in the profiles
generated, all of our samples were processed and analyzed
on the same day, in one sitting to minimize inter-day var-

iation of the peak intensities. In our study, the coefficient
of variation of peak intensities was 5–10%, similar to
those reported by Albrethsen [2]. Due to the high mass
accuracy and minimal mass drift of the prOTOF [2,4,14],
no further spectral alignment was necessary.

The total ion current (TIC) of each spectrum was calcu-
lated and the average TIC was computed across all 84
spectra. 16 spectra with a TIC value that is either twice or
half of the average TIC were deemed outliers and were
omitted from the study. Global normalization of the sig-
nal intensity of the mass peaks was performed by normal-
izing to the average TIC of the remaining 68 spectra. This
confers a sense of commonality across spectra for statisti-
cal comparisons. All spectra were run through the Progen-

Diagnostic measures comparison of consensus model to the best model from each of the four statistical approachesFigure 2
Diagnostic measures comparison of consensus model to the best model from each of the four statistical 
approaches. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and percent accuracy 
are plotted for the best model from each statistical approach. When the five parameters are evaluated collectively, the model 
with the best diagnostic performance is CART, followed by the Consensus model and Logistic Regression. The T-test and 
UPGMA models have a lower average diagnostic performance as evident in the greater spread of the values of the diagnostic 
accuracy measures.
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esis PG600 software (Nonlinear Dynamics, UK) for peak
detection using the following parameters to remove back-
ground noise: noise filter size 4, background filter size 70,
and isotope detection in MALDI mode with peak thresh-
old 25 and window 0.1 Da. Noise filtering was performed
using the Savitsky-Golay smoothing algorithm. The back-
ground correction was performed using a baseline adjust-
ment method which relies upon a 'top-hat' morphology
operator as a filter for contrast enhancement. The peak
threshold discards peaks under the preset size. Both the
peak threshold and window size allow for the detection of
monoisotopic peaks within 0.1 Da.

An inherent challenge in analyzing mass spectral data is
that they suffer from high dimensionality, and chemical
and biological noise [15]. Therefore, in an attempt to
reduce dimensionality, the m/z peak list was trimmed and
only peaks that fall within the m/z range 1–10 kDa were
subject to statistical analysis. We chose the lower cutoff
value of 1 kDa to exclude any potential chemical noise
contributed by the ionizing matrix. The upper cutoff value
of 10 kDa was selected because the ionization efficiency of
molecules decreases with increasing mass and few peaks
above the noise level are detected beyond this value. This
resulted in 247 peaks that were subject to each classifica-

tion strategy, except for the t-test method which relies on
data points and not individual peaks.

Biomarker selection
To date, no guidelines exist that facilitate the selection of
appropriate statistical methods to employ for data analy-
sis in mass spectra. The choice of statistical platform for
each study remains vastly heuristic and subjective. This is
because the hunt for differential biomarkers in mass spec-
tra is a data-driven process and no a priori knowledge of
data distribution is available. The situation is made worse
by the absence of a particular statistical method that has
proven superior over others in its ability to handle the
problem of high dimensional data. Consequently, various
learning algorithms have been engaged in the field for
classification purposes, each with its underlying biases
and assumptions of distribution [16-18].

In our methodology, we have adopted both parametric
(logistic regression, hierarchical clustering, t-test) and
non-parametric (CART) approaches to analyze our
MALDI-TOF-derived data set. These four statistical plat-
forms were selected because they were available to us
either as licensed softwares that accompanied our mass
spectrometers or were developed in-house. The maximum
p-value was set to 0.05 across all platforms to obtain sta-
tistically significant marker peaks. Each statistical
approach was applied to the same mass spectral data set
using its default parameters to capitalize on the strengths
of each approach in discovering the best differential peaks
based on the data distribution assumptions of that partic-
ular algorithm. This is essential as our reasoning is to
impart confidence on the consensus peaks that are able to
survive differing data distribution assumptions as
reflected in the individual classification method.

In parametric approaches, the data are assumed to origi-
nate from variables with a certain probability distribution
(such as normality and homoscedasticity). Non-paramet-
ric approaches are more robust and yield greater power
with less well-behaved data since no prior assumptions
are made. Therefore, mass peaks that are robust enough to
survive both approaches and appear as potential biomar-
kers are then deemed to possess true discriminatory
power, regardless of the distribution assumptions.

Logistic regression
Logistic regression is an additive, parametric modeling
technique that can be used to estimate the probability of
an individual acquiring a disease [19]. It produces the
most parsimonious model (incorporating the minimum
number of variables necessary) to explain the observa-
tions or to categorize the disease and control groups.
Logistic regression does not require a normal distribution
and homoscedasticity for the outcome variable. Instead, it

Schematic diagram of the multi-statistical workflow to dis-cover consensus biomarker peaksFigure 3
Schematic diagram of the multi-statistical workflow 
to discover consensus biomarker peaks.
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Peak alignment across spectraFigure 4
Peak alignment across spectra. Representative spectra from the high performance prOTOF mass spectrometer are 
shown before (top panel, 84 spectra) and after (bottom panel, 68 spectra) data preprocessing. Data preprocessing entailed 
removal of outlying spectra and normalization of signal intensity to the average TIC. Shown in the insets are the enlarged view 
of peak at m/z = 2021 which has a mass accuracy of < 10 ppm, rendering spectrum-to-spectrum alignment unnecessary. Each 
spectrum is plotted in a different color through arbitrary assignment.
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assumes the outcome has a binomial distribution and is
governed by the logistic function. An advantage of mode-
ling using logistic regression is its ability to estimate the
associated risk with each variable. A drawback is that
logistic regression suffers from the inability to accurately
estimate the needed parameters when the two groups are
perfectly separated based on the variables included in the
model. This situation, however, will not be encountered
in CART as discussed below. Furthermore, proteomic data
provide a large number of variables (peaks) relative to
observations from the few, clinical samples available in
most studies. This results in the problem of sparse data
[15] which could lead to model instability from overfit-
ting and inaccurate estimates of the classification parame-
ters.

To address this issue, a more detailed nine-step protocol
was implemented based on recommendations by SAS
User Group International (SUGI) [20,21] and the Envi-
ronmental Protection Agency [22] in lieu of the default
one-step calling of the PROC LOGISTIC procedure in SAS.

All of the variables (m/z values representative of peaks)
from the preprocessed data set are first run through a uni-
variate analysis to test for significance in predicting the
outcome of the samples. These variables are then checked
for correlation. Since logistic regression assumes no col-
linearity among the variables, each pair of correlated vari-
ables will have the less significant one removed based on
the univariate analysis. This is necessary to reduce the
number of variables per observation. In addition, varia-
bles with a Variation Inflation Factor (VIF) exceeding 10,
indicating multicollinearity were also removed [23].

Modeling is performed using a stepwise procedure, where
variables are added and/or removed at each step depend-
ing on the significance level for entering (SLENTRY =
0.990) and staying (SLSTAY = 0.995) in the model. This
procedure continues until no variables can be added or
removed. The stepwise technique effectively reduces the
number of models under consideration while the less
stringent entry and stay criteria allow more variables to be
considered concurrently. The model with the lowest
Akaike Information Criterion (AIC) score will indicate the
optimal number of variables (n) to be incorporated into
the model. AIC was preferred over the Schwarz Informa-
tion Criterion (SC) that also accompanies logistic regres-
sion in SAS because it is better suited for the current goal
of prediction [20]. Subsequent modeling with the best
subsets selection method will then produce a list of poten-
tial models incorporating n-2, n-1, n, n+1, and n+2 varia-
bles. The best subset selection method was coupled to the
AIC analysis to incorporate suboptimal models that flank
the optimal model with the lowest AIC. Only models with
a high Hosmer-Lemeshow (Goodness of Fit) score and a

low AIC score will be retained. They then undergo diag-
nostic checking to identify outlier observations and inter-
actions between variables. Finally, ROC curve analysis is
performed on the few surviving models. Peaks from these
models collectively create a pool of potential biomarker
candidates. Logistic regression was performed using the
Statistical Analysis Software (SAS) (SAS Institute Inc.,
Cary, NC).

Classification and Regression Tree (CART)
CART is non-parametric and non-algebraic, and is a form
of binary recursive partitioning where each group of
patients as described by their spectra at each "node" in a
decision tree can only be split into two groups [24]. The
construction of the classification tree begins with the var-
iable that maximizes the group homogeneity of the
daughter nodes. This process is then repeated where every
daughter node is split into two subgroups until all varia-
bles have been exhausted or the end nodes are homogene-
ous. Variable selection at each node is performed with one
of six criteria – Gini, Symgini, Twoing, Ordered Twoing,
Class Probability, or Entropy using Ciphergen's Biomar-
ker Patterns Software (BPS).

Since it is non-parametric, no assumptions are made
about the underlying distribution of the variables and
being less sensitive to outliers, highly-skewed, non-nor-
mal data sets can be handled. A drawback is that some
models can be unstable. Since all possibilities are evalu-
ated at each splitting node, there is the potential of over-
fitting the model. To account for this, the tree is then
pruned back using 10-fold cross-validation to obtain the
optimal tree with the lowest average decision cost or error
rate.

T-test
A high-throughput software pipeline that uses a t-test to
analyze mass spectrometry data was also applied to the
data set. This analysis is similar to a previously published
method [4] but uses a t-test instead of the Cohen's d sta-
tistic used in the published method. The method using
either the t-test or d statistic yield very similar results. This
software is a parametric, non-algebraic method for find-
ing differentially expressed peaks by applying three filters
to the average intensity value of each raw m/z data point
between the two groups being compared. The first crite-
rion uses a t-test for measuring the difference between the
means. Typically, two signals whose means differ with a p-
value of 0.05 or less are deemed significantly different.
The second criterion requires the signals to be above the
noise level. The third criterion requires the ratio between
the two signals to be above a preset threshold (a so-called
fold change determinant). Signals that pass all three filters
suggest that a difference exists between the two groups
being compared.
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An advantage of this approach is that it does not require
peak finding and thus is applicable to spectra with over-
lapping or non-Gaussian peaks, conditions that would
confound most peak finding algorithms. Further, the
method automatically provides a weighting factor for
each peak, as peaks that differentiate the most have more
discriminating data points on them [4]. The differential
peak used in model building corresponds to the monoiso-
topic peak. This software is described in detail in [4] and
is available upon request.

Hierarchical clustering
Hierarchical clustering analysis calculates the dissimilar-
ity, called the distance, between the individuals. The hier-
archical clustering method used was the unweighted pair
group method with arithmetic mean (UPGMA) algorithm
that is based on the average distance between the clusters
and their correlation. UPGMA is a parametric technique
that is most commonly used in microarray [25,26] and
mass spectrometry data analysis [16] because no prespeci-
fication of number of clusters is required. The resulting
discriminant markers between the two groups are dictated
by the parameters for biomarker selection, such as mini-
mum peak intensity and p-value. This ensures we report
only the peaks that are above the noise level and are sta-
tistically significant. Each group is compared and a p-
value is automatically calculated for each peak using
ANOVA based on the spectra groups. The tabular data is
filtered by p-value and minimal fold-change to obtain the
most significant peaks. UPGMA clustering was performed
on the Progenesis PG600 software (NonLinear Dynamics,
UK).

Receiver operating characteristic (ROC) curve analysis
The performance of the discriminatory peaks in the result-
ant models from logistic regression and UPGMA hierar-
chical clustering was evaluated via ROC analyses using
SAS. The diagnostic accuracy measures of interest are the
sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), prediction accuracy, and
the area under the ROC curve for narcolepsy classification.
These parameters were obtained from the CART models
via 10-fold cross-validation using the BPS software, and
from the t-test models based on the distance proximity of
the differential data points from the spectrum to be classi-
fied to those from spectra with known classification [4].
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