
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
Sorting by reversals and block-interchanges with various weight
assignments
Ying Chih Lin*1, Chun-Yuan Lin2 and Chunhung Richard Lin1

Address: 1Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan and 2Department of
Computer Science and Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan

Email: Ying Chih Lin* - yclin@cse.nsysu.edu.tw; Chun-Yuan Lin - cyulin@mail.cgu.edu.tw; Chunhung Richard Lin - lin@cse.nsysu.edu.tw

* Corresponding author

Abstract
Background: A classical problem in studying genome rearrangements is understanding the series
of rearrangement events involved in transforming one genome into another in accordance with the
parsimonious principle when two genomes with the same set of genes differ in gene order. The
most studied event is the reversal, but an increasing number of reports have considered reversals
along with other genome rearrangement events. Some recent studies have investigated the use of
reversals and block-interchanges simultaneously with a weight proportion of 1:2. However, there
has been less progress towards exploring additional combinations of weights.

Results: In this paper, we present several approaches to examine genome rearrangement
problems by considering reversals and block-interchanges together using various weight
assignments. An exact algorithm for the weight proportion of 1:2 is developed, and then, its idea is
extended to design approximation algorithms for other weight assignments. The results of our
simulations suggest that the performance of our approximation algorithm is superior to its
theoretical expectation.

Conclusion: If the weight of reversals is no more than that of block-interchanges, our algorithm
provides an acceptable solution for the transformation of two permutations. Nevertheless whether
there are more tractable results for studying the two events remains open.

Background
In comparative genomics, the study of genome rearrange-
ments has been one of the most promising methods for
tracing the evolutionary history using gene order compar-
isons between organisms. The mathematical model sim-
ply treats a chromosome in the genome as a permutation
of integers, where each integer represents a gene. Specifi-
cally, these integers are associated with signs, + or -, to
indicate the corresponding orientation (strandedness) of
the gene. A basic task in genome rearrangement studies is
to economically transform one permutation into another

using restricted types of global mutations. Compared with
local (point) mutations, global mutations are rare, but
can provide valuable clues about the evolutionary history
of organisms.

The most widely studied type of global mutations is the
reversal (also called inversion) which inverts a segment in
the permutation and changes the sign of each integer in
that segment. If we only consider reversals, the so-called
problem of sorting by reversals (SBR) is to find the shortest
series composed of reversals that transforms the given per-

Published: 4 December 2009

BMC Bioinformatics 2009, 10:398 doi:10.1186/1471-2105-10-398

Received: 3 August 2009
Accepted: 4 December 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/398

© 2009 Lin et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10/398
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19958558
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2009, 10:398 http://www.biomedcentral.com/1471-2105/10/398
mutation into another, where the minimum number of
reversals is often regarded as the (reversal) distance
between two permutations. SBR is a well-studied subject
in computational biology, and its first polynomial-time
algorithm was proposed by Hannenhalli and Pevzner in
1995 [1]. Other groups have subsequently simplified and
improved this algorithm [2-5]. To date, the best running
time of an algorithm for SBR is O(n3/2) in theoretical anal-
ysis, as presented by Han [6]. It remains unclear whether
SBR can be solved in O(n log n) time, but a plausible
answer was recently given by Swenson et al. [7], providing
two new algorithms; the first runs in randomized O(n log
n) time, whereas the other is a deterministic algorithm
with running time O(n log n + kn), where k is a data-
dependent parameter and both its average and standard
deviation are small constants derived from extensive
experiments [7]. Moreover, a linear-time cost is sufficient
to compute the reversal distance [8].

In addition to reversals, transpositions and block-inter-
changes are also global mutations that act on a permuta-
tion. The former exchanges two adjacent segments, and
the latter is a generalization of a transposition in which
exchanged segments do not have to be adjacent. The prob-
lem of transpositions is called sorting by transpositions
(SBT), in which the minimum number of transpositions
required to complete the transformation is sought. Cur-
rently, we know nothing about its complexity, but several
approximation algorithms have been proposed [9-11].
However, the problem of sorting by block-interchanges
(SBBI) using block-interchanges only is tractable and was
first studied by Christie [12] using the graph approach and
then by Lin et al. [13] using the algebraic formalism.
Recently, Feng and Zhu [14] introduced a new data struc-
ture to improve the approximation and exact algorithms
for SBT and SBBI, respectively, to achieve the time com-
plexity O(n log n).

Considering reversals and transpositions together leads to
the problem of sorting by reversals and transpositions
(SBR+T), i.e., it allows one to perform reversals and trans-
positions alternatively during the transforming process.
Because of the two operations used, we assign weights wr
to reversals and wt to transpositions, and thus seek a trans-
forming series with a minimum sum of weights. For wr : wt
= 1 : 1, Lin and Xue [15] and Walter et al. [16] presented
approximation algorithms with a factor of 2. By incorpo-
rating inverted transposition, which inverts one of two
swapped segments of a transposition and usually has
equal weight wit to wt, in the transformation, 2-approxi-
mation algorithms have been reported by two groups
[15,17]. Furthermore, Eriksen [18] developed a (1 + ε)-
approximation algorithm for the weighted assignment of
wr : wt(wit) = 1 : 2. Bader and Ohlebusch [19] recently
devised a 1.5-approximation algorithm with time O(n2)

for any weight proportion of wr : wt(wit) between 1 : 1 and
1 : 2. Nevertheless, it remains unknown whether tractable
results can be derived for SBR+T.

In contrast, studying the block-interchanges (with each
weight wbi) along with reversals seems easier, i.e., the
problem of sorting by reversals and block-interchanges
(SBR+BI). For wr : wbi = 1 : 2, three groups of researcheres
began from different perspectives but all achieved tracta-
ble results for SBR+BI [20-22]. Yancopoulos et al. [20]
introduced a universal double-cut-and-join operation that
accounts for reversals, translocations, fissions, fusions and
block-interchanges by assigning a weight of 2 to block-
interchanges and 1 to others. With a slight modification to
their algorithm, one can optimally solve SBR+BI [21]. In
addition, the approach of Lin et al. [21] based on the so-
called breakpoint graph [1], whereas Mira and Meidanis
[22] adopted the algebraic viewpoint by introducing the
parameter norm to represent the weight of a rearrange-
ment event. By adding a number of local mutations, Bader
[23] tackled the problem of unequal gene content using a
heuristic algorithm. Despite tractable results when study-
ing SBR+BI under wr : wbi = 1 : 2, to our knowledge, this is
the only type of weight assignments that have been con-
sidered so far. In this paper, we study genome rearrange-
ment problems by considering reversals and block-
interchanges simultaneously using various weight assign-
ments.

On the other hand, a traditional yet effective way to
approach a complex problem is to devise an approximate
solution that is "not too far from" the exact solution.
Approximation algorithms are, indeed, a well-developed
branch of the computer sciences [24]. A β-approximation
algorithm (β > 1) for a minimization problem runs in time
polynomial to the input size and returns a feasible solu-
tion having a quality value that is, at most, β times the
optimum. More interestingly, since the factor β is
obtained from the worst-case analysis, an approximation
algorithm with a higher factor does not imply poor aver-
age performance. To address genome rearrangement
problems, two approximation algorithms are developed
in this work, together with theoretical analyses and exper-
iments to evaluate their performance.

Methods
Preliminaries

A signed linear permutation is a permu-

tation of {1, 2, ..., n}, where each element is labeled by +
or - to indicate the orientation of its corresponding gene.

A reversal r(i, j) (with 1 ≤ i ≤ j ≤ n) is an operation that

inverts the order of elements in a segment of by trans-

forming into

G G G … Gπ π π π= (, , ,)1 2 n

Gπ
Gπ
Page 2 of 13
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:398 http://www.biomedcentral.com/1471-2105/10/398
. Another

operation, block-interchange bi(i, j, k, l) (with 1 ≤ i ≤ j <k ≤
l ≤ n), exchanges two non-intersecting segments

() and by converting to

. For the two operations considered in our study, the
weights of reversals and block-interchanges are denoted
by wr and wbi, respectively.

Given two permutations and , the WGRP(wr, wbi),
abbreviated from Weighted Genome Rearrangement Problem
with wr and wbi, is used to find a minimum weighted
sequence of reversals and block-interchanges for trans-
forming into , and its sum of weights is
regarded as the distance between and . In general, the
problem is simplified as follows. First, the elements in
and are relabeled such that becomes the identity
permutation = (1, 2, ..., n), and therefore the transfor-
mation from to is similar to a sorting process. The
distance is also simplified as dist(). Next, for
wr > 0, we replace wbi with wbi/wr and fix wr to 1.

When dealing with the signed permutation of size n,

most studies extend and transform into an unsigned

mapping π = (π0, π1, ..., π2n+1) of {0, 1, ..., 2n + 1} before-

hand by replacing each positive element x of by 2x - 1
and 2x, each negative element -x by 2x and 2x - 1, and add-

ing two elements π0 = 0 and π2n+1 = 2n + 1. For example, if

 = (2, -5, -3, -4, -6, 7, 1), then its unsigned mapping is π
= (0, 3, 4, 10, 9, 6, 5, 8, 7, 12, 11, 13, 14, 1, 2, 15). Each

operation on also corresponds to a specific operation

on π as follows: A reversal of the form r(2i + 1, 2j) is said

to be legal for π since it mimics the reversal r(i + 1, j) on

[1], and similarly a block-interchange bi(2i + 1, 2j, 2k +

1, 2l) is legal on π since it acts like the block-interchange

bi(i + 1, j, k + 1, l) on . Considering the above as an
example, the reversal r(5, 12) and block-interchange bi(1,
8, 11, 14) are legal, whereas r(3, 5) and bi(1, 9, 11, 14) are
not. Furthermore, performing r(5, 12) (resp. bi(1, 8, 11,

14)) on π is equivalent to performing r(3, 6) (resp. bi(1, 4,

6, 7)) on . In other words, the WGRP(wr, wbi) between

 and can be solved by computing a minimum
weighted sequence of legal reversals and block-inter-

changes for converting π to I. We hereafter use π and I

instead of and , and legal reversals and block-inter-
changes in our algorithms.

Breakpoint graph
Let π be the permutation mentioned previously. The so-
called breakpoint graph BP(π) is a powerful analysis tool for
studying genome rearrangement problems, and is defined
as an edge-colored graph with 2n + 2 vertices as follows:
For 0 ≤ i ≤ n, π2i connects to π2i+1 by a black edge and 2i is
joined to 2i + 1 by a gray edge (Figure 1). In BP(π), a gray
edge (πi, πj) is said to be oriented if i + j is even, and other-
wise it is unoriented. A cycle is said to be alternating if it
contains alternating black and gray edges. Since the degree
of each vertex is 2 (a black edge and a gray edge), the graph
BP(π) can be uniquely decomposed into edge-disjoint
and alternating cycles. In addition, a cycle is oriented as
long as it has an oriented gray edge, otherwise, it is unori-
ented. The length of a cycle is the number of black (or
equivalently, gray) edges it contains. We use l-cycle to
denote an alternating cycle with length l, and c(π) to
denote the number of cycles in BP(π), e.g., in Figure 1,
c(π) = 2: one is a 5-cycle and the other is a 3-cycle. Note
that c(π) = n + 1 if and only if π = I.

r i j i j i j n(,) (, , , , , , , ,)⋅ = − −− +
G G … G G … G G … Gπ π π π π π π1 1 1

G G … Gπ π πi i j, , ,+1 (, , ,)
G G … Gπ π πk k l+1

Gπ

bi i j k l i k l j k i(, , ,) (, , , , , , , , , , ,⋅ = − + −
G G … G G … G G … G G …π π π π π π π π1 1 1 1

GG G … Gπ π πj l n, , ,)+1

Gπ Gσ

Gπ Gσ dist(,)
G Gπ σGπ Gσ GπGσ GσG

IGπ
G
I

dist I(,)
G Gπ Gπ

Gπ
Gπ

Gπ

Gπ

Gπ

Gπ

Gπ Gπ

Gπ
Gπ

G
I

Gπ
G
I

The breakpoint graph BP(π) of the permutation π, in which black edges are represented as solid lines and gray edges as dashed linesFigure 1
The breakpoint graph BP(π) of the permutation π, in which black edges are represented as solid lines and gray
edges as dashed lines. The gray edge (4, 5) is oriented whereas (2, 3) is unoriented. In addition, there are two components
C1 and C2, in which the former is a hurdle.
Page 3 of 13
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:398 http://www.biomedcentral.com/1471-2105/10/398
Each gray edge g = (πi, πj) is associated with the interval <
i, j >, and two gray edges overlap if their corresponding
intervals overlap but neither of them properly contains
the other. Moreover, two cycles overlap if their gray edges
overlap, and a set of overlapping cycles forms a component.
As with oriented cycles, a component is oriented if at least
one of its cycles is oriented, and it is unoriented otherwise.
Using the result of Bader et al. [8], the oriented and unori-
ented components can be efficiently determined in linear
time.

A complex and interesting component of the Hannenhalli
and Pevzner (HP) theory copes with the hurdle, which cur-
rently has several slightly different definitions
[1,2,18,25,26]. Here we adopt a similar statement to the
work of Eriksen [18] but with linear permutations. A hur-
dle H is an unoriented component such that there is an
interval containing all vertices in H but no vertices in
other unoriented components. Here we allow continuous
intervals by setting 0 to be the successor of 2n + 1. For the
permutation π in Figure 1, C1 is a hurdle since < 12, 15 >
∪ < 0, 1 > is an interval containing the unoriented compo-
nent C1 only. Although < 2, 11 > contains C2 only, C2 is
not a hurdle since it is an oriented component. As a result,
the number of hurdles of π in Figure 1 is one, i.e., h(π) = 1.

The HP theory shows that the variations in c(π) and h(π)
guide the transformation between two permutations. For
an arbitrary operation ρ acting on π, let Δcρ = c(ρ·π) - c(π)
and Δhρ = h(ρ·π) - h(π). For convenience, we further
abbreviate Δcρ (resp. Δhρ) to Δcr (resp. Δhr) if ρ is a reversal
and to Δcbi (resp. Δhbi) if ρ is a block-interchange. HP
showed that Δcr ≤ 1 and Δhr ≤ 2 [1]. Christie presented that
Δcbi ≤ 2 but on unsigned permutations [12]. A similar

argument as Christie's work [12] can extend the upper
bound of Δcbi on signed permutations.

Lemma 1 For every permutation π and block-interchange bi,
Δcbi ≤ 2.

Proof: A block-interchange exchanges two non-overlap-
ping segments, whereas a segment can be specified by two
black edges. Let Vbi be the set of vertices connected by the
black edges for determining the block-interchange bi, and
c(Vbi) be the number of cycles containing the vertices in
Vbi. For example in Figure 2a, Vbi = {a, d, e, b, c, f} and
c(Vbi) = 1. According to the number of black edges con-
taining vertices in Vbi, we have the following two cases:

CASE1: Three black edges. Applying bi to π affects only the
cycles whose vertices are in Vbi. Due to the three black
edges in this case, we have 1 ≤ c(Vbi) ≤ 3 and the same is
true after applying bi, implying that Δcbi ≤ 2 (Figure 2a).

CASE2: Four black edges. A similar statement as CASE1
shows that Δcbi ≤ 3 as a result of 1 ≤ c(Vbi) ≤ 4. The only
possibility in which Δcbi = 3 comes from the result of
breaking the cycle in π into four cycles in bi·π, but it can-
not happen with the subsequent argument. As shown in
Figure 2b, the block-interchange bi* with c(Vbi*) = 4
results in c(Vbi*) = 2 after performing bi*, and hence, Δcbi*
≠ 1 - 4 = -3. However, if there is a bi such that Δcbi = 3, then
the vertices of Vbi will be in four cycles of BP(bi·π). Then
the bi* exchanging the two swapped segments of bi has
Δcbi* = -3 when it acts on bi·π, a contradiction. Conse-
quently, Δcbi ≤ 2. �

The block-interchange bi defined by (a) three black edges increases the number of cycles by two, whereas (b) four black edges decreases the number of cycles by twoFigure 2
The block-interchange bi defined by (a) three black edges increases the number of cycles by two, whereas (b)
four black edges decreases the number of cycles by two. The pair of blue parentheses specifies one of two exchanged
segments of bi, and the small dotted lines denote alternating paths.
Page 4 of 13
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:398 http://www.biomedcentral.com/1471-2105/10/398
WGRP(wr = 1, wbi = 2)
For a sorting series S = ρ1, ρ2, ..., ρt transforming π into I,
where ρi represents either a reversal or a block-inter-
change, let the number of reversals be dr(S) and the
number of block-interchanges be dbi(S). Thus, the
weighted sum of S is d(S) = wr·dr(S) + wbi·dbi(S). The dis-
tance dist(π) is then the minimum d(S) among all sorting
series S of converting π to I. First, we set wbi = 2 and con-
sider WGRP (1, 2). Lemma 2 gives a lower bound of
dist(π) in a more general case when 2 ≤ wbi.

Lemma 2 dist(π) ≥ n + 1 - c(π) for WGRP(1, wbi) with 2 ≤
wbi.

Proof: Since Δcr ≤ 1 and Δcbi ≤ 2, an operation increasing

the number of cycles by one costs at least ,

which equals 1 in the case of wr = 1 and 2 ≤ wbi. However,

in the best situation, there are at least n + 1 -c(π) cycles to
be increased because of n + 1 cycles in BP(I). As a result,

the cost of any transformation from π to I is at least n + 1

-c(π) for WGRP(1, wbi) with 2 ≤ wbi. �

To deal with WGRP(1, 2), Lemma 2 shows that if the rear-
rangement sequences for sorting π are composed of
reversals with Δcr = 1 and block-interchanges with Δcbi = 2,
the cost of such a sequence is equal to the lower bound of
dist(π), and hence is optimal. The strategy for selecting
best reversals and block-interchanges is the core of the
algorithm proposed by Lin et al. [21]. Their algorithm dis-
tinguished between oriented and unoriented compo-
nents, and then sorted them separately, i.e., used the
algorithm of Kaplan et al. [2] to sort all oriented compo-
nents and the algorithm of Lin et al. [13] to deal with the
unoriented components. Here we also utilize a known

algorithm for SBR, called ASBR, to tackle oriented compo-
nents but we modify the method for sorting unoriented
components using the following theorem.

Theorem 1 Let g = (πi, πk) and f = (πj, πl) be unoriented gray
edges of a component. If g and f overlap, then there is a block-
interchange with Δcbi = 2 in this component.

Proof: WLOG, we assume that i and l are even and j and k
are odd with i <j <k <l (other cases of i, j, k and l can be
illustrated similarly). According to the number of cycles
containing g and f, there are two main cases:

CASE1: g and f are in the same cycle. We further consider
two subcases according to whether πi and πj are connected
by a black edge:

(1) j = i + 1, i.e., there is a black edge linking πi and πj (Fig-
ure 3a). Using the assumption of k < l, and that k is odd
and l is even, there is no black edge between πk and πl.
Therefore, we use the three black edges, (πi, πj), (a, πk),
and (πl, b) to determine the block-interchange bi(j, k - 1, k,
l). After performing it, the number of cycles is increased by
two (Figure 3a), i.e., Δcbi = 2.

(2) j >i + 1. Let Vbi = {πi, a, b, πj, c, πk, πl, d (Figure 3b).
There are no alternating paths from vertex a to c without
passing a vertex in Vbi\{a, c} since g and f are in the same
cycle. Consequently, one of the two cases of alternating
paths linking vertices a, b, c, and d is demonstrated in Fig-
ure 3b. In this case, let the block-interchange be bi(i + 1, j
- 1, k, l) and thus, in BP(bi(i + 1, j -1, k, l)·π) the four ver-
tices, a, b, c, and d, belong to one cycle. (The other case can
be similarly demonstrated.) We have c(bi(i + 1, j -1, k,
l)·π) = c(π) + 2, which implies that Δcbi = 2.

min wr wbi{ , }1 2

Two unoriented gray edges g = (πi, πk) and f = (πj, πl) overlapping in a component are in the same cycle with (a) j = i + 1 and (b) j >i + 1, whereas (c) g and f are in different cyclesFigure 3
Two unoriented gray edges g = (πi, πk) and f = (πj, πl) overlapping in a component are in the same cycle with (a)
j = i + 1 and (b) j >i + 1, whereas (c) g and f are in different cycles.
Page 5 of 13
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:398 http://www.biomedcentral.com/1471-2105/10/398
CASE2: g and f are in two different cycles (Figure 3c). Recall
that the order and positions of i, j, k, and l are fixed via the
assumption. On the condition that g and f are parts of dif-
ferent cycles, πi and πj are never joined by a black edge. In
addition, the vertex a connects to b (or d) by an alternating
path that will result in the subcase (2) of CASE1. As a con-
sequence, Figure 3c is the unique possibility in this case,
and performing the block-interchange bi(i + 1, j - 1, k, l)
leads to Δcbi = 4 - 2 = 2. �

All gray edges are unoriented in unoriented components
by definition, and furthermore, HP theory presents that
for every gray edge g not in a 1-cycle, there is another gray
edge f that overlaps with g [1]. In other words, it is always
feasible to find two unoriented gray edges overlapping in
unoriented components. By repeatedly applying the
block-interchanges constructed in Theorem 1, all unori-
ented components are eventually sorted. We summarize
the procedures as AWGRP(1,2) as follows:

Algorithm for WGRP(wr = 1, wbi = 2) (AWGRP(1,2))

Input: A signed permutation .

Output: A sorting series composed of reversals and block-

interchanges for optimally transforming into .

1: Transform into its unsigned mapping π and con-

struct BP(π);

2: Use the algorithm developed by Bader et al. [8] to dis-
tinguish between oriented and unoriented components;

3: Perform the algorithm of Han [6] to sort all oriented
components;

4: Repeatedly apply the block-interchanges constructed by
Theorem 1 to sort all unoriented components;

5: Mimic the sorting series of π to I to the transformation

between and ;

In AWGRP(1,2), Step1 and Step2 cost linear time, while
Step5 can be implemented in O(n log n) time [14,27].
Recently, Feng and Zhu [14] developed a new data struc-
ture, called the permutation tree, to improve certain algo-
rithms for SBT and SBBI, to achieve the time complexity
O(n log n). This group used the permutation tree to imple-
ment two core procedures, Query and Transposition, which
were developed by Hartman and Shamir [10] on the
breakpoint graph. The former is used to find a pair of
black edges intersecting the given pair of black edges, and
the latter is used to adjust the data structures after apply-

ing transpositions. Although the term "intersecting" is
defined on black edges [10], it is indeed the same concept
as "overlap" here, and thus, can be used to find two over-
lapping unoriented gray edges to piece together block-
interchanges. Moreover, since a block-interchange can be
mimicked by two transpositions, a slight modification of
the Transposition procedure [10] can be applied to retain
the structures after performing block-interchanges. In
short, the method of Feng and Zhu [14] to enhance the
algorithm of Hartman and Shamir [10] can also be
extended to cope with performing block-interchanges on
unoriented components in Step4, for which we do not
give a detailed description here. Accordingly, Step4 costs
O(n log n) time. The running time of Step3 is O(n3/2) in a
theoretical analysis [6], which is currently the best, or O(n
log n) in most cases [7], depending on which algorithm is
used to address SBR. As a result, theoretically, the total
time complexity of AWGRP(1,2) is O(n3/2).

WGRP(wr = 1, 2 <wbi < 3)
In this subsection, we adjust the weight of block-inter-
changes to 2 < wbi < 3 and investigate WGRP(1, 2 < wbi <
3). A lower bound of n + 1 c(π) for dist(π) is given in
Lemma 2, and on the other hand, taking the parameters
Δhr and Δhbi into account can establish another lower
bound. Let Δ(c-h)r = Δcr - Δhr and Δ(c - h)bi = Δcbi - Δhbi. We
know that Δhr ≤ 2 and Δ(c - h)r ≤ 1 from the literature [1],
and subsequent work is required to obtain a lower bound
of Δhbi for bounding Δ(c - h)bi.

Let bi be a block-interchange and Vbi be the set of vertices
connected to the black edges of bi. If a hurdle H has no
vertices of Vbi in its interval H, then after performing bi, H
still contains all vertices of H but no vertices in other uno-
riented components, i.e., H will be unchanged in
BP(bi·π). This provides that Δhbi ≥ -h(Vbi), where h(Vbi) is
the number of hurdles including vertices of Vbi, since there
are h(Vbi) hurdles whose intervals contain the elements in
Vbi and performing bi removes h(Vbi) hurdles at most. By
using the bound for Δhbi, Lemma 3 immediately derives
an upper bound for Δ(c - h)bi.

Lemma 3 For every permutation and block-interchange bi, Δ(c
- h)bi ≤ 3.

Proof: Let ca(Vbi) be the number of cycles containing verti-
ces of Vbi after performing bi. Clearly, c(Vbi), ca(Vbi) ∈ {1,
2, 3, 4} and recall that ca(Vbi) - c(Vbi) = c(bi·π) - c(π) ≤ 2.
We prove this lemma by first considering the achievable
situations of c(Vbi) = 4 and ca(Vbi) = 4. Lemma 1 demon-
strates that the only possibility for ca(Vbi) = 4 is Δcbi = 4 - 2
= 2, in which the two cycles including vertices of Vbi
belong to a component. Consequently, Δhbi ≥ -h(Vbi) ≥ -1,
and then Δ(c - h)bi ≤ 2 - (-1) = 3. Using a similar argument,
another case of c(Vbi) = 4 has Δcbi = 2 - 4 = -2 and h(Vbi) ≤

G G G … Gπ π π π= (, , ,)1 2 n

Gπ
G
I

Gπ

Gπ
G
I

Page 6 of 13
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:398 http://www.biomedcentral.com/1471-2105/10/398
c(Vbi), indicating that Δ(c - h)bi ≤ -2 - (-4) = 2. Both cases
satisfy this lemma.

Next, consider that c(Vbi), ca(Vbi) ∈ {1, 2, 3} is sufficient
to show the remaining instances. In these cases, we have
Δhbi ≥ -h(Vbi) ≥ -c(Vbi), and thus Δ(c - h)bi ≤ (ca(Vbi) - c(Vbi))
- (-c(Vbi)) = ca(Vbi) ≤ 3. This completes the proof. �

Next, from Lemma 3, we compute another lower bound

for dist(π). HP proved that one must decrease distr(π) = n

+ 1 - (c(π) - h(π) - f(π)) to 0 to complete the sorting proc-

ess if only reversals are allowed, where f(π) is the charac-

teristic function for the existence of a fortress, i.e., f(π) is 1

if π is a fortress and 0 otherwise. In addition, by using a

similar argument as Lemma 2, since Δ(c - h)r ≤ 1 and Δ(c -

h)bi ≤ 3, an operation of increasing c(π) - h(π) by one costs

at least min , which equals when 2 < wbi

< 3. There are, however, at least n + 1 - c(π) + h(π) to be

increased, leading to a lower bound for dist(π) in the fol-
lowing lemma.

Lemma 4 dist(π) ≥ (n + 1 c(π) + h(π)) for WGRP(1, 2

< wbi < 3).

After obtaining two lower bounds of dist(π), we can eval-
uate the approximation ratios of two proposed algo-
rithms, AWGRP(1,2) and ASBR, as they are employed to
solve WGRP(1, 2 < wbi < 3), where ASBR is an algorithm
used to optimally solve SBR.

Theorem 2 ASBR is an approximation algorithm for

WGRP(1, 2 < wbi < 3) with a ratio close to .

Proof: The sorting series given by ASBR comprises distr(π)
reversals and therefore, to be an approximation algorithm
for WGRP(1, 2 < wbi< 3), ASBR has the factor close to �

In Theorem 2, we bypass the effect of f(π) for two reasons:
First, the probability that a random signed permutation of

size n contains a fortress is Θ(n -15), which is extremely
rare [26]. Second, HP illustrated the concept of fortress

with a permutation π having distr(π) = 23 + 1 - 12 + 3 + 1

= 16 [1], which is, in fact, the minimal distr(π) for a per-

mutation being a fortress. In other words, for f (π) = 1, the

ratio is at most when 2 <wbi < 3, which is

nearly .

Theorem 3 AWGRP(1,2) is a -approximation algorithm

for WGRP(1, 2 < wbi < 3).

Proof: For sorting a permutation π with only oriented

components, HP presented that ϕ(π) = b(π) - c(π) reversals

are sufficient, where b(π) is the number of black edges in

π. More specifically, for sorting an oriented component
, we need reversals, in which b()

(resp. c()) is the number of black edges (resp. cycles) in

. Similarly, if sorting a set of oriented compo-

nents, an ASBR will produce

reversals, which is also the same in AWGRP(1,2). When

dealing with a set of unoriented components,

AWGRP(1,2) constructs block-interchanges since

each decreases by two.

To convert π to I, AWGRP(1,2) outputs a sorting series

with weight sum , and a lower bound

of dist(π) is ϕ(π) = n + 1 - c(π) by Lemma 2. As a result,
AWGRP(1,2) is an approximation algorithm for solving
WGRP(1, 2 <wbi < 3) with the factor given by �

Theorems 2 and 3 give the approximation ratios of ASBR
and AWGRP(1,2), respectively, for approaching WGRP(1,
2 <wbi < 3), where their ratios are both at most 1.5. By

always selecting the better result of AWGRP(1,2) and

ASBR, we receive a smaller ratio of , whose

maximum is /2 ≈ 1.225 when the two terms coincide.

WGRP(wr = 1, 1 ≤ wbi < 2)

In the sequel, we readjust the weight of block-inter-

changes to 1 ≤ wbi < 2 and examine WGRP(1, 1 ≤ wbi < 2).

Two lower bounds mentioned above, (n + 1 - c(π) +

h(π)) and ϕ(π), are not proper here since the former is too
small and the latter is no longer correct. A concise way to

min wr wbi{ , }1 3
wbi
3

wbi
3

3
wbi

n c h f
wbi n c h wbi

+ − + +

+ − +
≈1

3
1

3() () ()

(() ())
.

π π π

π π

3 1
5wbi wbi

+

3
wbi

wbi
2

C φ() () ()C C C= −b c C

C

C OCπ

φ φπ
π

() ()OC C
C OC

= ∈∑

UCπ

φ π()UC
2

φ π()UC

φ π
φ π() ()

OC
UC+ wbi 2

φ π
φ π

φ π

φ π φ π

φ π

φ π

φ

()
()

()

() ()

()

()
OC

UC OC UC+
≤

+
=

wbi wbi wbi wbi2 2 2 2
(()

.
π

= wbi
2

min wbi
wbi

{ , }2
3

6

wbi
3

Page 7 of 13
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:398 http://www.biomedcentral.com/1471-2105/10/398
obtain a feasible lower bound is to take all oriented com-

ponents in π as unoriented ones. Owing to the increase of
at most two cycles by a block-interchange, a lower bound

of dist(π) for WGRP(1, 0 <wbi < 2) is .

With the bound, then we have the following theorem.

Theorem 4 AWGRP(1,2) is a -approximation algorithm

for WGRP(1, 0 <wbi < 2).

Proof: Recall that AWGRP(1,2) produces a sorting series

with ϕ() reversals and block-interchanges.

Consequently, to be an approximation algorithm for
WGRP(1, 0 <wbi< 2), AWGRP(1,2) has the factor of �

Since reversals are main mutations from the evolutionary
viewpoint, its weight is often no more than weights of
other mutations. Therefore, we focus on improving the
algorithm to efficiently cope with WGRP(1, 1 ≤ wbi < 2).

We first observed the variation of the approximation ratio

in Theorem 4. When wbi is close to 1, the factor

approaches 2, which is insufficient to be used in practice.

There are two ways to approach this inefficiency. The first
is to make the lower bound higher by considering the fact
that block-interchanges do not remove oriented compo-
nents, and thus, an oriented component has at least one
reversal to sort it. However, this does not indicate that

 is a new lower bound for k oriented components

contained in π, since an operation may merge most of the
oriented components into a single one. Figure 4 is an
example of this, and this type of operations may result in

the overestimate of becoming a lower bound.

Therefore, we slightly enhance the lower bound by con-

sidering that if there is a permutation π whose BP(π) con-
tains an oriented component, then

, where the result of ϕ(π) - 1 is

caused by an optimal reversal.

Next, we improve the algorithm by adding a new compo-
nent. When 1 ≤ wbi < 2, the block-interchange is superior
to the reversal since the former decreases ϕ(π) by at most
two whereas the latter decreases it by at most one. There-
fore, a straightforward idea is to use optimal block-inter-
changes whenever possible. Theorem 1 says that if two
gray edges are unoriented and overlapping, then the cor-
responding block-interchange has Δcbi = 2, which is true
regardless of oriented or unoriented components. Never-
theless, there may be no gray edges to satisfy the condi-
tions of Theorem 1 in oriented components. Whenever
there are no gray edges to form a block-interchange, we

wbi
φ π()

2

2
wbi

OCπ
φ π()UC

2

φ π
φ π

φ π
φ π φ π

φ π
φ π

φ

()
()

()
() ()

()
()

(

OC
UC

OC UC+
≤ + =

wbi

wbi wbi wbi

2

2 2
ππ)

.

2

2=
wbi

2
wbi

φ π()
2 + k

φ π()
2 + k

dist w wbi r() ()π φ π≥ +−1
2

The illustrated block-interchange merges four oriented components into one at a timeFigure 4
The illustrated block-interchange merges four oriented components into one at a time.
Page 8 of 13
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:398 http://www.biomedcentral.com/1471-2105/10/398
adapt a heuristic method to choose the oriented gray edge
oge with maximum P(oge) = N(ooge) - N(ouge), where
N(ooge) and N(ouge) are the number of oriented and uno-
riented gray edges overlapping with oge, respectively.

Let oge = (πi, πj) be an oriented gray edge, and roge be a

reversal defined by two black edges linking πi and πj. Then,

we immediately know that i + j is even, and hence, both i
and j are either even or odd. The reversal roge, irrespective

of "even" or "odd" case, results in breaking a cycle into

two smaller ones, i.e., = 1, as demonstrated in Fig-

ure 5. Notice that an oge can correspond to a reversal hav-

ing Δcr = 1, and it is false conversely, i.e., not all optimal

reversals can map to oriented gray edges; take = (-1, -2,
-3) and r(2, 2) as an example. Besides, a reversal roge com-

plements the gray edges overlapping with oge. In other
words, after applying roge, oriented gray edges overlapping

with oge become unoriented and vice versa. The heuristic
used to compute P(oge) and select the maximum results
from which we want to leave as many unoriented gray
edges as possible after performing a reversal. Then, the
algorithm is summarized as follows:

Approximation Algorithm for WGRP(wr= 1, 1 ≤ wbi < 2)
(AAWGRP(1,1))

Input: A signed permutation .

Output: A sorting series composed of reversals and block-

interchanges for transforming into .

1: Transform into its unsigned mapping π and con-

struct BP(π);

2: While π is not sorted

3: Repeatedly apply block-interchanges if Theorem 1
holds;

4: Compute P(oge) for each oriented gray edge oge;

5: Select the maximum P(oge) and perform the corre-
sponding reversal;

6: End while;

7: Mimic the sorting series of π to I to the transformation

between and ;

Lemma 5 After O(ϕ(π)) steps, the algorithm AAWGRP(1,1)

stops and returns a sorting series for converting to .

Proof: Let π be the unsigned mapping of . The block-

interchanges used in Step 3 and reversals in Step 5 have Δcbi

= 2 and Δcr = 1, respectively. In other words, ϕ(π) = n + 1

- c(π) is strictly decreased after each applied operation.
Due to this fact, AAWGRP(1,1) terminates after perform-

ing at most ϕ(π) operations. �

Now, let us examine the time complexity of AAW-
GRP(1,1). Step1 and Step7 are mentioned in
AWGRP(1,2), and the two steps require O(n) and O(n log
n) time, respectively. To find two unoriented overlapping
gray edges, a linear cost to scan π is sufficient. Applying a
block-interchange also spends linear time, indicating that
the running time to execute Step3 once is O(n). The com-
putation of P(oge) for an oriented gray edge oge can be
done simply by visiting the vertices that lay on the interval
of oge one by one, and then counting the number of ori-
ented and unoriented gray edges overlapping with oge,
which costs O(n) time at most. Furthermore, at most n
computations for P(oge) implies that Step4 can be done
within O(n2) time. In Step5, an O(n)-time cost is needed
to select the maximum P(oge) and next perform a corre-

Δc roge

Gπ

G G G … Gπ π π π= (, , ,)1 2 n

Gπ
G
I

Gπ

Gπ
G
I

Gπ
G
I

Gπ

The reversal specified by a pair of blue parentheses comes from an oriented gray edge (πi, πj), in which i and j are evenFigure 5
The reversal specified by a pair of blue parentheses comes from an oriented gray edge (πi, πj), in which i and j
are even.
Page 9 of 13
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:398 http://www.biomedcentral.com/1471-2105/10/398
sponding reversal. Therefore, to apply a reversal, the time
complexity is O(n2). Finally, AAWGRP(1,1) terminates
after constructing at most ϕ(π) operations, and conse-
quently, it takes at most O(n3) time in the worst case.

Comparing AAWGRP(1,1) with AWGRP(1,2), the former
is preferable to the latter when analyzing oriented compo-

nents provided that 1 ≤ wbi < 2. AAWGRP(1,1) seems fea-

sible for producing a sorting scenario with a smaller sum
of weights, but its performance in worst cases is the same

as that of AWGRP(1,2) for solving WGRP(1, 1 ≤ wbi < 2).

This is a consequence of certain specific permutations in
which their weight sums conducted by both AAW-
GRP(1,1) and AWGRP(1,2) are far from the correspond-

ing lower bounds. For example, if π has k oriented

components, each with a 2-cycle only, in its BP(π), then
both AAWGRP(1,1) and AWGRP(1,2) output k reversals;

however, the lower bound is just

when wr = wbi = 1. Due to the existence of these challenging

cases, the approximation ratio of AAWGRP(1,1) is identi-
cal to that of AWGRP(1,2) when they are used to analyze

WGRP(1, 1 ≤ wbi < 2).

WGRP(wr = 1, 3 ≤ wbi)

WGRP(1, 3 ≤ wbi) can be easily solved by considering the

fact that an arbitrary block-interchange can be mimicked
by three specific reversals. For example, performing the

block-interchange bi(2, 4, 6, 7) on = (2, -5, -3, -4, -6, 7,
1) is the same as doing three reversals of r(2, 5), r(3, 7)

and r(2, 4) in turn on . In other words, as long as a rear-
rangement sequence consists of a block-interchange, it
can be replaced by three corresponding reversals without
increasing the weighted sum. As a result, an ASBR is suffi-

cient to optimally solve WGRP(1, 3 ≤ wbi), and its best

running-time to date is O(n3/2) [6].

Results and Discussion
Simulation

Despite the appearance of difficult cases with AAW-
GRP(1,1), it works well in the general situation, even very
close to the lower bounds when wbi is near 2. To assess its

performance, we conducted several experiments with the

sample data generated by applying αn operations on =

(1, 2, ..., n), where n ∈ {20, 50, 100} and α ∈ {0.1, 0.2,
..., 0.9, 1}. The rearrangement operations of either revers-
als or block-interchanges were selected randomly with
equal probability, and each operation was specified at

random by selecting two (for reversals) or four (for block-
interchanges) integers ranging from 1 to n. Moreover, we
examined 10n test cases and kept track of the mean for

each pair of α and n.

At the beginning, we considered WGRP(1, 1). Then for the
simulated data, we computed the corresponding lower
bounds as well as the average weight sums of sorting
sequences created by AAWGRP(1,1). For comparison, the
results of AWGRP(1,2) were also marked (Figure 6). The
weight sums of four sources, created series, AWGRP(1,2),
AAWGRP(1,1) and lower bounds, increased with the
number of applied operations, but at different rates. Fur-
thermore, in the first three diagrams of Figure 6, regardless
of the size n or the number of applied operations on per-
mutations, the two curves corresponding to AAW-
GRP(1,1) and the lower bound exhibited the same
relative behavior, with only a small gap between them
(about 80% of the gaps between the curves were within 2
in the experiment of Figure 6c). This result indicates that
AAWGRP(1,1) consistently produces a closer estimate of
the exact dist(π) for WGRP(1, 1).

Subsequently, in Figure 6d, we fixed n = 100 and adjusted
wbi = 1.3, 1.5, and 1.8 individually to investigate WGRP(1,
1.3), WGRP(1, 1.5), and WGRP(1, 1.8), respectively. Note
that although three problems were included, we only
plotted a curve to represent AWGRP(1,2). In addition to
simplifying the chart, there was hardly any difference
among the reconstructed sequences of AWGRP(1,2) for
the three problems. In other words, the vast majority of
operations in the sorting sequences of AWGRP(1,2) were
reversals, and hence, their weight sums for the three prob-
lems were virtually identical. This phenomenon is
expected based on two facts: First, the probability that a
component will be unoriented is the same as that of a hur-
dle, which is Θ(n-2) on a random permutation of size n
[26]. Second, the strategy of AWGRP(1,2) to remove ori-
ented components is to use an ASBR to generate reversals.
As a result, the components of the generated permutations
are generally oriented, and the sorting sequences of
AWGRP(1,2) consist mostly of reversals.

Notwithstanding AWGRP(1,2) was shown to be a factor 2
approximation algorithm for WGRP(1, 1) by Theorem 4,
it is indeed infeasible in our experiments. The perform-
ance of AWGRP(1,2) is gradually improved as wbi moves
towards 2 (Figure 6d). In contrast, AAWGRP(1,1)
improves dramatically when 1 ≤ wbi < 2. Figure 6d suggests
that the performance of AAWGRP(1,1) is superior to that
of AWGRP(1,2) in such cases. Even in our simulation of
wbi = 1.8, two curves of AAWGRP(1,1) and the lower
bound were almost the same (most of their differences
were less than 1).

w wbi r
kφ π()− ++ =1

2
1

2

Gπ

Gπ

G
I

Page 10 of 13
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:398 http://www.biomedcentral.com/1471-2105/10/398
Contribution

A large body of work has been devoted to genome rear-
rangement problems to study the evolutionary changes in
the macrostructure of individual chromosomes according
to the parsimonious principle. Here, we investigated the
Weighted Genome Rearrangement Problem by considering
reversals and block-interchanges simultaneously with var-
ious weight assignments, i.e., WGRP(wr, wbi). Our objec-

tive was to find a rearrangement series composed of

reversals and block-interchanges for converting to , as
well as the most parsimonious series, that is, the mini-

mum weight sum. We began studying the algorithm
WGRP(wr, wbi) by setting wr= 1 and wbi = 2, and then devel-

oped AWGRP(1,2) to optimally solve it. The idea used in
AWGRP(1,2) is similar to that of Lin et al. [21] but differs
when coping with unoriented components. We also pro-
vided a rigorous proof to show the correctness of
AWGRP(1,2).

Furthermore, we adjusted the weight of block-inter-
changes so that 2 <wbi < 3 to study WGRP(1, 2 <wbi < 3).

Two algorithms ASBR and AWGRP(1,2) were employed
as approximation algorithms, whose ratios were given by

Gπ
G
I

The diagrams (a), (b) and (c) consist of four curves each whereas (d) has four sets of curves, corresponding to the values of simulations and theoretical estimationsFigure 6
The diagrams (a), (b) and (c) consist of four curves each whereas (d) has four sets of curves, corresponding to
the values of simulations and theoretical estimations. Specifically in (d), the expression of "AAWGRP(1,1)-1:1.3"
means that AAWGRP(1,1) was used to solve WGRP(1, 1.3), and "lower bound-1:1.3" means the lower bound for WGRP(1,
1.3).

(a) (b)

(c) (d)
Page 11 of 13
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:398 http://www.biomedcentral.com/1471-2105/10/398
Theorems 2 and 3, respectively. The approximation ratio

of ASBR is , and hence it decreases if wbi is close to 3;

however, the ratio of AWGRP(1,2) , which decreases

when wbi is near 2. Even if both factors are at most 1.5 for

2 <wbi < 3, their behaviors are completely opposite. Con-

sequently, we obtained a better result by always selecting
the best output of the two algorithms to acquire a smaller
approximation ratio around 1.225.

Later, the weight of block-interchanges is again varied to

fit WGRP(1, 1 ≤ wbi < 2). To address this problem, we first

showed that AWGRP(1,2) is a -approximation algo-

rithm. Nevertheless, the factor becomes larger as wbi

moves towards 1. From our experimental results on
WGRP (1, 1), most of the weighted sums of sorting
sequences provided by AWGRP(1,2) were more aggra-
vated than the weighted sums of created sequences. There-
fore, we improved it with AAWGRP(1,1) by adding a new
component for selecting operations. Our idea was to
choose as many best block-interchanges as possible, and
determine plausible candidates for the best reversals once
no best block-interchanges were available. As a heuristic,
AAWGRP(1,1) does not have a smaller approximation
ratio than AWGRP(1,2).

Consequently, we conducted several experiments to eval-
uate its performance and illustrated the results in Figure 6.
Our result indicated that, although the theoretical approx-
imation ratio of AAWGRP(1,1) trends towards 2 if wbi is
close to 1, its average performance is significantly
improved. Table 1 further summarizes our current and
previous results for solving WGRP(wr, wbi).

Conclusion
In this work, we present several approaches to examine
genome rearrangement problems by considering reversals
and block-interchanges together under various weight
assignments. Provided that the weight of reversals is no
more than that of block-interchanges, our algorithm

reports an acceptable solution with theoretical guarantees
and experimental evidences. Our results are promising,
and these approaches should be used as an initial step for
considering the two operations simultaneously. Future
research must focus on improving both the approxima-
tion ratios and running times of these algorithms.

Authors' contributions
YCL conceived the research, implemented the program
and wrote the manuscript. CYL provided comments and
discussion, and also assisted in revising the paper. CRL
helped to draft and revise the manuscript. All authors read
and approved the final manuscript.

Acknowledgements
We would like to thank the anonymous referees for many constructive
comments during the revision. Part of this work was supported by the
National Science Council (NSC) under grant NSC97-2221-E-182-033-MY3
and NSC96-2628-E-110-010-MY3.

References
1. Hannenhalli S, Pevzner PA: Transforming cabbage into turnip:

Polynomial algorithm for sorting signed permutations by
reversals. J ACM 1999, 46:1-27.

2. Kaplan H, Shamir R, Tarjan RE: A Faster and simpler algorithm
for sorting signed permutations by reversals. SIAM J Comput
1999, 29:880-892.

3. Bergeron A: A very elementary presentation of the Hannen-
halli-Pevzner theory. Dis Math 2005, 146:134-145.

4. Bergeron A, Mixtacki J, Stoye J: Reversal distance without hur-
dles and fortresses. In Proceedings of the 15th Annual Symposium on
Combinatorial Pattern Matching: 5-7 July 2004; Istanbul, Turkey Volume
3109. Edited by: Sahinalp SC, Muthukrishnan S, Dogrusöz U. Lecture
Notes in Computer Science, Springer-Verlag; 2004:388-399.

5. Tannier E, Bergeron A, Sagot MF: Advances on sorting by revers-
als. Dis Math 2007, 155:881-888.

6. Han Y: Improving the Efficiency of Sorting by Reversals. In Pro-
ceedings of the 2006 International Conference on Bioinformatics and Com-
putational Biology: June 26-29 2006; Las Vegas, Nevada, USA Edited by:
Arabnia HR, Valafar H. CSREA Press; 2006:406-409.

7. Swenson KM, Rajan V, Lin Y, Moret BME: Sorting signed permu-
tations by inversions in O (n log n) time. In Proceedings of the
13th Annual International Conference on Research in Computational
Molecular Biology: 18-21 May 2009; Tucson, Arizona Volume 5541.
Edited by: Batzoglou S. Lecture Notes in Computer Science, Springer-
Verlag; 2009:386-399.

8. Bader DA, Moret BME, Yan M: A linear-time algorithm for com-
puting inversion distance between signed permutations with
an experimental study. J Comput Biol 2001, 8:483-491.

9. Bafna V, Pevzner PA: Sorting by transpositions. SIAM J Dis Math
1998, 11:221-240.

10. Hartman T, Shamir R: A simpler and faster 1.5-approximation
algorithm for sorting by transpositions. Inf Comput 2006,
204:275-290.

11. Elias I, Hartman T: A 1.375-approximation algorithm for sort-
ing by transpositions. IEEE/ACM Trans Comput Biol and Bioinformat-
ics 2006, 3:369-379.

12. Christie DA: Sorting by block-interchanges. Inform Process Lett
1996, 60:165-169.

13. Lin YC, Lu CL, Chang HY, Tang CY: An efficient algorithm for
sorting by block-interchanges and its application to the evo-
lution of Vibrio species. J Comput Biol 2005, 12:102-112.

14. Feng J, Zhu D: Faster algorithms for sorting by transpositions
and sorting by block-interchanges. ACM T Algorithm 2007,
3:1-14.

15. Lin GH, Xue G: Signed genome rearrangement by reversals
and transpositions: models and approximations. Theoret Com-
put Sci 2001, 259:513-531.

3
wbi

wbi
2

2
wbi

Table 1: Summary of our current and previous results for solving
WGRP(wr, wbi).

wr wbi Results

1 1 ≤ wbi < 2 2/wbi-app. with O(n3) time
2 O(n3/2)-time algorithm

2 <wbi < 3 1.225-app. with O(n3/2) time
3 ≤ wbi O(n3/2)-time algorithm [6]
Page 12 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11694179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11694179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11694179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15725736
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15725736
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15725736

BMC Bioinformatics 2009, 10:398 http://www.biomedcentral.com/1471-2105/10/398
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

16. Walter MEMT, Dias Z, Meidanis J: Reversal and transposition dis-
tance of linear chromosomes. In Proceedings of String Processing
and Information Retrieval: 9-11 September 1998; Santa Cruz, Bolivia
Edited by: Bolivia SCS. IEEE Computer Society; 1998:96-102.

17. Gu QP, Peng S, Sudborough H: A 2-approximation algorithms
for genome rearrangements by reversals and transpositions.
Theoret Comput Sci 1999, 210:327-339.

18. Eriksen N: (1+ε)-approximation of sorting by reversals and
transpositions. Theoret Comput Sci 2002, 289:517-529.

19. Bader M, Ohlebusch E: Sorting by Weighted Reversals, Trans-
positions, and Inverted Transpositions. J Comput Biol 2007,
14:615-636.

20. Yancopoulos S, Attie O, Friedberg R: Efficient sorting of genomic
permutations by translocation, inversion & block inter-
change. Bioinformatics 2005, 21:3340-3346.

21. Lin YC, Lu CL, Liu YH, Tang CY: SPRING: a tool for the analysis
of genome rearrangement using reversals and block-inter-
changes. Nucleic Acids Res 2006, 34:W696-W699.

22. Mira C, Meidanis J: Sorting by Block-Interchanges and Signed
Reversals. In 4th International Conference on Information Technology:
2-4 April 2007; Las Vegas, Nevada, USA Edited by: Latifi S. IEEE Com-
puter Society; 2007:670-676.

23. Bader M: Sorting by reversals, block interchanges, tandem
duplications, and deletions. BMC Bio 2009, 10:S9.

24. Vazirani VV: Approximation algorithms New York: Springer-Verlag;
2001.

25. El-Mabrouk N, Sankoff D: On the Reconstruction of Ancient
Doubled Circular Genomes Using Minimum Reversal.
Genome Informatics 1999, 10:83-93.

26. Swenson KM, Lin Y, Rajan V, Moret BME: Hurdles hardly have to
be heeded. In Proceedings of the 6th RECOMB Comparative Genomics
Satellite Workshop: 13-15 October 2008; Paris, France Volume 5267.
Edited by: Nelson CE, Vialette S. Lecture Notes in Computer Science,
Springer-Verlag; 2008:241-251.

27. Gog S, Bader M: Fast Algorithms for Transforming Back and
Forth between a Signed Permutation and Its Equivalent
Simple Permutation. J Comput Biol 2008, 15:1029-1041.
Page 13 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17683264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17683264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15951307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15951307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15951307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16845100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16845100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16845100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11072345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11072345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18781831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18781831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18781831
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Preliminaries
	Breakpoint graph
	WGRP(w
	WGRP(w
	WGRP(w
	WGRP(w

	Results and Discussion
	Simulation
	Contribution

	Conclusion
	Authors' contributions
	Acknowledgements
	References

