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Abstract
Background: Biological sequences play a major role in molecular and computational biology. They
are studied as information-bearing entities that make up DNA, RNA or proteins. The Sequence
Ontology, which is part of the OBO Foundry, contains descriptions and definitions of sequences
and their properties. Yet the most basic question about sequences remains unanswered: what kind
of entity is a biological sequence? An answer to this question benefits formal ontologies that use
the notion of biological sequences and analyses in computational biology alike.

Results: We provide both an ontological analysis of biological sequences and a formal
representation that can be used in knowledge-based applications and other ontologies. We
distinguish three distinct kinds of entities that can be referred to as "biological sequence": chains of
molecules, syntactic representations such as those in biological databases, and the abstract
information-bearing entities. For use in knowledge-based applications and inclusion in biomedical
ontologies, we implemented the developed axiom system for use in automated theorem proving.

Conclusion: Axioms are necessary to achieve the main goal of ontologies: to formally specify the
meaning of terms used within a domain. The axiom system for the ontology of biological sequences
is the first elaborate axiom system for an OBO Foundry ontology and can serve as starting point
for the development of more formal ontologies and ultimately of knowledge-based applications.

Background
Biological sequences play a major role in genetics and bio-
informatics research. They are important in the descrip-
tion of DNA, RNA and proteins, and are among the basic
entities studied in molecular and computational biology.
In the realm of biological ontologies, the Sequence Ontol-
ogy (SO) [1] was developed to describe sequences and
their features semantically. Although many formal defini-
tions are available for the SO categories, several categories
remain defined using natural language.

Formal ontologies are intended to formally specify a con-
ceptualization of a domain [2], and therefore provide the
foundation for data and information integration and
exchange. Definitions alone are insufficient to achieve this
goal. Axioms are required to provide meaning for primi-
tive, undefined categories and relations. To provide an
ontological analysis of "biological sequence" and to for-
malize the basic categories used in the SO, several onto-
logical questions about sequences must be answered,
among them: what kind of entity is a biological sequence?
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How does it relate to space and time? What are the entities
that necessarily have to exist for a sequence to exist? What
are the properties of biological sequences? What relations
are applicable to sequences? How do sequences relate to
other kinds of entities, in particular to molecules, organ-
isms or processes (of selection and mutation)?

Here we provide both an ontological analysis of biological
sequence and an axiom system for the SO's top-level cate-
gories. We use first- and second-order logics for this pur-
pose. The axiom system is intended to serve as a
foundation for the SO, and as a means to achieve interop-
erability between the SO and other domain ontologies
through the provision of an explicit formalization of the
basic categories and relations used in the context of
sequences. For the construction of the axiom system, we
employed the axiomatic method [3]. The axiom system is
freely available for download from our project page [4].

Method
Our investigation of the ontology of sequences is based
on the axiomatic method and on principles of ontological
analysis [3,5,2]. We consider a formal ontology to be a
specification of a conceptualization, i.e., a system of cate-
gories representing a particular view on the world [6,2]. A
formal ontology uses a vocabulary whose terms denote
concepts and relations which refer to things in reality.

One method that is used to specify the meaning of a term
is an explicit definition. An explicit definition for a relation
or category P provides a sentence ϕ in which P does not
occur, such that every occurrence of P can be replaced with
ϕ. For example, to define RedCircle as an entity which is
both red and a circle, we could write the definition:

Because this is a definition, whenever we use RedCircle in
any statement, we can replace it with the right side of the
definition, i.e., red(x)  circle(x). This leaves a statement in
which RedCircle does not occur, but red and circle instead.

When explaining the meanings of a set of terms through
explicit definitions, other terms must be used to define the
terms in the set, and in turn the meaning of these terms
must be specified (without creating a circular definition).
Therefore, specifying the meanings of terms solely
through explicit definitions will either lead to an infinite
regress or leave several terms unspecified. In the latter
case, the meaning of all terms for which a definition is
provided depends on the meaning of the terms without
definition.

We call the terms that are not explicitely defined primitive
terms. The meaning of all terms in the ontology depends

on the meaning of these primitive terms: because non-
primitive terms are introduced through explicit defini-
tions, every sentence involving a non-primitive term can
be replaced with a sentence containing only primitive
terms. For example, the defined category RedCircle can be
replaced by the right side of equation 1 in every statement
in which it occurs. Subsequently, red and circle can be
replaced by their definiens if they are defined. Therefore,
every statement can be transformed in a statement that
consists only of primitive terms.

The problem remains how the meaning of the primitive
terms can be described formally. For this purpose, we con-
struct sentences containing only primitive terms. These
sentences can be understood as descriptions of formal
interrelations between the primitive terms. Some of these
sentences are chosen as axioms: they are accepted as being
true within the domain under consideration. Such axioms
provide restrictions on the interpretation of the primitive
terms, and therefore on the terms defined using these
primitive terms. For a formal theory, and therefore for a
formal ontology, the axioms are the central component,
because only they can give significant meaning to terms
used in the theory. Furthermore, the axioms are chosen in
a way such that further true statements can be deduced
from the axioms.

It is important to note that definitions do not add signifi-
cant meaning to a term as long as the terms in the defini-
tion remain unspecified. Without axioms, only trival
statements hold for the primitive terms, i.e., the logically
valid statements. Formally, non-trivial meaning can only
be established through appropriate axioms for the primi-
tive terms.

Results
The theory of biological symbols and sequences that we
propose here is intended to be compatible with the
Sequence Ontology (SO) [1]. The SO uses two basic cate-
gories in the characterization of sequences, region and
junction. Both can have attributes, i.e., properties, and sub-
categories. For example, a sequence may be a gene or a
base, a junction an insertion site, and a sequence attribute
enzymatic.

Sequences are linear entities and can come in two facets.
Sequences can either have a start and an end point or form
circles. There are sequence atoms which are usually
denoted by single letters. These atoms have no proper
sequence parts.

The use of the term sequence in the SO permits different
interpretations. Here, we introduce an important distinc-
tion that is currently neglected in the SO. The SO contains
as their only basic category a sequence region, and

∀ ⇔ ∧x RedCircle x red x circle x( ( ) ( ) ( )) (1)
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employs an extensional mereological system on it. How-
ever, we will show that it is important to distinguish
between "sequence" as abstract, information-bearing
entity, the physical manifestation as a molecule and the
syntactic representation of a "sequence". To illustrate the
difference between an abstract sequence and its physical
manifestations (tokens), consider all constituents of the
sequences ACAC and CAAC. The first sequence has as
parts - or sequence motifs - the sequences ACAC, ACA,
CAC, AC, CA, A and C. The sequence CAAC has as parts
the sequences CAAC, CAA, AAC, CA, AA, AC, A and C. It
is remarkable that, although both sequences apparently
have the same length, use the same primitive symbols
(only A and C), and each primitive symbol occurs exactly
twice in each sequence, ACAC has seven sequences as part,
while CAAC has eight. This is due to the fact that, in one
sense of "sequence", there is only one AC, which occurs in
ACAC twice. On the other hand, each molecular token of
ACAC and of CAAC will have at least ten parts: two ade-
nine molecules, two cytosine molecules, three molecules
consisting of two nucleotides each, two molecules consist-
ing of three nucleotides each, and the whole molecule
(because part-of is reflexive).

The problem arises because sequence has different mean-
ings which result in different properties. When a sequence
is understood as a pattern, then the parts of a sequence are
patterns too. In this case, in the sequence ACAC or a
longer repeat of AC, there are only two subpatterns of
length two: AC and CA. Both AC and CA are patterns
which are a part of the longer pattern ACAC or a repeat of
AC. When a sequence is understood as a molecule, the
parts of a sequence are molecules (or residues), and any
molecular sequence of a length n will have n - 1 molecular
sequences of length two as part.

Overview, primitive categories and basic definitions
The theory we propose here assumes that Abstract sequence
(ASeq), Syntactic sequence (SSeq), Molecular sequence
(MSeq) and Junction (Jun) are primitive categories. In par-
ticular, they are not defined, but characterized axiomati-
cally according to the axiomatic method.

Instances of the Molecular sequence category are molecules
or residues, the elements in chains of nucleotides or
amino acids that are designated by single letters in their
representation. A single nucleotide or a single amino acid
is an instance of Molecular sequence. A nucleotide residue
which is part of a DNA molecule is an instance of Molecu-
lar sequence, and so is an amino acid residue which is part
of a protein. We consider these entities - single nucleotide
or amino acid residues - as atomic instances of Molecular
sequence; they have no proper parts which are themselves
instances of Molecular sequence. Non-atomic instances of
Molecular sequence are primary structures of polynucle-

otides or proteins, i.e., chains of monomeric subunits.
Molecular sequence does not include chemical molecules
that are not nucleotides, amino acids or chains thereof. In
particular, it is not equivalent to the category of all chem-
ical molecules, but a proper sub-category.

An instance of Abstract sequence is an abstract entity. It is
independent of space and time: either the instances of
Abstract sequence are not located in space and time, or they
are located everywhere and at all times. Intuitively, an
Abstract sequence represents an equivalence class of
sequence tokens or representations. Therefore, an Abstract
sequence A unites that which all A-tokens have in com-
mon. There is only one Abstract sequence instance A.
Abstract sequences can have abstract sequences as parts:
the abstract sequence ACAC has the abstract sequences
ACA, CAC, AC, CA, A and C as proper parts. Both A and C
occur twice in each token of ACAC. There is only one
abstract sequence A and C (which represent the equiva-
lence classes of the two A- and C-tokens in ACAC). There-
fore, the abstract sequence ACAC has the abstract
sequence A and the abstract sequence C as part only once.

We use a third category Syntactic sequence in our axiom sys-
tem. Instances of Syntactic sequence are sequence represen-
tations. They are representations in biological databases,
textual representations in the form of strings or graph-
based representations. They represent the arrangement of
the molecules in the molecular sequences, and stand for
an abstract sequence. Instances of Syntactic sequence are
usually material entities, such as patterns of ink or config-
urations of magnetic fields on electromagnetic storage
media. An instance of Syntactic sequence can be atomic
when it does not have proper parts, such as for the syntac-
tic sequence A.

Atomic instances are delimited by instances of Junction,
i.e., boundaries between two atomic parts of a sequence
representation. Instances of Junction represent chemical
bonds or binding sites on the level of molecular
sequences. The category Junction corresponds to the cate-
gory SO:0000699 (Junction) of the SO, which is "a
boundary between regions".

A schematic overview of the layers of our axiom system
and their interrelations is illustrated in figure 1. Table 1
lists the relations and predicates we use in the axiom sys-
tem.

The central relations in our axiom system are part-whole
relations. We provide axioms for three different kinds of
part-whole relations, one for each level of representation.
The relation mPO (molecular-part-of) relates instances of
Molecular sequence, sPO (syntactic-part-of) relates
instances of Syntactic sequence and aPO (abstract-part-of)
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relates instances of Abstract sequence. Additionally, the rep-
resentation relation (Rep) relates instances of Molecular
sequence to instances of Syntactic sequence. The relation sto
(syntactic-token-of) relates instances of Syntactic sequence
to instances of Abstract sequence, while the relation mto
(molecular-token-of) relates instances of Molecular
sequence to instances of Abstract sequence.

We use several relations that are more technical in nature
to specify molecules and their representations. For this
purpose, we use the binds relation that represents a chem-
ical bond between two molecules, and the relations conn,
in, between and end to describe instances of Syntactic
sequence and how they relate to Junction. The relation conn

holds between two connected junctions in a syntactic
sequence. The relation ≡ is a relation between two syntac-
tic sequences that are tokens of the same abstract
sequence. In our ontological analysis and the resulting
axiom system, we make no commitment to a particular
ontological system. The ontology of sequences presented
here can stand on its own, and axioms are presented for
all relations used in the theory. However, the foundation
in a top-level ontology can benefit the interoperability
between the presented ontology and other domain-spe-
cific ontologies, because the top-level ontology can pro-
vide a common interface for multiple domain ontologies.
Therefore, we discuss options for a foundation in top-
level ontologies after presenting our axiom system.

Different layers of sequencesFigure 1
Different layers of sequences. We illustrate the layers in the ontology of sequences. At the bottom level, sequences can 
refer to chains of molecules. These chains correspond to the primary structures of DNA and RNA molecules as well as pro-
teins. The middle level illustrates sequences as representations of molecules. These can be in different formats such as the 
FASTA file format, plain text, graph-based representations or similar. Sequence representations exhibit a syntactic structure 
that resembles the structures of molecule chains. However, not every instance of Syntactic sequence represents a chain of mol-
ecules; sequence representations can represent no, one or many molecules. The upper level shows abstract sequences, sym-
bolized as equivalence classes of sequence representations.
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Basic axioms
The first part consists of axioms that restrict the arguments
of some of the relations. The remaining relations take
defined categories as arguments and are introduced later.
Additionally, an axiom requiring all sequences to have
only molecules as tokens is introduced.

The following set of axioms requires that Junction, Molecu-
lar sequence, Syntactic sequence and Abstract sequence are
disjoint categories, i.e., not two of these categories have an
instance in common.

Sequence mereology
The relation sPO is a parthood relation that holds for syn-
tactic sequences when one sequence contains the other as
a sequence part. Based on this relation we first define
sPPO (syntactic proper sequence part of) and the category
of primitive biological symbols (PBS) as well as the sover-
lap and sdisjoint relations.

A syntactic sequence x is a proper part of the syntactic
sequence y if x is a syntactic part of y but not identical to

sPO x y SSeq x SSeq y( , ) ( ) ( )→ ∧ (2)

mPO x y MSeq x MSeq y( , ) ( ) ( )→ ∧ (3)

aPO x y ASeq x ASeq y( , ) ( ) ( )→ ∧ (4)

SSeq x y Rep x y MSeq y( ) ( ( , ) ( ))→ ∀ → (5)

SSeq x Jun x ASeq x Mseq x( ) ( ( ) ( ) ( ))→ ¬ ∨ ∨ (6)

ASeq x Jun x SSeq x Mseq x( ) ( ( ) ( ) ( ))→ ¬ ∨ ∨ (7)

Jun x SSeq x ASeq x Mseq x( ) ( ( ) ( ) ( ))→ ¬ ∨ ∨ (8)

Mseq x Jun x ASeq x SSeq x( ) ( ( ) ( ) ( ))→ ¬ ∨ ∨ (9)

Table 1: List of relations and predicates. 

Symbol Long name of predicate Remarks

MSeq(x) molecular sequence
SSeq(x) syntactic sequence
ASeq(x) abstract sequence
Jun(x) junction
PBS(x) primitive biological symbol x is a syntactic sequence (SSeq).
DMSeq(x) directed molecular sequence x is a molecular sequence (MSeq).
DSSeq(x) directed syntactic sequence x is a syntactic sequence (SSeq).
mPO(x, y) molecular part of x and y are molecular sequences (MSeq).
sPO(x, y) syntactic part of x and y are syntactic sequences (SSeq).
aPO(x, y) abstract part of x and y are abstract sequences (ASeq).
mPPO(x, y) molecular proper part of x and y are molecular sequences (MSeq).
sPPO(x, y) syntactic proper part of x and y are syntactic sequences (SSeq).
aPPO(x, y) abstract proper part of x and y are abstract sequences (ASeq).
moverlap(x, y) molecular overlap x and y are molecular sequences (MSeq).
soverlap(x, y) syntactic overlap x and y are syntactic sequences (SSeq).
aoverlap(x, y) abstract overlap x and y are abstract sequences (ASeq).
mdisjoint(x, y) molecular disjointness x and y are molecular sequences (MSeq).
sdisjoint(x, y) syntactic disjointness x and y are syntactic sequences (SSeq).
adisjoint(x, y) abstract disjointness x and y are abstract sequences (ASeq).
sto(x, y) syntactic token of x is a syntactic (SSeq), y an abstract sequence (ASeq).
mto(x, y) molecular token of x is a molecular (MSeq), y an abstract sequence (ASeq).
Rep(x, y) representation x is a syntactic (SSeq), y a molecular sequence (MSeq).
between(j, p1, p2, s) between j is a junction (Jun), p1 and p2 are primitive symbols (PBS) and s is a syntactic sequence 

(SSeq). j is a junction between p1 and p2 in the syntactic sequence s.
end(j, p, s) ends j is a junction (Jun), p a primitive symbol (PBS) and s is a syntactic sequence (SSeq). The 

junction j ends the syntactic sequence s and is adjacent to the primitive symbol p (which is 
the first or last symbol of s).

first(j, p, s) first j is a junction (Jun), p a primitive symbol (PBS) and s a syntactic sequence (SSeq).
last(j, p, s) last j is a junction (Jun), p a primitive symbol (PBS) and s a syntactic sequence (SSeq).
in(j, s) in j is a junction (Jun) and s a syntactic sequence (SSeq).
s1 ≡ s2 equivalence s1 and s2 are directed syntactic sequences (DSSeq).
conn(j1, j2) connection j1 and j2 are junctions (Jun).

The table shows the list of predicates used in the axiom system. Unary predicates represent categories, all other predicates represent relations. In 
this table, we included relations that are used in the implementation but are not further discussed. For example, the relations adisjoint and mdisjoint 
are included in the axiom system and are defined similar to sdisjoint (see formula 13).
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y. A syntactic sequence is primitive (PBS) if it has no
proper parts. Two sequences x and y overlap if they have a
part in common (i.e., if there is a part z of x which is also
a part of y), and they are disjoint if they do not overlap.

The relation sPO satisfies reflexivity, transitivity and
antisymmetry, and therefore forms a partial order.

The relation sPO also satisfies the strong supplementation
principle, leading to an extensional mereology for
sequences [7,8]:

Syntactic sequences consist entirely of atoms (primitive
biological symbols) with respect to the relation sPO. The
following two axioms require that all sequences have
primitive biological symbols as part, and that they are
constituted of only primitive biological symbols:

As a result of these axioms, the relation sPO specifies an
atomic extensional mereology for the instances of Syntac-
tic sequence.

Sequences, junctions and connectivity
The second part of axioms pertaining to sequences relates
the symbols to junctions. Intuitively, junctions are bor-
ders between two adjacent primitive symbols and delim-
iters at the beginning and end of a syntactic sequence.

First, we restrict the arguments for the between, end and
conn relations, and introduce the relation in through an
explicit definition. A junction is in a sequence s if it is
either a junction between two primitive biological sym-

bols within s, or it ends the sequence s and is adjacent to
exactly one primitive biological symbol (eqn. 23). The
relations between and end represent these two cases. The
relation conn asserts that two junctions follow each other
within a sequence.

The relations between and end are introduced for techni-
cal reasons and are not intended for direct use. They are
used to specify a syntactic sequence token as a chain of
primitive biological symbols separated by junctions. An
assertion between(j, p1, p2, s) is read as "j is a junction
between the primitive biological symbols p1 and p2 in the
sequence s". The relation end serves a similar purpose.
Both relations are used to define the relation in, and we
will make use of the in relation in the following axioms.

The following set of axioms pertains to the conn relation
of connectedness between junctions. The relation is used
to represent the order of the sequence through an order of
junctions.

The axioms presented so far are first-order axioms, and
they do not suffice to state that syntactic sequences must
be connected. For this purpose, a second-order axiom is
required. Equation 28 is an axiom in monadic second-
order logic and states that the set of all junctions in a
sequence, P = {x|in(x, s)}, is closed under the relation
conn. In the axiom 28, P is the set of all junctions in some
sequence s (P(x) ↔ in(x, s)). The second part of axiom 28
states that every non-empty subset Q of P (∃aQ(a)
∀x(Q(x) → P(x)) which contains with every junction u
also any junction v that is connected to u (Q(u)  conn(u, v)
→ Q(v)) is a superset of P (P(x) → Q(x)). Because Q is by
construction both a non-empty subset and a superset of P,

sPPO x y sPO x y x y( , ) ( , )↔ ∧ ≠ (10)

PBS x SSeq x y sPPO y x( ) ( ) ( ( , ))↔ ∧ ¬∃ (11)

soverlap x y z sPO z x sPO z y( , ) ( ( , ) ( , ))↔ ∃ ∧ (12)

sdisjoint x y soverlap x y( , ) ( , )↔ ¬ (13)

sPO x y sPO y z sPO x z( , ) ( , ) ( , )∧ → (14)

SSeq x sPO x x( ) ( , )→ (15)

sPO x y sPO y x x y( , ) ( , )∧ → = (16)

¬ → ∃ ∧sPO x y z sPO z x sdisjoint z y( , ) ( ( , ) ( , )) (17)

SSeq x y PBS y sPO y x( ) ( ( ) ( , ))→ ∃ ∧ (18)

SSeq x y sPPO y x u sPPO u x

PBS u sPO u y

( ) ( ( , ) ( ( , )

( ) ( , )))

→ ¬∃ ∧ ∀ ∧
→

(19)

between j p p s Jun j PBS p PBS p SSeq s( , , , ) ( ) ( ) ( ) ( )1 2 1 2→ ∧ ∧ ∧
(20)

end j p s Jun j PBS p SSeq s( , , ) ( ) ( ) ( )→ ∧ ∧ (21)

conn j j Jun j Jun j( , ) ( ) ( )1 2 1 2→ ∧ (22)

in j s p p between j p p s p end j p s( , ) , ( ( , , , )) ( ( , , ))↔ ∃ ∨ ∃1 2 1 2

(23)

conn j j conn j j( , ) ( , )1 2 2 1→ (24)

conn j j j j( , )1 2 1 2→ ≠ (25)

in j s in j s soverlap s s conn j j( , ) ( , ) ( , ) ( , )1 1 2 2 1 2 1 2∧ ∧ ¬ → ¬
(26)

conn j j in j s in j s( , ) ( , ) ( , )1 2 1 2∧ → (27)
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P and Q are equal. Q is closed against the relation conn
and P is the set of junctions which are in a sequence.
Therefore, axiom 28 states that the set of all junctions in a
sequence is closed under the relation conn.

Several more axioms that relate sequence representations
to junctions can be found in the implementation of our
axiom system. Similarily, a set of axioms that pertains to
instances of the Molecular sequence category, including a
mereological system and the relation to sequence repre-
sentations, can be found in the full axiom system which is
available from the project website.

Directed and abstract sequences
In the axioms presented so far, instances of Syntactic
sequence have no directionality. For many applications, it
is useful to make sequence representations directional,
i.e., determine a beginning and end. Such a definition is
trivial for linear sequences. Linear sequences have exactly
two junctions which end the sequence. When these are
distinguished in a first and last junction, i.e., the two end
junctions are distinguished, a directionality is immedi-
ately given, from first to last. For circular sequences, two
arbitrary connected junctions are chosen as first and last.
We use the predicate DSSeq in our axiom system to refer
to directed sequences. Furthermore, we use DMSeq to refer
to directed chains of molecules, which are formally con-
structed similarily to directed sequences.

Abstract sequences are abstracted from the sequence rep-
resentations, and therefore indirectly from the tokens.
Primitive biological symbols represent one abstract
sequence directly. This can be considered as labelling the
sequence representation with single letters representing
individual tokens. Then, abstract sequences correspond to
classes of sequence representations that are labelled with
the same sequence of letters, i.e., whose primitive biolog-
ical symbols each represent the same abstract sequence.

In the current version of the axiom system, we use the
predicates ASeq(x), Rep(x, y) and ≡ (s1, s2). ASeq(x) means
that x is an instance of Abstract sequence, sto(x, y) that the
directed sequence x is a syntactic token of the abstract
sequence y, mto(x, y) that the molecular sequence x is a
molecular token of the abstract sequence y, and ≡ (s1, s2)
that the directed sequences s1 and s2 are equivalent (i.e.,
are tokens of the same abstract sequence).

First, we restrict the arguments of the token-of relations
and the equivalence relation between syntactic sequences.

We will use the infix notation s1 ≡ s2 instead of ≡ (s1, s2).

The following axioms ensure that directed sequences are
syntactic tokens of one and only one abstract sequence.
Therefore, the token-of relations are functional. We use
the counting quantifier ∃(=1, y) to represent that there is
one and only one y satisfying the conditions in the for-
mula.

Abstract sequences are dependent on their tokens: for
every abstract sequences, there is at least one syntactic or
molecular sequences that is the token of the abstract
sequence.

In the current state of the axiom system, we use a complex
axiom to capture the equivalence between two directed
sequences. Intuitively, two sequences are equivalent if and
only if they are either primitive biological symbols that
are tokens of identical abstract sequences or they start with
equivalent primitive biological symbols and their proper
parts that contain everything except these equivalent sym-
bols are equivalent. This is a recursive definition which
takes the form of an axiom in first order logics and is
expressed in formula 35.

Axiom 35 is not an explicit definition, because the rela-
tion ≡ appears on both sides of the formula. Instead, it
represents a recursive definition in which the right side of

∀ ∀ ∀ ↔ ∧ ∀ ∃ ∧ ∀ →
∧ ∀ ∧

s P x P x in x s Q aQ a x Q x

P x u v Q u co

( ( ( ) ( , )) ( ( ) ( ( )

( )) , ( ( ) nnn u v Q v

x P x Q x

( , ) ( ))

( ( ) ( ))))

→ →
∀ →

(28)

sto x y DSSeq x ASeq y( , ) ( ( ) ( ))→ ∧ (29)

mto x y DMSeq x ASeq y( , ) ( ( ) ( ))→ ∧ (30)

≡ → ∧( , ) ( ( ) ( ))s s DSSeq s DSSeq s1 2 1 2 (31)

∀ → ∃ = ∧x DSSeq x y sto x y ASeq y( ( ) ( , )( ( , ) ( )))1

(32)

∀ → ∃ = ∧x DMSeq x y mto x y ASeq y( ( ) ( , )( ( , ) ( )))1

(33)

∀ → ∃ ∧ ∨ ∧x Aseq x y sto y x DSSeq y mto y x DMSeq y( ( ) (( ( , ) ( )) ( ( , ) ( ))))

(34)

s s p p j j first j p s first j p s

PBS s
s1 2 1 1 2 1 1 1 2 2 2≡ ⇔ ∃ ∧ ∧, , , ( ( , , ) ( , , )

(( ( 11 2 1 2

1 2

1 2

) ( ) , ( ( , ) ( , ) ))

(

,

∧ ∨ ∀ ∧ → = ∨
≡ ∧

∃ ′ ′

PBS s x y sto s x sto s y x y

p p

s s ,, , ([ ( , ) ( , )

( ( , ) ( ,

i i sPPO s s sPPO s s

j in j s j j in j
1 2 1 1 2 2

1 1

′ ∧ ′ ∧
∀ ∧ ≠ → ′ss

j in j s j j in j s

conn j i conn j i

1

2 2 2

1 1 2 2

))

( ( , ) ( , ))

( , ) ( , )]

∧
∀ ∧ ≠ → ′ ∧

∧ ∧∧ ′ ≡ ′s s1 2))))

(35)
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axiom 35 contains only proper parts of the sequences that
appear on the left side.

Axiom 35 can be read as follows: Two syntactic sequences
s1 and s2 are equivalent (s1 ≡ s2) if and only if they start with
the primitive symbols p1 and p2 (first(j1, p1, s1)  first(j2, p2,
s2)) and both s1 and s2 are primitive and tokens of the
same abstract sequence (PBS(s1)  PBS(s2)  ∀x, y(sto(s1, x)
and sto(s2, y) → x = y)) or they start with equivalent prim-
itive symbols (p1 ≡ p2) and those proper parts of s1 and s2
which contain everything of s1 and s2 except for the sym-
bols p1 and p2 are equivalent.

With this axiom and based on sto, we can also character-
ize equivalence between directed sequences as a relation
that holds if and only if the syntactic sequences are tokens
of the same abstract sequence:

Based on the representation relation sto and its axioms,
we can define the relation aPO, which is a part-of relation
for abstract sequences. An abstract sequence x is the
abstract part of the abstract sequence y, if and only if there
is a token a of the abstract sequence y, and a has a part (via
sPO or mPO) that is the token of the abstract sequence x.

As a corollary from this definition and the axioms pertain-
ing to the sto relation and the equivalence of sequences,
the aPO relation for abstract sequences groups tokens
based on equivalence classes. In particular, our motivat-
ing example of the parts of the sequences ACAC and
CAAC can be solved with the notion of abstract sequences
and the aPO relation.

Ontological foundation
A question that is not answered with these axioms is how
sequences and junctions relate to categories commonly
found in a top-level ontology. We believe these axioms to
be compatible with most major top-level ontologies, in
particular the Basic Formal Ontology (BFO) [9], the
Descriptive Ontology for Linguistic and Cognitive Engi-
neering (DOLCE) [10] and the General Formal Ontology
(GFO) [11]. However, the foundation in these ontologies
varies substantially.

In the BFO, molecular sequences should be considered as
a subcategory of Material entity. Since syntactic sequences
are also material entities, i.e., ink on paper, they can be
represented as material entities as well. Junctions are spe-
cifically dependent continuants which depend on the syn-
tactic sequences. A category C is specifically dependent on

a category D if for every instance c of C, an instance d of D
must exist, and d remains the same continuant through-
out the life of c. Abstract sequences should be considered
subcategories of Generically dependent continuant. A cate-
gory A is generically dependent on the category B if and
only if for every instance of A, some instance of B must
exist. In the framework of the BFO, abstract sequences are
generically dependent on either molecular or syntactic
sequences. Because abstract sequences are generically
dependent continuants, the dependency relations must be
carefully examined for each sequence: many syntactic
sequences considered in biology represent no molecular
sequences, partially due to limitations in sequencing tech-
nology.

In the DOLCE, the category Abstract is a sub-category of
Particular. The main characteristic of abstract entities is
that they do not have spatial nor temporal qualities, and
they are not qualities themselves.

Abstract sequences have this property, and can be embed-
ded in DOLCE with the following axiom:

Both syntactic and molecular sequences are sub-categories
of Endurant in DOLCE, while junctions are qualities of
syntactic sequences. The main difference between the
foundation of our ontology of sequences in DOLCE and
BFO is that, in DOLCE, abstract sequences are entities in
their own right, independent of our creation of represen-
tations and independent of molecular manifestations of
these sequences, while they are existentially dependent on
their tokens in the BFO.

Integration of our theory in the GFO can be similar to the
scenario described in the DOLCE, considering abstract
sequences as a sub-category of GFO's Abstract individual
category. However, the GFO also provides the category
Symbol structure, of which abstract sequences can be a sub-
category. Symbol structures are higher-order categories in
the GFO. Higher-order categories are ontological catego-
ries that have categories as instances. In this case, the rela-
tions sto and mto are sub-relation of GFO's token-of
relation, which is a sub-relation of the instantiation rela-
tion. The relation sto would relate one kind of tokens of
abstract sequences, while the relation mto relates the
other kind of tokens to abstract sequences. In the GFO,
abstract sequences are entities in their own right, either
abstract individuals or sub-categories of Symbol structure.

Example: the sequences ACAC and CAAC
As motivating example for our investigation, we have used
the sequences ACAC and CAAC and claimed that there are
at least two views on these: one in which they each have

s s a ASeq a sto s a sto s a1 2 1 2≡ ⇔ ∃ ∧ ∧( ( ) ( , ) ( , ))

(36)

aPO x y a b sto a y sPO b a sto b x mto a y mPO b( , ) , (( ( , ) ( , ) ( , )) ( ( , ) (⇔ ∃ ∧ ∧ ∨ ∧ ,, ) ( , )))a mto b x∧

(37)

ASeq x x( ) ( )→ dolce:abstract (38)
Page 8 of 11
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:377 http://www.biomedcentral.com/1471-2105/10/377
ten parts, and one where they have different numbers of
parts. We can now make this observation precise by distin-
guishing between the tokens of these sequences and the
abstract sequences.

Both molecular sequences (DNA and RNA molecules as
well as proteins) and syntactic sequences (strings like
"ACAC" and representations in biological databases) have
the same number of parts which directly depends on the
length of the sequence (i.e., the number of sequence
atoms). A molecule or sequence of length 4 will always
have 10 parts: itself as a reflexive part, 2 parts of length 3,
3 parts of length 2 and 4 parts of length 1. Abstract
sequences, however, are based on equivalence classes
(with respect to the relation ≡) of sequence tokens. If mul-
tiple parts of a sequence representation represent the same
abstract sequence, they are only counted once. Therefore,
ACAC has the abstract sequences represented by ACAC,
ACA, CAC, AC, CA, A and C as part, while CAAC has the
abstract sequences represented by CAAC, CAA, AAC, CA,
AA, AC, A and C as part.

Implementation and evaluation
We implemented the axiom system using the SPASS first-
order theorem prover [12]. The implementation can be
found on our project webpage [4]. Due to the restriction
of SPASS to first-order logic, we could not implement the
axiom 28 requiring connectedness of sequences as well as
the condition that ≡ is the minimal relation satisfying
axiom 35. These axioms necessitate the use of second-
order logics and their implementation would require a
theorem prover for higher-order logics.

We employed the SPASS theorem prover on our axioms
and attempted to prove the proposition ϕ  ¬ϕ. If this log-
ical contradiction can be derived from the axioms we pro-
vide, our axioms would be inconsistent.

On the other hand, if our axioms are consistent, we expect
SPASS to never terminate, because, in the general case, an
automated consistency proof for first-order theories is
impossible [13].

The SPASS theorem prover could not find a proof for the
contradictory statement ϕ  ¬ϕ in three weeks time on an
Intel® Xeon® with 2.5 GHz and 32 GB of memory. How-
ever, this is merely an indication for consistency. A formal
proof of the consistency, e.g., through the construction of
a model, is subject to future work.

Additionally, mere consistency is no indicator for the
applicability of the axiom system, or how well it describes
the underlying biological reality. In particular, the theory
could be consistent yet permit unwanted inferences. We
tested the axioms with some basic inferences, i.e. the exist-

ence of a sequence, a token, a junction, two non-identical
sequences, etc., without detecting an inconsistency.

Discussion
Three levels of distinction
A corollary from this ontology of sequences is the neces-
sity to distinguish between the abstract sequences and
their tokens. Abstract sequences are abstract entities, inde-
pendent from space and time, and they can have tokens,
i.e., physical manifestations that exhibit the structure
specified by the sequences. Abstract sequences are similar
to universals or ontological categories. Tokens are physi-
cal entities that are located in space and time.

The major difference between abstract sequences and their
tokens are their identity conditions and the resulting mer-
eology. While there is only one abstact sequence "A",
there can be many tokens of that sequence. The tokens can
be distinguished in two kinds: syntactic sequences and
molecular sequences. The latter are molecules that exhibit
the sequential structure determined by the abstract
sequence, while the first are syntactic representations of
sequences of molecules. The tokens are material objects
that are identified, among others, by their position in
space and time. Therefore, while the abstract sequence
"AA" has only the abstract sequence "A" as proper part,
there will always be two tokens of "A" as part of a token of
the abstract sequence "AA". As a result, the number of
parts of abstract sequences is, in general, not the same as
the number of parts of the sequences' tokens.

Applications of the axiom system
The consequences that can be drawn from the axioms
leads to important applications in the development and
design of biomedical ontologies. An important conse-
quence is the need for multiple part-of relations. Depend-
ing on the domain of application, part-of has different
properties: different axioms hold in different domains.

In our investigation, the largest difference holds between
the tokens (molecular or syntactic sequences) and the
abstract sequences. While we employed an atomar exten-
sional mereology for the tokens, the aPO relation
between abstract sequences does satisfy atomicity, but
neither the strong nor the weak supplementation princi-
ples. The weak supplementation principle is a conse-
quence of the strong supplementation principle (see 17)
and states that, if x is a proper part of y, then there must be
some part of y which is disjoint from x. For abstract
sequences, this would be:

However, this axiom does not hold for abstract sequences.
This is due to the fact that the aPO relation is based on

aPPO x y z aPO z y adisjoint z x( , ) ( ( , ) ( , ))→ ∃ ∧ (39)
Page 9 of 11
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:377 http://www.biomedcentral.com/1471-2105/10/377
equivalence classes (via ≡) of tokens. For example, the
abstract sequence represented by A is a proper part (aPO)
of the abstract sequence represented by AA, yet there is no
part of AA that is disjoint from A.

Although our axioms are specific for biological sequences,
a parallel can be drawn to other kinds of information
objects, such as those covered by the information artifact
ontology [14]. The part-of relation for information enti-
ties, or, more generally, generically dependent continu-
ants (see section) is fundamentally different from the
part-of relation between material objects.

This observation shows that axiom systems such as the
one we provide for biological sequences help to facilitate
interoperability between ontologies. They permit the
detection of inconsistencies and help to distinguish
between different categories and relations based on the
properties these categories and relations have.

Representing hypothetical and faulty sequences
Any ontology of sequences must permit the representa-
tion of hypothetical sequences, i.e., sequences that are not
the sequences of a molecule. These sequences play a major
role in molecular biology. Syntactic sequences that are
obtained using current sequencing technologies will often
contain errors (i.e., do not exactly correspond to the
molecular sequence). Therefore, any sequence of suffi-
cient length that is obtained through these sequencing
techniques, such as the sequence of the human chromo-
some 20, will contain errors and there may not be any
molecule that exhibits the structure specified by the
sequence. Furthermore, randomized sequences are gener-
ated and used in bioinformatics analyses and the mode-
ling of evolutionary processes. Whenever these sequences
have sufficient length, they will likely represent no mole-
cule.

In an ontology of sequences, it is therefore important to
represent syntactic sequences independently from mole-
cules. Syntactic sequences convey information about mol-
ecules only if there are molecules with the given structure.
For an understanding of biological sequences and model-
ling of the information they convey, all three levels are
necessary.

However, some ontologies explicitly exclude abstract enti-
ties. One possibility in these ontologies is to model
abstract sequences as dependent entities, which depend
on certain physical objects. In this case, care must be taken
to select the physical entities on which sequences depend;
a hypothetical or faulty sequence which has no molecules
as tokens cannot be existentially dependent on molecules
with the structure specified by the sequence. The sequence

specifies the structure of a molecule only if the sequence
has molecular tokens.

Use of first and higher order logic
The axiom system that we developed for sequences is
based on second order logic. Satisfiability of a formula is
not decidable in second order logic. On the other hand,
logics for which satisfiability is decidable such as proposi-
tional logic or certain description logics are not suffi-
ciently expressive for our purpose. In particular,
connectedness of a sequence is a second order notion; no
axiom in first order logic can completely capture the
notion of connectedness. Therefore, an expressive logic is
necessary to formulate crucial properties of sequences.

While no sound and complete automated reasoner exists
for second order logic, theorem provers such a SPASS [12]
can be used to assist a user in the inference of theorems
from the provided axioms. The alternative to the use of an
expressive logic to represent the axioms of the ontology is
to restrict the axiom system to a weaker, decidable logic
such as the description logic implemented in OWL. How-
ever, essential features of the domain would have to be
omitted in this case.

It is currently a property of most biomedical ontologies
that they use a weak, decidable logic such as the logic
defined by OWL, and add natural language definitions to
the specified classes and properties to provide their
intended meaning. This yields a large part of the ontology
that remains informal and therefore ambiguous.

On the other hand, an expressive axiom system that cap-
tures large parts of the domain can be used to develop
weaker representations for specific purposes. We have
only implemented the first order fragment of our axiom
system in the SPASS theorem prover. Similarily, it is pos-
sible to construct theories in OWL that are compatible
with our axiom system. In addition, based on the axiom
system we provide, compliant database schemata, soft-
ware models or other conceptual representations can be
constructed. Using natural language for the definition of
ontological categories does not permit such a reuse in a
consistent manner due to the lack of a formal semantics
for natural language.

Future work
The axiom system we provide is in its first version and has
changed substantially during development. We intend to
continue development in close collaboration with ontol-
ogy developers to both increase the usability of the axiom
system and improve its clarity. In particular, we plan to
carefully examine the second-order axioms to identify
potential first-order axioms or axiom schemata that can
be used instead of the second-order axioms. Furthermore,
Page 10 of 11
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the axiom system we present is not complete, and further
axioms can be added to increase the strength of the axi-
omatization.

Additionally, we are investigating possibilities for auto-
matically selecting axioms that can be expressed in a
weaker subset of predicate logics than used here. While it
is trivial to project the axiom system to first order logics by
omitting the two second order axioms we described, axi-
oms in an even weaker logics than first order logics are
useful. In particular, for an application within the Seman-
tic Web, we plan to identify a large subset of axioms that

can be formulated in the description logic ,

which forms the basis of the Web Ontology Language
(OWL) 2.0. Furthermore, for the application of the axi-
oms within the OBO, a translation to the logic specified
by the OBO Flatfile Format [15] could be developed.

Conclusion
We provide an axiom system for sequences in predicate
logics. Most of the axioms are available in first-order log-
ics, although some require the use of second-order logics.
The axiom system is intended to serve as a foundation of
the Sequence Ontology's top-level categories Sequence and
Junction. As a corollary from the axiom system we devel-
oped, we introduced two categories of sequence tokens,
which we called Syntactic sequence and Molecular sequence,
and the category Abstract sequence. We find that in order to
understand sequence, it is necessary to consider the tokens
of sequences.

The axiom system we provide is not based on a particular
top-level ontology, but is compatible with multiple top-
level ontologies. We discuss how to include the theory of
sequences in the BFO, DOLCE and GFO top-level ontolo-
gies. Depending on the top-level ontology used,
sequences and junctions are considered different kinds of
entities: from generically dependent continuants over
abstract individuals to higher-order categories.

This axiom system for sequences is - to the best of our
knowledge - the first extensive axiom system for basic cat-
egories of an OBO Foundry ontology. With increasing
demands for semantic interoperability and information
flow between OBO and OBO Foundry ontologies, the
importance of developing axiom systems likely will
increase, because only axioms can provide a formal speci-
fication of a category's meaning, and therefore provide the
foundation for automated inferences, information flow
and integration. The new axioms are implemented for the
SPASS theorem prover and are freely available from our
website [4].
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