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Abstract
Background: The ChIP-chip technology has been used in a wide range of biomedical studies, such
as identification of human transcription factor binding sites, investigation of DNA methylation, and
investigation of histone modifications in animals and plants. Various methods have been proposed
in the literature for analyzing the ChIP-chip data, such as the sliding window methods, the hidden
Markov model-based methods, and Bayesian methods. Although, due to the integrated
consideration of uncertainty of the models and model parameters, Bayesian methods can
potentially work better than the other two classes of methods, the existing Bayesian methods do
not perform satisfactorily. They usually require multiple replicates or some extra experimental
information to parametrize the model, and long CPU time due to involving of MCMC simulations.

Results: In this paper, we propose a Bayesian latent model for the ChIP-chip data. The new model
mainly differs from the existing Bayesian models, such as the joint deconvolution model, the
hierarchical gamma mixture model, and the Bayesian hierarchical model, in two respects. Firstly, it
works on the difference between the averaged treatment and control samples. This enables the use
of a simple model for the data, which avoids the probe-specific effect and the sample (control/
treatment) effect. As a consequence, this enables an efficient MCMC simulation of the posterior
distribution of the model, and also makes the model more robust to the outliers. Secondly, it
models the neighboring dependence of probes by introducing a latent indicator vector. A truncated
Poisson prior distribution is assumed for the latent indicator variable, with the rationale being
justified at length.

Conclusion: The Bayesian latent method is successfully applied to real and ten simulated datasets,
with comparisons with some of the existing Bayesian methods, hidden Markov model methods, and
sliding window methods. The numerical results indicate that the Bayesian latent method can
outperform other methods, especially when the data contain outliers.

Background
The chromatin immunoprecipitation (ChIP) coupled
with microarray (chip) analysis, provides the researchers
an efficient way of mapping protein-DNA interactions
across a whole genome. The ChIP-chip technology has

been used in a wide range of biomedical studies, such as
identification of human transcription factor binding sites,
investigation of DNA methylation, and investigation of
histone modifications in animals and plants [1-4]. Data
from ChIP-chip experiments encompass DNA-protein
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interaction measurements on millions of short oligonu-
cleotides (also known as probes) which often tile one or
several chromosomes or even the whole genome. The data
analysis consists of two steps: (1) identifying the bound
regions where DNA and the protein are cross-linked in the
experiments; and (2) identifying the binding sites through
sequence analysis of the bound regions. The goal of this
paper is to develop an effective method for the first step
analysis.

Analysis of the ChIP-chip data is very challenging, due to
the large amount of probes and the small number of rep-
licates. The existing methods in the literature can be
roughly grouped into three categories, the sliding window
methods [1,5-7], the hidden Markov Model (HMM)
methods [6,8-10], and the Bayesian methods [11-13].
Other methods have been suggested, e.g., by Zheng [14],
Huber [15] and Reiss [16], but are less common.

The sliding window methods are to test a hypothesis for
each probe using the information from the probes within
a certain genomic distance sliding window, and then try
to correct for the multiple hypothesis tests. The test statis-
tics used are varied. Cawley [1] used Wilcoxon's rank sum
test, Keles [7] used a scan statistic which is the average of
t-statistics within the sliding window, and Ji and Wong [6]
used a scan statistic which is the average of empirical Baye-
sian t-statistics within the sliding window. Since each test
uses information from neighboring probes, the tests are
not independent, rendering a difficult adjustment in the
multiple hypothesis testing step. We note that the power
of the sliding window tests is usually low, especially for
the tests for the regions where the probe density is low.
This is because there will be only very limited neighboring
information available for those tests. Since, in the ChIP-
chip experiments, the DNA samples hybridized to the
microarrays are prepared by PCR, which is known to per-
form independently of the form of DNA, the far probes
should have similar intensity patterns as long as they are
of similar positions to their nearest bound regions. This
provides a basis for us to devise powerful methods that
make use of information from all probes.

The HMM methods have the potential to make use of all
probe information, where the model parameters are esti-
mated using all available data. However, in most of the
existing implementations of HMMs, the model parame-
ters are estimated in an ad hoc way. For example, Li [8]
estimated the model parameters using previous results on
Affymetrix SNPs arrays. An exception is tileHMM [10],
where the model parameters are estimated using the
Baum-Welch and Viterbi training algorithms [17]. How-
ever, as pointed out by Humburg et al. [10], the Baum-
Welch algorithm tends to converge to a local maximum of
the likelihood function, and the Viterbi training algo-

rithm even fails to converge to a local maximum of the
likelihood in some cases. This renders that the parameter
estimates and thus followed inference often suboptimal
to the problem.

Bayesian methods have also the potential to make use of
all probe information. Like the HMM methods, the Baye-
sian methods estimate the model parameters using all
available data. However, these methods usually require
multiple replicates or some extra experimental informa-
tion to parameterize the model. For example, the joint
binding deconvolution model [11] requires one to know
the DNA fragment lengths, measured separately for each
sample via extrophoretic analysis; and the hierarchical
gamma mixture model(HGMM) [12] requires one to first
divide the data into genomic regions containing at most
one bound region, but such information is, in general,
unavailable. The Bayesian hierarchical model [13] models
the probe intensities using essentially a mixture of normal
distributions, and models the spatial structure of the
probes using a Gaussian intrinsic auto-regression model
[18]. Gottardo [13] developed a software for the model,
Bayesian analysis of ChIP-chip (or BAC for short). Using
BAC [13] does not need extra experimental information,
but it is extremely slow, roughly 10 hours for a dataset
with 300,000 probes on a personal computer. One reason
for the slow speed is the use of MCMC simulations.

In this paper, we propose a Bayesian latent variable model
for tiling array data. Our method differs from the existing
Bayesian methods, such as the joint binding deconvolu-
tion model [11], the HGMM [12], and the Bayesian hier-
archical model [13], in several respects. Firstly, it works on
the difference between the averaged treatment and control
samples. This enables the use of a simple model for the
data, which avoids the probe-specific effect and the sam-
ple (control/treatment) effect. As a consequence, this ena-
bles an efficient MCMC simulation of the posterior
distribution of the model, and also makes the model
rather robust to the outliers. Secondly, it models the
neighboring dependence of probes by introducing a latent
indicator vector. Thirdly, it does not require multiple rep-
licates or extra experimental information. As described
below, it can work on a single intensity measurement for
the probes. The Bayesian latent model has been success-
fully applied to several real and ten simulated datasets,
with comparisons with some of the existing Bayesian
methods, hidden Markov model methods, and sliding
window methods. The numerical results indicate that the
Bayesian latent model can outperform the others, espe-
cially when the data contain outliers. Our method is also
computationally efficient; it takes about 30 minutes for a
dataset with 300,000 probes on a personal computer.
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The remainder of this paper is organized as follows. In
Section 2, we describe the Bayesian latent model and its
MCMC implementation. In Section 3, we test the Bayesian
latent model on real and simulated datasets with compar-
isons with tileHMM, BAC and some sliding window
methods. In Section 4, we discuss possible extensions of
our methods and provide an explanation why our method
outperforms tileHMM and BAC via a detailed comparison
of the models used by them. In Section 5, we conclude the
paper.

Methods
Consider a ChIP-chip experiment with two conditions,
treatment and control. Let X1 and X2 denote, respectively,
the samples measured under the treatment and control
conditions. Each sample has ml, l = 1, 2, replicates provid-
ing measurements for n genomic locations along a chro-
mosome or the genome. Suppose that these samples have
been normalized and log-transformed. In this paper, we
summarize the measurements for each probe by

where  is the intensity measurement of probe i aver-

aged over ml replicates.

The underlying assumption for the summary statistic in
(1) is that the intensity measurements for each probes has
a variance independent of its genomic position. The
rationale is that the DNA samples used in the experiments
are prepared by PCR, which is known to perform inde-
pendently of the form of DNA, and that the amount of the
DNA samples provides the main sources for the variation
of probe intensities. We note that a similar assumption
has also been made in other Bayesian software, e.g., tile-
HMM [10]. Otherwise, Yi can be adjusted by its standard
error to a shrinkage t-statistic [19] or an empirical Bayes t-
statistic [6], depending on the estimate of the standard
error. Note that both the adjustments are toward the con-
stant variance of probes. Even with the adjustments, the
Bayesian latent model developed in this paper can still
work reasonably well, as the normality assumption
approximately holds for the modified t-statistics.

The Bayesian latent model

Suppose that the data consists of a total of K bound
regions, and that region k consists of nk (k = 1,...,K) con-

secutive probes. For convenience, we call all the non-
bound regions by region 0 and denote by n0, the total

number of probes contained in all the non-bound
regions, although the probes in which may be non-con-

secutive. Thus, we have . Let z = (z1,...,zn) be

a latent binary vector associated with the probes, where zi

= 1 indicates that probe i belongs to a bound region and
0 otherwise. Given z, we can re-index (y1,...,yn), a realiza-

tion of (Y1,...,Yn), by ykj, k = 0,...,K, j = 1,...,nk. Then ykj can

be modeled as follows,

where μ0 is the overall mean, which models the difference
of sample effects (between the treatment samples and the
control samples); ν0 = 0 and νk > 0, k = 1,...,K accounts for
the difference of probe intensities in different bound
regions; kjs are random errors independently and identi-
cally distributed as N(0, σ2). In words, model (2) assumes
that, conditioning on the latent vector z, ykjs are mutually
independent and also identically distributed within the
same bound region. We are aware that for the tiling array
data, the probe intensities tend to form a peak around the
true binding site. Since, given z, the order of probes is
meaningless to us, the model (2) is appropriate if ignoring
the order of the probes. We note that a similar assumption
has also been used in the HGMM and HMM methods.
Conditioning on z, the likelihood of the model can be
written as

To conduct a Bayesian analysis for the model, we specify
the following prior distributions for the model parame-
ters:

where IG(·,·) denotes an inverse Gamma distribution,
U(·,·) denotes a uniform distribution, and α, β, νmin, νmax
are hyperparameters. In this paper, we set α = β = 0.05,
which form a vague prior for σ2; and set νmin = 2sy and νmax
= maxi yi, where sy is the sample standard error of yi. Differ-
ent values of νmin, e.g., sy and 1.5sy, have also been tried in
our simulations, and the results are similar. The sensitivity
issue of the Bayesian latent model to the hyperparameters
will be further discussed in Section 3. In addition, we
assume that the latent vector z follows a truncated Poisson
distribution,

Y X Xi i i= −1 2 , (1)
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where K, denoting the total number of bound regions
specified by z, and is thus a function of z; λ is a hyperpa-
rameter; Kmax is the largest number of bounded regions
allowed by the model; and

which makes the prior (5) a proper distribution. The
rationale behind this prior can be explained as follows.
Since the length of each bound region is very short com-
paring to the chromosome or the whole genome, it is rea-
sonable to view each bound region as a single point, and
thus, following the standard theory of Poisson process,
the total number of bound regions can be modeled as a
Poisson random variable. Conditioning on the total
number of bound regions, as implied by (5), we put an
equal prior probability on all possible configurations of z,
i.e., assuming a non-informative prior for z. The prior (5)
penalizes a large value of K, where the parameter λ repre-
sents the strength of penalty. We do not recommend to
use a large value of λ, as the number of true bound regions
is usually small and a large value of λ will lead to discov-
ery of too many false bound regions. Our experience
shows that a value of λ around 0.01 usually works well for
the ChIP-chip data. In this paper, we set λ = 0.01 in all
simulations. The parameter Kmax is usually set to a large
number. We set Kmax = 5000 in all simulations of this
paper. As long as the value of Kmax has been reasonably
large, increasing it further would have a negligible effect
on simulations. Finally, we would like to point out that
the bound region identification problem can also be
viewed as a change-point identification problem that has
been widely studied in statistics. For the change-point
identification problem, the same truncated Poisson prior
has been used for modeling the total number of change-
points by many authors, see, e.g., Phillips and Smith [20],
Dension et al. [21], Liang and Wong [22], and Liang [23].

If ν1,...,νK ∈ (νmin, νmax), combining the likelihood and
prior distributions, integrating out σ2, and taking the log-
arithm, we get the following log-posterior density func-
tion

otherwise, the posterior is equal to 0.

Due to the design of ChIP-chip experiments, it is obvious
that the intensity measurements of the neighboring
probes are positively dependent. To model this depend-
ence, we use a latent indicator vector z. This makes our
model different from the existing models, such as the
joint binding deconvolution model [11], the HGMM
[12], and the Bayesian hierarchical model [13]. Both the
joint binding deconvolution model and the Bayesian
hierarchical model model the mean of probe intensities
through the Gaussian random field (GMF), although their
formulations may not be in the standard form of the
GMF. Like the Bayesian latent model, the HGMM models
the mean of probe intensities by a piece-wise constant
function. The difference is that the HGMM requires one to
first divide the data into genomic regions containing at
most one bound regions, and thus it allows different non-
bound regions to have different means. Considering the
physical property of PCR, which performs independently
of the form of DNA, allowing different non-bound
regions to have different mean values may not be neces-
sary.

MCMC simulations
To simulate from the posterior distribution (6), we used
the Metropolis-within-Gibbs sampler [24]; see Appendix
for the details. Note that when a component of z is
updated, the sum of square terms in the posterior density
can be calculated in a recursive manner, and this simpli-
fies the computation of the posterior density greatly.

Inference of bound regions
Let pi = P(zi = 1|y) be the marginal posterior probability
that probe i belongs to a bound region. Since the bound
regions are expected to consist of several consecutive
probes with positive IP-enrichment effects, the regions
which consists of several consecutive probes with high
marginal posterior probabilities are likely to be bound
regions. To identify such regions, we follow Gottardo [13]
to consider the joint posterior probability
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where i is the index of the probes, w is a pre-specified half-
window size, and m is the minimum number of probes
belonging to the bound region. As explained in Gottardo
[13], the purpose of introducing the joint posterior prob-
ability is to remove the false bound regions, which usually
consists of only few isolated probes with large enrichment
effects. We found that the choice w = 5 and m = 5 works
well in practice. This choice of w is consistent with the
moving window size used in other work, such as Ji and
Wong [6], Keles [12], and Gottardo [13]. The choice of m
is chosen for robustness to false bound regions. It also
reflects our belief that a bound region should consist of at
least five consecutive probes with large enrichment effects.

Note that estimation of ρi is trivial based on the samples
simulated from the posterior distribution. The value of ρi
depends on a lot of parameters, such as w, m and the
hyperparameters of the model. However, we found that
the orders of ρi are rather robust to these parameters. This
suggests us to treat ρi as a conventional testing p-value,
and to control the false discovery rate (FDR) of the bound
regions using a FDR control method, e.g., the empirical
Bayes method [25] (Efron, 2004) or the stochastic approx-
imation-based empirical Bayes method [26]. Both the
methods allow for the dependence between testing statis-
tics and an empirical determination of the density of the
testing statistics.

Although a strict control of FDR is important to the detec-
tion of bound regions, it is not the focus of this paper. In
this paper, we will follow other Bayesian methods, such as
BAC, to simply set a cut- off value of ρi. We classify probe
i as a probe in bound regions if ρi ≥ 0.5, and classify probe
i as a probe in nonbound region otherwise. As we will see
in the numerical examples, the joint posterior probability
can lead to a good detection of true bound regions.

Results
The Estrogen Receptor data (ER data)
The ER data were generated by Carroll [27], which
mapped the association of the estrogen receptor on chro-
mosomes 21 and 22. Here we just used a subset of the
data to illustrate how the Bayesian latent model works.
The subset we used is available from the BAC software
[28]. It consists of intensity measurements for 30001
probes under the treatment and control conditions with
three replicates each. The same subset has been used by
BAC for a demonstration purpose.

The Bayesian latent model was first applied to the dataset.
The algorithm was run 5 times. Each run consisted of
11000 iterations, and cost about 4.4 minutes CPU time
on a personal computer (Intel Xeon 2.80 GHz, 1 G mem-
ory, Linux operating system). All computations of this
paper were done on this computer. Based on the Gelman-
Rubin diagnostic plot [29] [See Additional file 1 and 2],
we discarded the first 1000 iterations for the burn-in proc-
ess, and used the remaining 10,000 iterations for further
inference. Figure 1(b) shows the estimates of the joint
posterior probabilities resulted from one run.

For comparison, BAC and tileHMM (available at [30])
were also applied to this dataset. Both BAC and tileHMM
produced a probability measure for each probe, similar to
ρi, on how likely it belongs to a bound region. The results
were shown in Figures 1(c) and 1(d), respectively. The
comparison shows that all the three methods produced
very similar results for this dataset. However, the results
produced by the Bayesian latent model are neater; the
joint posterior probabilities produced by it tend to be
dichotomized, either close to 1 or close to 0. This gives the
user a clear classification for the bound and non-bound
regions. To provide some numerical evidence for this
statement, we calculated the ratio #{i : Pi > 0.5}/#{i : Pi >
0.05}, where #{i : Pi > a} denotes the number of probes
with Pi greater than a. Here Pi refers to the joint posterior
probability for the Bayesian latent model and BAC, and
the conditional probability for tileHMM. The ratios result-
ant from the Bayesian latent model, BAC and tileHMM are
0.816, 0.615 and 0.674, respectively.

Later, we assessed the sensitivity of the Bayesian latent
method to the values of the hyperparameters νmin and λ
with other parameters fixed, α = β = 0.05 and νmax = maxi
yi. The cross settings {0.5sy, 1.0sy, 1.5sy, 2sy, 2.5sy, 3sy} ×
[0.0001, 0.1] for (νmin, λ) were tried for this dataset. For
each setting, the algorithm was run 5 times, and each run
consisted of 11,000 iterations. To measure the similarity
of the bound regions resultant from different settings of
the hyperparameters, we propose to use the adjusted Rand
index [31,32]. The adjusted Rand index is usually used in
the literature of clustering, which measures the degree of
agreement between two partitions of the same set of
observations even when the comparing partitions having
different numbers of clusters. It is obvious that the prob-
lem of bound region identification can also be viewed as
a clustering problem; where the genome was partitioned
into a series of segments, non-bound or bound regions,
and each of the segments forms a cluster.

The adjusted Rand index is defined as follows. Let Ω
denote a set of n observations, let C = {c1,...,cs} and

 represent two partitions of Ω, let nij be the

ρ i j
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number of observations that are in both cluster ci and clus-

ter , let ni. be the number of observations in cluster ci,

and let n.j be the number of observations in cluster . The

adjusted Rand index is

A higher value of r means a higher correspondence
between the two partitions. When the two partitions are
identical, r is 1. When a partition is random, the expecta-

tion of r is 0. Under the generalized hyper-geometric
model, it can be shown [32] that

Refer to Hubert and Arabie [32] for the theoretical justifi-
cation of r.

In calculations of the adjusted Rand indices for the sensi-
tivity experiments, we used the result shown in Figure
1(b) as the standard; that is, if a partition is identical to
that partition, r will be 1. The results are summarized in
Figure 2, where the adjusted Rand index is plotted as a
function of log(λ) for different setting of νmin. Figure 2
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Comparison results for the ER dataFigure 1
Comparison results for the ER data. (a) original data; (b) the joint posterior probability produced by the Bayesian latent 
model; (c) the joint posterior probability produced by BAC; and (d) the posterior probability produced by tileHMM.
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Sensitivity analysis for the hyperparametersFigure 2
Sensitivity analysis for the hyperparameters.
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shows that, for each value of νmin, the adjusted Rand index
varies between 0.9 and 1.0 as λ runs from 0.0001 to 0.1.
This indicates that the performance of the Bayesian latent
model is rather robust to the choices of νmin and λ.

Finally, we examined the robustness of the Bayesian latent
model to different choice of w and m with other parame-
ters fixed at α = β = 0.05, λ = 0.01, and νmin = 2sy. The cross
settings {2, 5, 7, 10} × {3, 5, 7} for (w, m) were tried for
this dataset. Again, the adjusted Rand index is used as the
similarity criterion and the result shown in Figure 1(b) as
the standard. The results were summarized in Table 1,
which indicates, for this dataset, the Bayesian latent
model is quite robust to the choices of w and m. In prac-
tice, to achieve robustness to outlying probes, we suggest
to avoid choosing a small m. In all the following simula-
tions, we set m = 5.

The robustness of the results with respect to changes of α,
β and νmax are not studied in the paper. The reason is that
νmax is completely determined by the data, and the values
of α and β we used form a vague prior for the variance σ2.

p53 data
In a ChIP-chip experiment, Cawley [1] mapped the bind-
ing sites of four human transcription factors Sp1, cMyc,
p53-FL, and p53-DO1 on chromosomes 21 and 22. The
experiment consisted of 6 treatment and 6 input control
arrays, and the chromosomes spanned over three chips A,
B and C. Refer to Cawley [1] for the details of the experi-
ment. For the testing purpose, p53-FL data on chips A, B
and C were used in this paper, which contains 14 quanti-
tative PCR verified regions. As in Cawley [1], the data were
pre-processed by filtering out the local repeats, quantile-
normalized [33], rescaled to have a median feature inten-
sity of 1000 for the purpose of adjusting batch effect, and
then log-transformed. Since the normalization is not the
focus of this paper, we skipped the details.

The Bayesian latent method was first applied to the p53
data. The data on chip A, chip B, and chip C were analyzed
separately. Each run consisted of 11,000 iterations. Diag-
nostic plot for the convergence of these runs indicates that

they can converge within several hundreds of iterations,
even the data on each chip consists of more than 300,000
probes. Accordingly, the first 1000 iterations were dis-
carded for the burn-in process, and the samples from
other iterations are used for further analysis.

For comparison, BAC and tileHMM were also applied to
this example. Given the posterior probabilities, a cutoff of
0.5 was used for all methods to detect bound regions. All
resultant bound regions having less than 3 probes or 100
bps were considered to be spurious and removed, and
those regions separated by 500 bps or less were merged
together to form a predicted bound regions following the
approach taken by Cawley [1]. The results were summa-
rized in Table 2. Although tileHMM detected all the 14
validated regions, it essentially fails for this example. It
identified a total of 33796 bound regions, which should
contain too many false bound regions. We suspect that
the failure of tileHMM for this example is due to its train-
ing algorithm; it is very likely that tileHMM converged to
a local maximum of the likelihood function. This have
been noted by Humburg et al. [10], tileHMM may con-
verge to a local maximum of the likelihood function with
either the Baum-Welch algorithm or the Viterbi training
algorithm, rendering an ineffective inference for the
model.

Both the Bayesian latent method and BAC work well for
this example. At a cutoff of 0.5, BAC identified 100 bound
regions, which cover 12 out of 14 experimentally vali-
dated bound regions. The Bayesian latent method works
even better. At the same cutoff, it only identified 70 bound
regions, but which also cover 12 out of 14 experimentally
validated bound regions. For further comparison of the
Bayesian latent method and BAC, we relaxed the cutoff
value and counted the total number of regions needed to
cover all experimentally validated regions. We found that
the Bayesian latent method only needs to increase the
total number of regions to 127, while BAC needs to
increase to 1864 regions. Note that the BAC and tile-
HMM's results reported here may be a little different from
those reported by other authors, due to the difference of
the normalization methods.

Table 1: Sensitivity analysis for the parameters w and m. 

Adjusted Rand Index m

3 5 7

w 2 0.987(0.006) -- --
5 0.987(0.006) 0.994(0.005) 0.839(0.020)
7 0.991(0.005) 0.985(0.006) 0.834(0.010)
10 0.994 (0.001) 0.987(0.007) 0.831(0.007)

The average of adjusted Rand indices (standard error in the parentheses) is calculated based on 5 independent runs. The entries for the cells with 
2w <m are not available (--).
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Simulated data
To have a careful assessment of the performance of the
Bayesian latent model, we simulated 10 datasets based on
the Sp1 data of Cawley's [1] experiment. Each dataset con-
sists of 200,000 probes, two conditions (control and IP-
enriched), and six replicates under each condition. The
probe genomic coordinates we used in simulations were
the first 200,000 genomic positions used in the Sp1 data.
Each dataset consisted of 996 bound probes, forming 50
bound regions. As in Gottardo [13], the bound regions
were assumed to describe a peak with the intensity func-
tion given by A exp{-4(gi - C)2/B2}, where A is the ampli-
tude of the peak, B controls the width of the peak, C
represents the center of the peak, and gi is the genomic
position of probe i. We also followed Gottard [13] to gen-
erate the centers of the bound regions randomly across the
set of possible coordinates while imposing a separation of
at least 3000 bps between peaks; and to generate the val-
ues of parameter B uniformly between 600 and 1000 bps.
The values of parameter A were generated uniformly
between 3 and 5. The variance of the probe intensity was
estimated from the Sp1 data.

Firstly, the performance of different models is assessed
using the area under the receiving operating characteristic
(ROC) curve [34] and the error rate. The former is a stand-
ard measure for the performance of a multiple hypothesis
testing method, which shows the true positive discovery
rate (sensitivity) against the false positive discovery rate (1
- specificity) at probe level. The later is a standard measure
for the performance of a classification method, which
shows the proportion of totally incorrect probe calls,
including both false positives and false negatives, against
different cutoff values. All the three methods, Bayesian
latent method, BAC and tileHMM, were applied to the 10
full datasets. The averaged ROC curve and error rate across
a range of cutoffs are obtained and plotted in Figure 3. As
indicated by Figure 3(a), the Bayesian latent method and
tileHMM have very similar performances on these data-
sets, and both are much better than BAC. By further exam-
ining the plot on the right, which provides a closer view of
the area enclosed by the dotted line and axis on the left, it

is easy to see that the Bayesian latent method is better than
tileHMM for this example. Next, we checked the error rate
for each model. The results were shown in Figure 3(b).
Again, the Bayesian latent method and tileHMM perform
very well and both are much better than BAC. From the
right plot of Figure 3(b), we can see that the optimal cutoff
for tileHMM is close to 0.3, while it is close to 0.5 for the
Bayesian latent method. Figure 3(b) also suggest that both
the Bayesian latent method and tileHMM are robust to the
choice of cutoff values, ranging from 0.2 to 0.8, while BAC
is not.

Later, based on the true bound regions which are known
for these 10 simulate datasets, we use the adjusted Rand
index r to assess the quality of the results produced by the
above three algorithms. In addition, we calculated p-val-
ues of the two-sample t-tests, H0: rBL = rO vs H1: rBL > rO,
where rBL denotes the r-value produced by the Bayesian
latent model, and rO denotes the r-value produced by the
other method. The results were summarized in Table 3.
The tests indicate that the Bayesian latent model can lead
to more accurate identifications of true bound regions
than BAC and tileHMM.

For a thorough comparison, we also applied the sliding
window methods, including the Wilcoxon rank sum test
method [1], t-scan statistic [7] and empirical Bayesian t-
scan statistic [6], to the 10 datasets. For the testing pur-
pose, we identified the most significant 996 probes, which
is the same as the true number of bound probes, as the
bound probes for each of the datasets and each of the slid-
ing window methods. We note that this cutoff number
should be determined by a multiple hypothesis test in
practice, and this choice makes the comparison a little
favorly biased toward the sliding window methods. The
results were summarized in the lower panel of Table 3,
which indicate that the Bayesian latent model also outper-
forms the sliding window methods.

Discussion
The Bayesian latent model can be generalized in a few
ways. Firstly, it can be generalized to allow different

Table 2: Computational results for the p53-FL data with a cutoff of 0.5. 

Chip A Chip B Chip C p53

Method V(2) Total V(3) Total V(9) Total V(14) Total

Bayesian latent 2 15 2 28 8 27 12 70 (127)
BAC 2 38 1 29 9 33 12 100 (1864)
tileHMM 2 29708 3 1944 9 2144 14 33796

Both the total numbers of regions and quantitative PCR verified(V) ones detected by each method on each chip are reported. The columns under 
"p53" summarize the results on chips A, B and C. The number in the parentheses is the number of clusters needed to cover all 14 experimentally 
validated bound regions.
Page 9 of 13
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bound regions to have different variances. This generaliza-
tion has been implemented by us. The numerical results
are very similar to those reported in the paper.

Secondly, it can be generalized to work on the multiple
replicates directly. This can be simply done by modifying

(2) to multivariate normals. This generalization will cer-
tainly slow down the simulations, but the results may not
be improved significantly. The reason is that under the
assumption of constant variances for probe intensities,
the statistic (1) is sufficient for the mean intensity of
probes, while the latter has been designed in the experi-

Averaged ROC curves and error rates for different models on simulated datasetsFigure 3
Averaged ROC curves and error rates for different models on simulated datasets. (a) ROC curve; (b) error rate. 
All the plots were obtained by averaging over the results for the 10 datasets. The plots on the right provide a closer view for 
the area enclosed by the dotted line and axis on the left.
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ment as the main measure for differentiating bound and
non-bound regions.

The reason why the Bayesian latent method outperforms
tileHMM and BAC can be explained as follows, through a
detailed comparison of the models used by them. Tile-
HMM implemented a standard two-state hidden Markov
model, with the emission distribution of state Si, i = 1, 2,
being modeled as a t-distribution. TileHMM and the Baye-
sian latent model are mainly different in two respects.

• TileHMM is a non-Bayesian method, where maxi-
mum likelihood estimates are used for all model
parameters and inference for the bound regions are
based on the conditional probability of the hidden
states. TileHMM is trained using the Baum-Welch
algorithm and the Viterbi algorithm. It is known that
the Baum-Welch algorithm is an EM algorithm imple-
mented in the context of HMM, and that it tends to
converge to a local maximum of the likelihood func-
tion. The Viterbi algorithm provides a fast alternative
to the Baum-Welch algorithm, but may not converge
to a local maximum. The Bayesian latent method is a
Bayesian method, where inference for bound regions
is based on the posterior distribution of the latent var-
iable. The posterior distribution is simulated using the
Metropolis-within-Gibbs sampler, which is known to
converge to its target distribution when the number of
iterations becomes large.

• TileHMM models all bound regions to have the same
mean value, while the Bayesian latent model allows
different bound regions to have different mean values.
Our model fits the real data better.

The mixed performance of tileHMM on the simulated and
real datasets indicates that the inferiority of tileHMM is
mainly due to its training algorithm. In addition, as indi-
cated by our simulated examples, tileHMM tends to misi-
dentify the bound regions with relatively low probe

intensities, because it models all bound regions to have
the same mean value.

BAC models the probe intensity using a mixed-effect
model:

where c = 1 denotes the control sample, c = 2 denotes the

treatment sample, r is the index of replicates; μp is a ran-

dom probe effect distributed as ; γcp is the probe

enrichment effect with γ1p = 0; and cpr is the random error

distributed as . The authors further modeled the

probe enrichment effect by a mixture of a point mass at
zero and a truncated Gaussian distribution, i.e.,

where TN+( ) denotes a truncated Gaussian distri-

bution truncated at zero, and wp is the a priori proportion

of probes belonging to nonbound regions. The a priori
proportion depends on a latent Markov random field

prior θ = {θp, 1 ≤ p ≤ P }, through a logistic transformation

and a Gaussian intrinsic autoregressive model [18] for θ,

where ∂p corresponds to the probes p' immediately adja-
cent to p, np is the cardinality of ∂p, κ is a smoothing
parameter, and n is the number of neighboring probes
used. The model is trained using a MCMC algorithm.
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Table 3: Computational results for the simulated datasets. 

Method Total ND FD r p-value

Bayesian Latent 50.5 (0.58) 2.3 (0.33) 2.8 (0.57) 0.9545 (0.0080) --
tileHMM 48 (0.77) 4.2 (0.57) 2.2 (0.55) 0.9250 (0.0107) 0.02
BAC 2934.7 (6.60) 0 (0) 2884.7 (6.6) 0.0609 (0.0003) 0.00

Wilcox 56.1 (0.95) 3.9 (0.48) 6.4 (0.62) 0.9221 (0.0088) 0.007
t-scan 78.9 (2.11) 3.1 (0.31) 27.6 (1.71) 0.9047 (0.0089) 0.0003
EB t-Scan 71.5 (1.52) 3.0 (0.39) 20.9 (1.38) 0.9176 (0.0068) 0.001

"Total" denotes the average number of bound regions identified for each of the 10 datasets, ND denotes the number of true bound regions that are 
not discovered by the algorithm, FD denotes the number of false bound regions discovered by the algorithm, r is the adjusted Rand index, the 
number in the parentheses is the standard error, and "EB t-scan" refers to the empirical Bayesian t-scan method proposed by Ji and Wong [6].
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The main difference between the BAC and the Bayesian
latent methods is that BAC models the control and treat-
ment samples jointly, while the Bayesian latent method
models the difference between the averaged treatment
and control samples. Since BAC models the treatment and
control samples jointly, it has to include the probe-spe-
cific effect in the model and assume a complicated struc-
ture for the random error, assuming the variance depends
on both the probe and the type of samples (control or
treatment). By working on the difference between the
averaged treatment and control samples, the Bayesian
latent method eliminates the probe effect in the model
and the dependence of the random error on the probe and
the type of samples. This simplifies the model greatly and
enables an efficient MCMC simulation from the the pos-
terior distribution. In addition, due to the complicated
structure of the model, BAC includes too many parame-
ters, and this makes the model potentially overfitted,
especially when the number of replicates is small. This
explains why BAC always tends to identify too more
bound regions than does the Bayesian latent model. On
the other hand, the simplicity of the Bayesian latent
model makes it rather robust to outlying probes. As indi-
cated by our examples, it work well for all examples stud-
ied in this paper.

Conclusion
We have proposed a Bayesian latent model for the ChIP-
chip experiments. The new model mainly differs from the
existing Bayesian models, such as the joint deconvolution
model, the hierarchical gamma mixture model, and the
Bayesian hierarchical model, in two respects. Firstly, it
works on the difference between the averaged treatment
and control samples. This enables the use of a simple
model for the data, which avoids the probe-specific effect
and the sample (control/treatment) effect. As a conse-
quence, this enables an efficient MCMC simulation of the
posterior distribution, and also makes the model fairly
robust to the outliers. Secondly, it models the neighboring
dependence of probes by introducing a latent indicator
vector. A truncated Poisson prior distribution is assumed
for the latent indicator variable, with the rationale being
justified at length.

The Bayesian latent model has been successfully applied
to the ER, p53, and some simulated datasets, with com-
parisons with BAC, tileHMM, and some sliding window
methods. The numerical results indicate that the Bayesian
latent model can outperform others, especially when the
dataset contains outlying probes.

Availability and requirements
An R software package called LatentChIP, which imple-
ments the Bayesian latent model under linux operating
system, is available at the author's web-page [35].
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Appendix
The scheme for simulating samples from the posterior dis-
tribution:

(a) Conditioned on z(t), updating 

 using the Metropolis-Hastings (MH) algorithm,
where t indexes the number of iteration cycles.

(b) Conditioned on 

, updating each component of z(t) according to the fol-
lowing rule: Given 

: change 

 to 

 using the MH algorithm.

When a component of z is updated in step (b), the sum of
square terms in the posterior density function can be cal-
culated in a recursive manner, i.e., only the terms related
to zi need to be re-calculated.

Additional material

Additional file 1
Convergence study of Bayesian latent model. This file provides a con-
vergence study of Bayesian latent model for the ER dataset.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-352-S1.PDF]
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