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Abstract
Background: Classification using microarray datasets is usually based on a small number of
samples for which tens of thousands of gene expression measurements have been obtained. The
selection of the genes most significant to the classification problem is a challenging issue in high
dimension data analysis and interpretation. A previous study with SVM-RCE (Recursive Cluster
Elimination), suggested that classification based on groups of correlated genes sometimes exhibits
better performance than classification using single genes. Large databases of gene interaction
networks provide an important resource for the analysis of genetic phenomena and for
classification studies using interacting genes.

We now demonstrate that an algorithm which integrates network information with recursive
feature elimination based on SVM exhibits good performance and improves the biological
interpretability of the results. We refer to the method as SVM with Recursive Network Elimination
(SVM-RNE)

Results: Initially, one thousand genes selected by t-test from a training set are filtered so that only
genes that map to a gene network database remain. The Gene Expression Network Analysis Tool
(GXNA) is applied to the remaining genes to form n clusters of genes that are highly connected in
the network. Linear SVM is used to classify the samples using these clusters, and a weight is assigned
to each cluster based on its importance to the classification. The least informative clusters are
removed while retaining the remainder for the next classification step. This process is repeated
until an optimal classification is obtained.

Conclusion: More than 90% accuracy can be obtained in classification of selected microarray
datasets by integrating the interaction network information with the gene expression information
from the microarrays.

The Matlab version of SVM-RNE can be downloaded from http://web.macam.ac.il/~myousef
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Background
Sample classification based on gene expression data is
usually based on small numbers of samples and very large
numbers of genes. Selecting those genes that are truly bio-
logically important remains a problem in these types of
studies.

Many methods to address these types of problems have
been described [1-7], and they can be divided into two
main categories: those that rely on filtering methods and
the model-based or so-called wrapper approaches [1,3].
Pan [7] has reported a comparison of different filtering
methods, highlighting similarities and differences
between three main methods. The filtering methods,
although faster than the wrapper approaches, are not par-
ticularly appropriate for establishing rankings among sig-
nificant genes, as each gene is examined individually and
correlations among the genes are not taken into account.
Although wrapper methods appear to be more accurate,
filtering methods are presently more frequently applied to
data analysis than wrapper methods [3].

Guyon et. al. [8] compared the usefulness of RFE (Recur-
sive Feature Elimination) for SVM against the "naïve"
ranking on a subset of genes. The naïve ranking is just the
first iteration of RFE to obtain ranks for each gene. They
found that SVM-RFE is superior to SVM without RFE and
also to other multivariate linear discriminant methods,
such as Linear Discriminant Analysis (LDA) and Mean-
Squared-Error (MSE) with recursive feature elimination.

Li and Yang [9] also compared the performance of Sup-
port Vector Machine to other algorithms (the Roccio rele-
vance algorithm and Ridge Regression (RR)) for
classifying gene expression datasets and also examined the
contribution of recursive procedures to the classification
accuracy. They show that the way in which the classifier
penalizes redundant features in the recursive process has
a strong influence on its success. Ridge Regression was
superior in the datasets they examined.

Literature data mining has been used to construct net-
works of interacting genes and the way they form path-
ways to complete various biological tasks e.g., metabolic,
transcriptional, signaling or differentiation and develop-
mental programs. Many gene network models are con-
structed entirely from experimental studies described in
the scientific literature and make up the content of data-
bases such as KEGG, DAVID, and INGENUITY.

However, a variety of computational methods have also
been considered for reconstructing gene networks from
gene expression data including, for example, linear mod-
els described in Eugene et al [10]. GeneNT [11] is a com-
putational tool that groups functionally related genes into

tight clusters despite their expression dissimilarities. Bon-
neau and co-workers [12,13]devised a pair of programs
which first bicluster genes and conditions, and then infer
regulatory relationships among the genes. At present, this
pair of programs has only been applied to prokaryotes.
Chen et. al. [14] present a novel structure-learning
method for gene network discovery from gene expression
data. The method is based on information theory and a
greedy search algorithm in Bayesian Network (BN) learn-
ing. The results show that the proposed method can iden-
tify networks that are close to the optimal structures when
the constructed networks are compared to the original
networks. Srinivasan et. al. [15] described recent progress
in network research. They briefly survey available datasets
in functional genomics, review methods for data integra-
tion and network alignment, and describe recent work on
using network models to guide experimental validation.
Djebbari and Quackenbush [16] suggest using prelimi-
nary networks derived from the literature and/or protein-
protein interaction data as seeds for a Bayesian network
analysis of microarray datasets. They claim that the seeded
Bayesian Networks have the ability to identify high-confi-
dence gene-gene interactions that have been validated by
comparison to other sources of gene networks and path-
way data.

Recently we have developed a new approach for selecting
significant genes in comparative gene expression studies.
This method, which we refer to as SVM-RCE[17], com-
bines k-means, a clustering method, to identify correlated
gene clusters and Support Vector Machines to identify and
weight (rank) those gene clusters. Recursive cluster elimi-
nation (RCE) is applied to remove those clusters of genes
that contribute the least to the classification performance.
We have now extended this approach by selecting as ini-
tial clusters, groups of genes which a network algorithm
has determined to be linked. In applying this approach
one thousand genes selected by t-test from a training set
are first filtered so that the only genes that map to the gene
networks database remain. The Gene Expression Network
Analysis Tool (GXNA, [18]) is applied to these genes to
form n clusters of genes that are highly connected in the
network. Linear SVM is used to classify the samples using
these network clusters, and a weight is assigned to each
cluster based on its importance to the classification. The
least informative clusters are removed while retaining the
remainder for the next step. This process is repeated until
an optimal classification is obtained.

Results
Algorithm
SVM-RNE uses the Gene Expression Network Analysis
Tool (GXNA)[18], a clustering method, to identify corre-
lated gene clusters, and Support Vector Machines to iden-
tify and (rank) those gene networks (clusters) for accuracy
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of classification. After scoring by SVM the lowest scoring
clusters are removed. The remaining clusters are merged,
and the process is repeated (See Figure 1). Nacu et al [18]
developed GXNA as an improvement on the method of
Ideker at el [19] who propose a statistical method for scor-
ing sub-networks and a search algorithm to determine
sub-networks with high scores. GXNA is based on gene
expression and prior biological information to suggest
differentially expressed pathways or gene networks.

We assume a dataset D with S genes. The data is parti-
tioned into two parts, one for training (90%) and the
other (10%) for testing.

Let X denote a two-class training dataset consisting of �
samples and S genes. We define a score measurement for
any list S of genes as the ability to differentiate the two

classes of samples by applying linear SVM. To calculate
this score we carry out a random partition of the training
set X of samples into f non-overlapping subsets of equal
sizes (f-folds). Linear SVM is trained over f-1 subsets and
the remaining subset is used to calculate the performance.
This procedure is repeated r times to take into account dif-
ferent possible partitioning. We define Score(X(S), f, r) as
the average accuracy of the linear SVM over the data X rep-
resented by the S genes computed as f-fold cross valida-
tion repeated r times. We set f to 3 and r to 5 as default
values. Moreover, if the S genes are clustered into sub-
clusters of genes S1, S2, ..., Sn then we define the Score
(X(si), f, r) for each sub-cluster while X(si) is the data X rep-
resented by the genes of Si.

The central algorithm of the SVM-RCE method is
described as a flowchart in Figure 1. It consists of three

The SVM-RNE algorithmFigure 1
The SVM-RNE algorithm. A flowchart of the SVM-RNE algorithm consists of main three steps: 1) Building Networks for 
building networks of genes, 2) SVM scoring for assessment of significant networks and 3)Network Elimination to remove net-
works with low score.
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main steps applied on the training part of the data: build-
ing gene networks using the GXNA tool, the SVM scoring step
for computing the Score (X(si)), f, r) of each cluster of
genes and the RNE step to remove clusters with low score,
as follows:

Algorithm SVM-RNE (input data D)
X = the training dataset

S = genes list (all the genes) or top n_g genes by t-test

n = initial number of clusters

m = final number of clusters

d = the reduction parameter

While (n ≤ m) do

1. Build gene networks from S genes into n networks
S1, S2, ..., Sn using GXNA (Building gene networks).
GXNA determines the value of n.

2. For each network i = 1.. n calculate its Score(X(si), f,
r) (SVM scoring step)

3. Remove the d% networks with lowest score (RNE
step)

4. Merge surviving genes again into one pool S

5. Test these genes on the 10% of the samples held out

6. Decrease n by d%.

The basic approach of SVM-RNE is to first group the gene
expression profiles into n gene interaction networks, using
GXNA. We have used the default parameters of GXNA. A
score: Score(X(si), f, r) is assigned to each of the networks
by linear SVM, indicating its success at separating samples
in the classification task. The d% networks (or d networks)
with the lowest scores are then removed from the analysis.
Steps 1 to Step 6 are repeated until the number n of net-
works is decreased to m.

Let Z denote the testing dataset. At step 4 an SVM classifier
is built from the training dataset using the surviving genes
S. This classifier is then tested on Z to estimate the per-
formance (see Figure 1 the "Test" panel on the right side).

For the current version, the choice of n is determined by
the GXNA tool while m is determined by the investigator.
In this implementation, the default value of m is 2, indi-
cating that the method is required to capture the top 2 sig-
nificant networks (groups) of genes. However, accuracy is

determined after each round of network elimination and
a higher number of networks could be more accurate than
the final two.

Testing Data used for assessment of 
classification accuracy
We tested the SVM-RFE, SVM-RCE and SVM-RNE meth-
ods, with several datasets. The following is a brief descrip-
tion of these datasets.

CTCL Datasets (I) and (II)
Cutaneous T-cell lymphoma (CTCL) refers to a heteroge-
neous group of non-Hodgkin lymphomas. CTCL(I)
includes 18 patients and 12 controls [20] while CTCL(II)
consist of 58 patients and 24 controls (Loboda et. al.
unpublished). For more information about the data and
preprocessing refer to [20,21].

Lymphocyte data is from the GXNA study [18]. This data
set is related to the role of the immune system in cancer.
It is derived from blood samples of 26 healthy and 30
melanoma patients. Lymphocytes were sorted according
to their type into B-cells, CD4 T-cells, CD8 T-cells and NK
(natural killer) cells. Gene expression data was obtained
using 56 Agilent Human 1A version 2 microarrays. After
removing saturated genes, there were 20901 genes left
[22]

Airway epithelial gene expression
We also re-analyzed the airway epithelial gene expression
of Spira et al. [23] using SVM-RNE. The data set consists of
129 samples, 60 smokers with lung cancer and 69 smok-
ers without lung cancer. The gene expression data was
obtained using Affymetrix HG-U133A microarrays
obtained from bronchial brushings. The analysis of the
training set (n = 77) identified an 80-gene biomarker by
selecting the most frequently 40 up-regulated and 40
down-regulated selected by internal cross-validation. The
80-gene biomarker identified using a weighted-voting
algorithm achieved an accuracy of 83% (80% sensitivity,
84% specificity on an independent test set).

Table 1 summarizes the comparison of three SVM algo-
rithms on the three lymphocyte data sets: CTCL(I),
CTCL(II) and Lymphocyte. In each case, one of the clus-
tering methods is superior in accuracy to SVM-RFE usually
with a smaller gene panel. Figures 2 and 3 compare the
two clustering methods applied to the lymphocyte data
set. In this case, SVM-RCE exhibited superior accuracy.
The range of standard deviation over different size of the
networks of SVM-RNE on lymphocyte data is 0.064-0.08
while the range is 0.07-0.1 on CTCL(II) (0.09-0.14 on
CTCL(I)).
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SVM-RCE and SVM-RNE were applied to the airway epi-
thelium data with 10-fold cross validation repeated 10
times (100 iterations). An accuracy of 84% with 23 genes
was obtained (79% sensitivity and 87% specificity for
SVM-RCE. Only 3 genes are common between the top 80
genes from SVM-RCE and the original 80 gene panel
obtained by weighted voting. When SVM-RNE was used in
this analysis only 408 of the 2,200 original significant
genes mapped to existing networks. The performance of
SVM-RNE was significantly less accurate than SVM-RCE in

this case suggesting that the GXNA data base does not con-
tain the network information related to the differential
gene expression that distinguished these 2 sample classes
in the airway epithelium data set.

Implementation
SVM-RNE was written in MATLAB code (Matlab release
version 7 or above). It took about 7.30 Hours to complete
one experiment (10-folds repeated 10 times) on airway

Classification performance of SVM-RCE on the Lymphocyte data setFigure 2
Classification performance of SVM-RCE on the Lymphocyte data set. All of the values are an average of 100 itera-
tions of SVM-RCE. ACC is the accuracy, TP is the sensitivity, and TN is the specificity of the remaining genes determined on 
the test set. The x-axis shows the median number of clusters and number of genes in the clusters at each step.
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epithelium data (Laptop with Intel® Core™ 2 Duo CPU
T5670 @1.80 GHz)

Discussion
Various methods have been used for classification studies
to find the optimal subset of genes that gives the highest
accuracy [24] in distinguishing members of different sam-
ple classes. With SVM-RNE, one can think of this process
as a search in the gene-networks space for the m networks,
of interacting genes, that give the highest classification
accuracy. In the simplest case, the search is reduced to the
identification of one or two networks that define the class
differences. These might include the important up-regu-
lated and the important down-regulated genes. While
SVM-RNE and SVM-RFE are related, in that they both
assess the relative contributions of the genes to the classi-
fier, SVM-RNE assesses the contributions of groups of
interacting genes instead of individual genes (SVM scoring
step in Figure 1). Additionally, although both methods
remove the least important genes at each step, SVM-RNE
scores and removes clusters of genes, while SVM-RFE
scores and removes a single or small numbers of genes at
each round of the algorithm. The difference between
SVM-RCE and SVM-RNE is in the way the genes are
grouped: SVM-RCE uses k-means clustering, while SVM-
RNE uses a network construction algorithm.

Conclusion
In addition to providing biomarkers for distinguishing
classes, an additional aim of most classification studies is
to determine the biological basis for the class differences.
If the expression levels of several genes on a single path-
way are found to be altered, confidence in classification is
increased and an understanding of the biology underlying
the class differences may be enhanced. Using network
fragments as units of information should make significant
pathway identification easier than trying to assemble sin-
gle genes into a pathway after their selection, since most
genes will belong to numerous pathways.

The success of the SVM-RNE in classification studies sug-
gests that a pathway based metric or other biological met-
rics to may be used to group the genes useful for
classification studies and provide an alternative approach
to single gene studies. The exploration of the way other
factors can contribute to the classification and to the char-
acterization of new sub-classes will be the subject of future
studies [25].
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