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Abstract

Background: Analysis of within-patient HIV evolution under anti-HIV therapy is crucial to a
better understanding the possible mechanisms of HIV drug-resistance acquisition. The high
evolutionary rate of HIV allows us to trace its evolutionary process in real time by analyzing virus
samples serially collected from the same patient. However, such studies are still uncommon due to
the lack of powerful computational methods designed for serial virus samples. In this study, we
develop a computational method, vSPA (viral Sequential Pathway Analysis), which groups viral
sequences from the same sampling time into clusters and traces the evolution between clusters
over sampling times. The method makes use of information of different sampling times and traces
the evolution of important amino acid mutations. Second, a permutation test at the codon level is
conducted to determine the threshold of the correlation coefficient for clustering viral
quasispecies. We applied vSPA to four large data sets of HIV-| protease and reverse transcriptase
genes serially collected from two AIDS patients undergoing anti-HIV therapy over several years.

Results: The results show that vSPA can trace within-patient HIV evolution by detecting many
amino acid changes, including important drug-resistant mutations, and by classifying different viral
quasispecies coexisting during different periods of the therapy.

Conclusion: Given that many new anti-HIV drugs will be available in the near future, vSPA may
be useful for quickly providing information on the acquisition of HIV drug-resistant mutations by
monitoring the within-patient HIV evolution under anti-HIV therapy as a computational approach.

Background development. However, the fast rate can also be utilized
HIV is one of the fastest evolving viruses ever known. Its ~ in evolutionary analysis, enabling us to trace the
high evolutionary rate is the main reason for rapid evolutionary process of HIV in real time by analyzing
acquisition of drug resistance and the difficulty of vaccine  virus samples serially collected from infected individuals.
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Many previous studies have examined HIV population
dynamics, and revealed many unique and important
features of viral evolution within an infected individual
[1-6]. Numerous viral variants coexist in the same host
which arises from the rapid genomic evolution powered
by the high mutation rate during viral replication. Some
of these studies described the viral population by using
the concept of “quasispecies”, a dynamic distribution of
non-identical but closely related mutants, which acts as a
unit of selection [7-12]. Therefore, in viral evolution, the
target of selection is not the individual mutant sequence.
When the patient is under Highly Active Antiretroviral
Therapy (HAART), which has been executed on AIDS
patients since the early 1990s, the greater selective
pressure on the viral population is probably the anti-
HIV drugs. The multiple viral groups with different drug-
resistant mutations coexisting within a single patient will
have different potentials to respond to the internal and
external selective pressures. Moreover, whenever the
HAART regime is changed, new mutations on the
targeted genes emerge rapidly at sites related to drug
resistance, enabling the virus to escape from drug attacks,
while most sites of the viral gene remain almost entirely
unchanged over a relatively short period. Understanding
this complex process is crucial for elucidating the
possible mechanisms of the anti-HIV drug resistance
acquisition, which has become a major challenge in anti-
HIV therapy.

In contrast to the rapid accumulation of viral data, few
powerful methods for inferring the within-patient viral
evolution are available. One reason appears to be the
difficulty to deal with serial virus samples [13,14].
Traditional phylogenetic methods such as neighbor-
joining (NJ) [15] and maximum likelihood (ML) [16]
are designed for contemporaneous molecular data and
do not take into account sampling times. Drummond
and Rodrigo [17] proposed the sUPGMA method, which
extends conventional UPGMA to serially sampled data.
Like other methods for serial data [18,19], sSUPGMA
considers all viral variants as the end points of evolution
and ignores the fact that in serial samples, viral variants
survive or leave descendents to the next time point. The
same problem exists in the Bayesian method of
Drummond et al. [20]. A further difficulty is that the
viral sequences from the same patient are extremely
similar and thus uninformative about their phylogenetic
relationships, so that phylogeny-based methods suffer
from uncertainties in the reconstructed phylogenies.
Recently, Buendia and Narasimhan [14] developed the
Sliding MinPD method, which reconstructs the evolu-
tionary networks of serial viral sequences by combining
minimum pairwise distances with automated recombi-
nation detection based on a sliding window approach.
This method overcomes some of the limitations of
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traditional phylogenetic tree reconstruction and is able
to detect recombination events, which may occur
frequently during HIV replication. The method is not
widely used and its performance is not well-understood.
Furthermore, Beerenwinkel and Drton [21] developed a
mutagenetic tree model to describe the order of
occurrences of amino acid changes that are associated
with resistance to a particular drug. The method assumes
that we know which amino acid mutations are important
to drug resistance.

We propose a new method, vSPA (viral Sequential
Pathway Analysis), for analyzing within-patient HIV
evolution. We calculate the genetic distances between
virus samples, and use Pearson correlation coefficient to
classify viral variants at the same sampling time into
different clusters. We further identify the evolutionary
pathways between viral clusters across the sampling
times. A permutation test at the codon level is used to
determine the threshold correlation coefficient for the
clustering. We applied the vSPA method to four large
data sets of HIV-1 protease (PR) and reverse transcriptase
(RT) genes serially collected from two Japanese AIDS
patients, and compared the results with those from
traditional tree-building methods and Sliding MinPD.

Results

Viral clusters and evolutionary pathways inferred by vSPA
The vSPA method was applied to four large data sets of
PR and RT genes serially collected from Patients 1 and 2.
Below, we refer to these data sets as P1PR, P1RT, P2PR
and P2RT, respectively.

Mutually exclusive mutations observed in PIPR

The results of the permutation test for P1PR are shown in
Additional file 1 and the distributions of correlation
coefficients for the randomly generated data differed
considerately from those for real HIV-1 data.

The clusters and their evolutionary dynamics inference
for the 273 P1PR sequences are shown in Figure 1a. Viral
diversity fluctuated over the observation period. At time
points A and B, many clusters existed, but very few
clusters were constructed for time points C-I. Only one
cluster was estimated for time points G and 1. However,
the virus diversified again from time point H. The
diversity changes corresponded to the change in the
protease inhibitors (PIs) administered to Patient 1 (see
Figure 2).

From the amino acid mutations that each cluster
possessed (see Additional file 2), it appeared most likely
that two subpopulations existed with different frequen-
cies during different periods. One is a subpopulation
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Figure |

Evolutionary pathways of 273 PR genes (a) and 287 RT genes (b) from Patient | inferred using vSPA.
Sampling time points A, B, ..., O are indicated on the horizontal axis, as well as the drug combination (DC) executed.
The ellipses represent viral clusters inferred by the vSPA method. The clusters are ordered by the number of sequences
they contain and are colored according to their frequencies. For example, at time point A, Al has the most sequences
among the clusters A, A2, ..., A7. Black arrows indicate the inferred evolutionary pathway. Important drug-resistant
mutations are indicated on the pathway and the subpopulations divided according to the drug-resistant mutation are
enclosed with dotted lines.
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Figure 2

Anti-HIV treatment history of Patient |. Viral load
(black square) and CD4+ T-cell counts (grey circle) are
plotted against the days of anti-HIV treatment. A, B, ... O
indicate sampling time points. DC (Drug Combinations)

I, 2, ... 5 represent five periods, respectively, in which
different drug combinations were administered, with the
drugs used indicated below. NNRTIs: non-nucleotide reverse
transcriptase inhibitors; NRTIs: nucleotide reverse
transcriptase inhibitors; Pls: protease inhibitors.

possessing D30N drug-resistant mutation, which we
refer to as P1PR-SP30N, and the other a subpopulation
possessing L90 M drug-resistant mutation, which we
refer to as P1PR-SP90 M. The P1PR-SP30N was observed
from time point D to H and was a main subpopulation
until time point G. However, it declined in frequency at
time point H and disappeared at time point I. The
emergence and extinction of this subpopulation appar-
ently corresponded with the administration of the
Nelfinavir (NFV), to which the D30N is a major drug-
resistance mutation. In contrast, the P1PR-SP90 M
emerged at time point C and existed over all later time
points. It had been a minor subpopulation until time
point G and became major from time point H-that is,
103 days after NFV was switched to Ritonavir (RTV) and
Saquinavir (SQV). The L90 M is a well-known drug-
resistant mutation for multiple PIs. The above result was
consistent with the experimental finding that the D30N
and L90 M drug-resistant mutations were mutually
exclusive [22].

M 184V had the greatest impact on PIRT evolution

The evolutionary dynamics of P1RT is depicted in Figure 1b.
Two subpopulations, P1RT-SP184V and P1RT-SP184 M,
probably existed in the earlier and latter periods,
respectively. The mutation M184V has a strong drug
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resistance to Lamivudine (3TC) and P1RT-SP184V was
the major subpopulation from time points A to I, but
was replaced completely by the subpopulation having
the wild-type 184 M at time point ] about 7 months after
the switch from 3TC to Dinanosine (ddlI). This result
agrees with the experimental observation that M184V
occurs in a small proportion of patients but does not
occur in patients receiving ddI with Zidovudine (ZDV)
or Stavudine (d4T) [23].

Possible convergent evolution in P2PR

The result obtained from analyzing the 240 samples of
P2PR are shown in Figure 3a. The diversity pattern was
different from that of Patient 1. For time point B to E,
only one or two clusters were constructed. As shown in
Figure 4, the PIs had been administered before the
sampling and a multiple drug-resistant mutation, L90 M,
was observed since time point A. This subpopulation,
however, could not survive longer, and another sub-
population emerged after time point C instead. Because
both subpopulations possessed the mutation L90 M, we
called them P2PR-SP90 M1 and P2PR-SP90 M2. By
comparing clusters B1 with C1 and D1 at the codon level
(Table 1), we observed more common codons in clusters
C1 and D1, thus it is most likely that the 90 M mutation
occurred by convergent evolution in two subpopula-
tions. However, a common codon (TGC) was observed
at site 95 in clusters B1 and D1 but not in cluster C1
(TGT), raising a possibility that cluster D1 might be
recombinant between clusters B1 and C1 as well.

Co-evolution observed in P2RT

The results for 207 samples of P2RT are shown in
Figure 3b. We focused on two evolutionary events, T69
insertion and M184VI mutation. They are two major
drug-resistant mutations to d4T and ddl and to 3TC,
respectively. We further classified the viral clusters into 5
subpopulations for the period of high diversity from
time point E: SP69ins-184 M1, SP69ins-184 M2, SP69ins
+184 M1, SP69ins+184 M2 and SP69ins-1841. Note that
ins- means absence of the T69 insertion and ins+
presence.

The T69 insertion was observed at time point A. The
presence of this insertion is probably related to its
resistance to several nucleoside RT inhibitors (NRTIs)
that had been administered to Patient 2 before the
sampling started. The M184VI mutation occurred
between time points B and E. The five subpopulations
were mainly observed from time point F, before which
no sample was taken for more than three years. Briefly,
the two subpopulations with T69 insertion and back
mutation at site 184 (SP69+184 M1 and SP69+184 M2)
were observed, but they were not dominant except at
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Figure 3

Evolutionary pathways of 240 PR genes (a) and 207 RT genes (b) from Patient 2 inferred using vSPA. Sampling
time points A, B, ..., K are indicated on the horizontal axis. See the legend to Figure | for details. Note that ins- means absence
of the T69 insertion and ins+ presence.
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Anti-HIV treatment history of Patient 2. Viral load
(black square) and CD4+ T-cell counts (grey circle) are
plotted against the days of anti-HIV treatment. A, B, ... K
indicate sampling time points. DC (Drug Combinations)
I, 2, ... 8 represent eight periods, respectively, in which
different drug combinations were administered, with the
drugs used indicated below. NNRTIs: non-nucleotide
reverse transcriptase inhibitors; NRTIs: nucleotide
reverse transcriptase inhibitors; Pls: protease inhibitors.

Table I: Different amino acids and codons in clusters Bl, Cl and
DI of PIPR

Position Cluster
Bl Cl DI

10 L(CTC) I(ATC) 1 (ATC)
32 V(GTA) V(GTG) V (GTG)
35 E(GAA) D (GAC) D (GAC)
37 D(GAT) D (GAT) E (GAA)
54 I(ATC) T (ACC) T (ACC)
55 R(AGA) K (AAA) K (AAA)
62 I(ATA) 1 (ATA) V (GTA)
71 A(GCT) V (GTT) V (GTG)
90 M(ATG) L(TTG) M (ATG)
95 C(TGC) C (TGT) C (TGC)

Identical codons in any two clusters are shown in bold. Identical amino

acids at different codon levels are shown in bold italics.

time point E. The SP69ins-1841 had been dominant for
only a short period as well. In contrast, the SP69ins-184
M1, which lost T69 insertion and acquired back
mutation at site 184 in the same period, diversified
and had been a major subpopulation for a long period.
This observation raises a possibility that there might be
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interaction between the lost T69 insertion and the back
mutation at site 184.

The SP69ins-184 M2 subpopulation included only one
sequence k5 and had neither T69 insertion nor M184V
mutation, but it was linked with a very early cluster B1.
We investigated the difference between the clusters of
time point K and found that only sequence k5 possessed
the M230L mutation, a drug-resistant mutation to
Enfuvirtide (EFV). Also, another mutation, K103R, was
observed in the k5 alone. It is likely that sequence k5 was
a memory variant having resistant mutations to EFV,
given that this drug had not been administered for more
than one year.

All mutations existing at the first time point and newly
acquired on the pathways can be found in Additional
file 2.

Comparison with phylogenetic reconstruction methods
and MinPD

We applied two representative methods, Neighbor-join-
ing (NJ) [15] and maximum likelihood (ML) [16], to the
same data sets to reconstruct phylogenetic trees, using
MEGA4 [24] and PHYML [25], respectively. The K80 + G
model [26,27] was used as for vSPA. Bootstrap analysis
with 1000 replicates was performed on the reconstructed
phylogenetic trees.

The NJ and ML methods produced very similar trees (see
Additional file 3). First, the bootstrap values were very
low at almost all internal nodes on all trees. Second, as
the sampling times were not taken into account in either
NJ or ML, the inferred trees showed unreasonable
structures for evolutionary relationships, with virus
samples obtained at later time points to be descendents
of variants obtained earlier.

The same data sets were also analyzed using the Sliding
MinPD method [14]. Considering the different lengths
of the two genes, we set the window size to be 100 bp for
PR and 200 bp for RT. The default offset (20 bp) was
used in all analyses. The results for the P1PR dataset are
shown in Additional file 4, while those for the three
other datasets are not shown because of their large file
sizes. Many recombination events were inferred by
Sliding MinPD for the P1PR, P1RT, and P2RT datasets,
making it very difficult to find evolutionary pathways
from these networks.

Discussion

In this study, we developed a new method for analyzing
serial virus samples and applied it to the large data sets
of PR and RT genes of HIV-1 obtained from two AIDS
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patients undergoing HAART. Here we discuss some
strengths and weaknesses of the vSPA method, in
comparison with conventional tree-reconstruction meth-
ods and the Sliding MinPD method.

Traditional tree-building methods were found to be
unsuitable for the analysis of serial virus samples. Not
only did they confuse ancestor-descendant relationships
due to their failure to account for sampling times but the
reconstructed tree topologies also had poor accuracy due
to the high similarities of viral sequences. Similarly, the
networks constructed by the Sliding MinPD method
might not be useful to reveal evolutionary relationships
among viral variants, as the method appeared to detect
too many recombination events.

In contrast, the vSPA method has several advantages for
analyzing serial virus samples with high similarity. First,
the ancestor-descendent relationships among viral
sequences are accommodated by the method, as differ-
ent sampling times are taken into account. Our method
also accounts for latent viral variants as we searched for
ancestors over all previous time points during pathway
construction. vSPA infers viral ancestral relationships at
the cluster level and appeared to be more useful for
interpreting the evolutionary relationships among viral
sequences than methods that attempt to infer relation-
ships at the individual sequence level. Second, viral
variants inferred to be in the same cluster not only have
high sequence similarities but also share important
evolutionary features such as drug-resistant mutations.
Our results suggest that multiple viral groups with
different mutations usually coexist within the same
patient during different periods and their frequencies
fluctuate in response to changes in drug combinations.
While fluctuation of viral mutations in within-host
evolution is noted before [5,28-30], the vSPA method
analyzes this process quantitatively.

Third, vSPA traces the acquisition, frequency change, and
loss of important drug-resistant mutations over time (see
Additional file 2), and classifies the viral subpopulations
according to these amino acid changes. In this regard, it
has advantages over other cluster methods. For example,
PAQ (Partition Analysis of Quasispecies), developed by
Baccam et al. (2001), clusters viral variants based on
their genetic diversity, but requires the user to specify a
radius value for clustering. For the data analyzed in this
paper, the genetic similarities are so high that it is
difficult to select a sensible radius value. In contrast,
vSPA uses a permutation test to determine the threshold
correlation coefficient automatically. Our permutation
test is conducted at the codon level to test interactions
among different codons of the HIV genome - such
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interactions may be important for the PR and RT genes,
which are the targets of the main anti-HIV drugs at
present.

A number of amino acid changes were inferred in both
genes for both patients, although only a few examples
were discussed due to limited space. We note that many
of the amino acid changes identified by vSPA were
already known to be responsible for resistance to anti-
HIV drugs. Our analysis also identified some previously
unknown amino acid changes, which may provide
interesting hypothesis for experimental verification.

The vSPA method has weaknesses as well. It does not
automatically detect recombination although it is
possible to infer recombination events by confirming
those common amino acid changes in some clusters (see
Table 1). One strategy may be to use standard
recombination-detection methods (e.g., RIP etc.) to
detect recombination on the viral clusters inferred by
vSPA. A problem with almost all recombination detec-
tion methods is that they ignore natural selection and are
known to generate excessive false positives when the
gene is under strong selection. The PR and RT genes
analyzed in this study are collected from the AIDS
patients under anti-HIV therapy and they are main
targets of anti-HIV drugs. No doubt they are under strong
positive selection which drives drug-resistant mutations
to fixation. As a result, we lack reliable estimates of
recombination rates for those data. Analytical methods
that deal with recombination and selection simulta-
neously are still in their infancy [31]. We believe that
recombination should have less impact on our method,
which is based on pairwise distance calculation, than on
phylogeny-based methods. Nevertheless, the effect of
recombination on vSPA remains unknown and merits
further research.

Conclusion

Since many new anti-HIV drugs will be available in the
near future and more complex drug-resistant mutations
will emerge, vSPA may be useful for analyzing viral
responses to those drugs and for providing valuable
information to experimental researchers quickly. We
hope that our study will motivate the development of
computational methods suitable for viral quasispecies
that take into account major features of the data, such as
different sampling times, and dramatic changes in
selective pressure due to changing drug combinations.

Methods

Subjects and viral sequences

Two subjects (Patients 1 and 2) were selected for this
study. Patient 1 is a 46-year-old male with hemophilia.
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His treatment history and clinical course were monitored
by National Institute of Infectious Diseases (NIID) in
Tokyo from 1996 to 2001 (Figure 2). Patient 2 is a 26-
year-old male and was infected with HIV-1 by blood
products. He has been administered anti-HIV drugs since
1994 and his treatment history and clinical course were
monitored by NIID from 2004 (Figure 4).

All viral data analyzed in this study were sampled and
sequenced at the AIDS Research Center of NIID. The
details of the cloning and sequencing can be found in
previous papers [32,33]. From Patient 1, 273 samples
of the PR gene (297 bp) and 287 samples of the RT
gene (787 bp) were obtained at 15 time points, with
15-25 samples at each time point. For Patient 2, 240
samples of the PR gene (297 bp) and 207 samples of
the RT gene (787 bp) were obtained from 10 time
points, with 15-25 samples for each time point. The
sequences were aligned using ClustalW, followed by
manual alignment.

vSPA algorithm

Creating viral clusters based on the correlation coefficient

of genetic distances

The clustering procedure in vSPA involves several steps.
The first step is to create viral clusters for time point T,,
n=1,2,.. N, where N is the number of sampling time
point. A pairwise distance matrices D, is calculated
under the K80+G [26] model for sequences of time point
T,, and the previous time point T,,_;.

d11 d12 dllHJrln
d d d

D, = 21 22 21,1+, , (1)
dlnl dlnz duHH”

where [, and [,.; are the number of sequences at time
points T, and T,_;, respectively. Note that, for the first
time point, no earlier variants exist. The K80 + G model
[26] with pairwise deletion was used for the calculation
of genetic distance in this analysis, implemented using
the R package APE. The proportions of the four
nucleotides were inferred from viral samples. Other
substitution models can be chosen in vSPA as well. As
the sequences are very similar, different substitution
models were noted to produce nearly identical distance
estimates.

Second, we normalized D,, and calculated matrix Z, as
follows.
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Z (Zij)’ izl,...,ln, j:1,...,ln, lfn=1
") i=1 Ly =1l L, i > T
2
Here, z;; is the element in the matrix Z, and is given (as)
di'_d_i
2y =00 (3)
oj

Where the mean value ‘71‘ and variance o f for each row
of the matrix D,, are calculated as

1,1+l
_ 1 n-1"'n
R . Z j (4)
1 1,1+, )
2__ - d.—d. ). 5
(o] ln—l+ln_1 2 ( ij 1) ( )

j=1

Third, we used the normalized matrix to calculate the
correlation coefficient matrix R,,.

1

R,=—+
lp—1+ly-1

n ZuZ, (6)

For n = 1, we replaced [, + I, with [,,.

Two variants whose correlation exceeds a threshold (see
below) are grouped into the same cluster. Some variants
could be grouped into more than one cluster because of
the high similarity of the viral sequences; thus, clusters
sharing more than half of their variants were merged to
form a larger cluster (Figure 5). The merging was
repeated until the number of clusters no longer changed.

Conducting permutation test

As the diversity of viral variants depends on the sampling
time point, it may not be appropriate to use the same
correlation coefficient threshold for all time points to
cluster viral variants. We implemented a permutation
test to determine the correlation coefficient to be used
for each time point. Sequences in a viral cluster not only
are highly similar but also possess characteristic drug-
resistant mutations. To present the coding structure and
to accommodate the co-occurring and interesting amino
acid mutations, we conduct the permutation test at the
codon level.

First, the sequences at two adjacent time points, T,, and
T,.1, were used in the permutation, with each codon
rearranged randomly among the viral sequences to
generate the data at the codon in the permutation data
set (Figure 6A). This procedure was repeated to generate
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Figure 5
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Clustering procedure of vSPA. (a) lllustration of the clustering procedure in vSPA. The big circles indicate the clusters
classified using the cutoff value of the correlation coefficient, whereas the small solid circles represent individual variants,
distinguished by lower-case letters. (b) The big square represents the cluster formed by merging clusters that share more than

50% of viral variants.
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100 permutation data sets. Second, for each permutation
data set we calculated the correlation coefficient matrix,
and find the 100(1 - )% value when the correlation
coefficients in the matrix are ranked, with o. = 0.1 used in
this study (Figure 6B &6C). Finally, we took the average
of 100(1 - a)% values among the 100 permutation data
sets as the threshold correlation coefficient for clustering
T, viral variants. The procedure here not only resamples
the viral sequences, but also disturbs the evolutionary
interactions among codons.

Identifying ancestral viruses

In vSPA, the ancestor-descendant relationships were
inferred at the cluster level and all variants grouped
into the same cluster were assumed to have a common
ancestor (cluster) in one of the previous time points.
Since the ancestor of viral variants at time point T,, may
not be sampled at time point T,.;, we traced the
evolutionary pathways to all time points before T, to
find the ancestor for each cluster of time point T,. We
took the average of the genetic distances between each T,
cluster and each T,., (m = 1, 2, 3) cluster over all the
viral variants, and then chose the T,,_,, cluster with the
minimum average distance as the ancestor of the T,
cluster. When only a few sequences are included in a
cluster, the calculated average distance may involve large
sampling errors. However, this procedure of linking
clusters of sequences appears to be more adequate for
clustering highly similar sequences than linking
sequences of shortest distances between clusters, as we
do not know which single viral clone can be used as the
representative of a cluster. By repeating this procedure,
the ancestral cluster of each T, cluster was identified.
Then, we connected the ancestral clusters over the entire
observation period to construct the evolutionary path-
way. The graph-drawing tool Graphviz (version 10) was
used to visualize the pathways and to output the results
of vSPA automatically.

Awvailability of data and programs

Four datasets analyzed in this study and the programs
developed to carry out the vSPA algorithm are included
in Additional file 5. The vSPA package is available at
http://bioinfo.tmd.ac.jp/vSPA/.
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15 figures which show the results of permutation test for each
sampling time point of P1PR.
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Acquired mutations inferred from PR and RT genes of Patients 1
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vSPA from P1PR, P1RT, P2PR and P2RT are listed.

Click here for file
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Additional file 3

Reconstructed phylogenetic trees by using the NJ and ML methods.
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and P2RT are shown in this file.
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The evolutionary network constructed using Sliding MinPD
method. This file shows the evolutionary network constructed from

the 273 PR genes of Patient 1 by Sliding MinPD.
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