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Abstract
Background: Microarray gene expression time-course experiments provide the opportunity to
observe the evolution of transcriptional programs that cells use to respond to internal and external
stimuli. Most commonly used methods for identifying differentially expressed genes treat each time
point as independent and ignore important correlations, including those within samples and
between sampling times. Therefore they do not make full use of the information intrinsic to the
data, leading to a loss of power.

Results: We present a flexible random-effects model that takes such correlations into account,
improving our ability to detect genes that have sustained differential expression over more than
one time point. By modeling the joint distribution of the samples that have been profiled across all
time points, we gain sensitivity compared to a marginal analysis that examines each time point in
isolation. We assign each gene a probability of differential expression using an empirical Bayes
approach that reduces the effective number of parameters to be estimated.

Conclusions: Based on results from theory, simulated data, and application to the genomic data
presented here, we show that BETR has increased power to detect subtle differential expression
in time-series data. The open-source R package betr is available through Bioconductor. BETR has
also been incorporated in the freely-available, open-source MeV software tool available from http:/
/www.tm4.org/mev.html.

Background
The analysis of microarray time-course data presents a
number of challenges. First, microarray gene expression
data has an inherent complexity due to its high dimen-

sionality and hidden correlations driven by co-expression
of genes in biological networks and other factors. Added
to this is the fact that additional correlations exist between
time points, but time-course sampling is often sparse and
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irregular due to experimental constraints. Further, tempo-
ral processes governing gene expression in cells operate on
a wide range of different time scales, making any sampling
less than optimal for some applications.

When analyzing microarray gene expression data in gen-
eral, and time-course experiments in particular, two com-
mon goals are to identify genes with similar expression
profiles (often using clustering approaches) and to iden-
tify those that are differentially expressed across condi-
tions such as disease states. Most commonly used
techniques are extensions of methods developed for static
(non time-course) experiments. They ignore the sequen-
tial nature of time-course data and the resulting time-
dependent correlation structure. Analysis methods tai-
lored to time-course data make use of this additional
information, improving power to draw conclusions from
the data.

Several linear modeling approaches designed for non-
time-course experiments [1-5] can be extended for use in
time-course experiments. These linear modeling frame-
works allow traditional ANOVA analysis but are not well
suited to time-course data as they treat time points as
unordered. Ignoring the information contained in the
sequential sampling leads to a loss of power to detect dif-
ferentially expressed genes.

Efron et al. [6] and Eckel et al. [7] develop an empirical
Bayes framework for detecting differentially expressed
genes. Although these methods allow for timecourse data
they do not address the non-uniform serial correlation
between time points. Guo et al. [8] offer an estimating
equation technique that handles serial correlation, but as
formulated it can only be used to identify differentially
expressed genes in a single-condition time-course. Tai et
al. [9] construct a multivariate empirical Bayes statistic
applicable to single- and multiple-condition data with
variance stabilization for gene-specific covariance matri-
ces.

An alternative approach involves fitting curves to the data
[10-12] and performing statistical tests on the smoothed
curves. This has the advantage of allowing for different
sampling time points between the conditions being com-
pared. A disadvantage is the difficulty in fitting curves to
data from experiments with few sampling times.

Here we present BETR (Bayesian Estimation of Temporal
Regulation), a novel technique to identify differentially
expressed genes that overcomes many of the limitations of
existing methods. Our approach explicitly uses the time-
dependent structure of the data, employing an empirical
Bayes procedure to stabilize estimates derived from the
small sample sizes typical in microarray experiments. It is

applicable to one- or two-color replicated microarray
data, and can be used to detect differences between two
conditions or changes from baseline in a single condition.

Methods
In building a model for time-course data, we decompose
the variability in our experimental measurements into its
component parts, most importantly time effects, treat-
ment (experimental group) effects and random technical
and biological noise. The aim of a two-group experiment
is usually to identify genes with a treatment effect as man-
ifested in a significant difference between the groups' indi-
vidual expression profiles.

Figure 1 shows the log-ratio of the expression profiles for
two illustrative genes in a two-group time-course experi-
ment. Figure 1a represents an idealized gene without dif-
ferential expression, where the log-ratio of expression
between groups is zero at all time points. Any deviation
from the flat line in such a gene is due to random noise.
In contrast, the gene in figure 1b is differentially
expressed, with the treatment effects, δ representing the
log-ratio between the treatment groups at each time point.

Time-course data is a special case of repeated measures
data with the distinguishing feature that the data points
are ordered. A key result of this ordering is that correlation
between time points in non-uniform. For example, it is
often the case that measurements at consecutive time
points, such as t1 and t2, are more highly correlated than
those at non-consecutive time points, such as t1 and t4.
BETR takes advantage of the time series structure of the
data by allowing correlation between the magnitude of
differential expression at different time points; values of δ
that are close in time are likely to be more correlated than
those with greater separation. The data from all genes is
used jointly to estimate parameters representing the cov-
ariances between time points, as well as gene-specific error
terms.

After estimating the model variance parameters, we fit two
models to each gene. The simpler model assumes identi-
cal mean profiles between conditions (Figure 1a), while
the second allows for differential expression (Figure 1b).
Bayes' rule is then used to calculate the probability that
the gene's data comes from each of these models.

As an intuitive example of the benefit of taking the order-
ing of time points into account, consider a gene where the
differential expression and random noise are of similar
magnitude. When analyzing each time point independ-
ently the signal will often be masked by the background
noise. In contrast, the true signal should have a detectable
correlation across time points, making its identification
possible.
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Model formulation
Let Ig be a Bernoulli (0 or 1) random variable indicating
whether gene g is differentially expressed across condi-
tions. Our interest is in estimating the probability of dif-
ferential expression for each gene, given the data (the
posterior probability, in Bayesian terminology). We will
first describe BETR as applied to a two-group comparison
using single channel (Affymetrix) gene expression data,
denoting the two experimental conditions as treatment
(Tx) and control (Co). At least two replicates are required
in each experimental group, although the sample sizes
(NTx and NCo) need not be balanced. Let Xgi = (Xgi1,..., XgiT)
denote the log transformed expression values for replicate
i of gene g at the T time points:

where  and  represent gene g's mean expression

in the two groups. The error terms egi are assumed to be

multivariate normal, MVNT (0, ΣEg), random effects with

a compound symmetry covariance structure. This rela-
tively simple two-parameter covariance structure allows
for within-replicate correlation between the errors at dif-
ferent time points accounting for biological or experimen-
tal replicate effects in the case of repeated measurements
on the same experimental unit.

Our aim is to determine if there is a difference in expres-

sion between the groups, that is, whether .

Although we allow different numbers of replicates in the
two groups we will here, for the sake of simplicity, assume
a common number N = NTx = NCo. Within each group we

define  and , the mean

observed expression profile and mean error across repli-

cates respectively. We model , the log

ratio of expression in the two conditions.

We define δg = (δg1,...,δgT) to be the vector of log-ratios at
each time point. A notable feature of BETR is that the
parameters of interest δg are modeled as random effects
rather than fixed effects for differentially expressed genes.
In statistical models fixed effects are typically used for var-
iables of interest, such as differences between experimen-
tal groups, or between time points. Random effects are
usually used to account only for the remaining sources of
variation that are not of interest, such as random technical
measurement error or biological variability between sub-
jects in the same treatment group. By modeling the δg as
random effects, we are able to capture non-uniform corre-
lation between them that arises from the time-course
structure of the data.
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Time-course expression profiles of two illustrative genesFigure 1
Time-course expression profiles of two illustrative genes. Log-ratio of expression between two treatment groups for 
a) a gene without differential expression, and b) an illustrative differentially expressed gene. I is an indicator of differential 
expression. δ represents the log-fold change at the four time points.
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We define the indicator Ig to describe whether or not a
gene is differentially expressed. For those genes without
differential expression δg is modeled as a mean zero fixed
effect at all time points. In the case of a differentially
expressed gene (Ig = 1), we model δg as a random effect,
allowing for non-zero log-ratios.

By modeling the log-ratio as a non-zero realization of a
random effect we allow correlation between the magni-
tude of differential expression at different time points.

It follows that the distribution of the gene's data points,
Yg, takes on different forms depending on whether the
gene is differentially expressed or not:

By considering which of the two distributions above bet-
ter fit the gene's data, we can make an inference about the
probability of differential expression using Bayes' rule:

where p represents the proportion of differentially
expressed genes (see next section for estimation). We
report as differentially expressed those genes whose prob-
ability of differential expression, P(Ig = 1|Yg) is greater
than a user-defined threshold 1 - α.

Parameter estimation

In the above model the proportion of differentially
expressed genes, p, and the two components of variance,

ΣEg and ΣDg are unknown. ΣEg represents the sample vari-

ance about the treatment group mean and is estimated
using the pooled sample covariance

 where

 and likewise

for SCo. When sample sizes are small we recommend con-

straining the structure of ΣEg to be compound symmetric,

requiring the estimation of only two parameters; the vari-
ance and covariance terms are obtained by averaging the
diagonal and off-diagonal terms respectively. To further

lessen the impact of small sample sizes the variance and
covariance estimates are stabilized using the empirical
Bayes shrinkage procedure of Smyth [5].

The second covariance parameter, ΣDg, relates to the pri-

mary quantity of interest, the magnitude of differential
expression. Since we model the differential expression
vector as correlated random effects with known mean 0,

we can estimate ΣDg by the sample covariance matrix

which simplifies to SDg = Yg . The gene-specific esti-

mates are stabilized using a modified version of the
empirical Bayes matrix shrinkage procedure introduced

by Tai and Speed [9,13]. The ΣDg are estimated by ,

shrinkage estimators calculated as a weighted average of
the gene specific SDg and a target covariance matrix. Since

ΣDg is non-zero only for differentially expressed genes, we

base our target matrix only on the mean of SDg for those

genes where the probability of differential expression, 

= P(Ig = 1 Y|g), is greater than the user-defined significance

cutoff, 1 - α. The fraction of genes where  ≥ 1 - α is used

to estimate p, the proportion of differentially expressed
genes.

In the parameter estimation procedure described above,

estimation of the covariance parameters, ΣDg, depends on

knowledge of the Ig, which in turn depend on knowledge

of the covariance parameters and the proportion, p, of dif-
ferentially expressed genes. We therefore use an iterative
procedure that alternates between updating the Ig esti-

mates and the ΣDg estimates until the process converges.

The process starts with an initial default estimate of p and
a rough gene ranking obtained for example by ANOVA.

ΣDg is estimated using an initial target covariance matrix

derived from the mean SDg of the top ranked genes. Given

the ΣDg estimates we then obtain a rough first iteration

estimate of  using equation 1. Those genes with  >1

- α are used to construct a new shrinkage target matrix

allowing a seconditeration estimation of ΣDg. We have

found that the  estimates typically stabilize within 3-6

iterations. The final estimates 1 -  can then be thought

of as roughly analogous to a p-value. These pseudo p-val-
ues are adjusted for multiple comparisons using Storey's
positive false-discovery rate (pFDR) procedure [14].
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Î g
Page 4 of 10
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:409 http://www.biomedcentral.com/1471-2105/10/409
Two-color microarray data
When using two color microarrays two samples are co-
hybridized to each chip, and data is obtained in the form
of expression ratios between conditions. Let Xgi represent
the log ratio of expression of gene g at T time points for
replicate i. We then express Yg the average log ratio, simi-
larly to the one color model above:

The rest of the procedure is identical to that for the one-
color case.

Method Evaluation
To assess the performance of BETR we compared it to
three established methods, the linear model approach
with variance shrinkage implemented in the R/Biocon-
ductor package limma [5], the spline-based method
implemented in EDGE (Extraction and analysis of Differ-
ential Gene Expression, version 1.1.290) [10,15], and the
twosample multivariate empirical Bayes (MB) statis-
tic[9]implemented in the R/Bioconductor package time-
course. We compared performance of the methods using
data from an experiment investigating host response to
tuberculosis (TB) infection in mouse and a simulated
dataset derived from the mouse TB data.

Mouse TB host-response data
Tuberculosis is a significant and growing public health
problem, with an estimated two billion people infected
worldwide and increasing concern about multi-drug
resistant strains. Despite its prevalence, only about ten
percent of people infected with Mycobacterium tuberculosis
(MTB) progress to active disease. Host genetic factors that
influence the outcome of TB infection have been identi-
fied both in humans and mouse models of the disease.
The known factors only explain a fraction of the variabil-
ity observed in the host reaction to infection. To better
understand host genetic factors and their impact on the
dynamics of infection response, we analyzed gene expres-
sion in a mouse model of TB infection using C57BL/6 and
C3H.B6-sst1 mice, resistant and susceptible, respectively,
to infection. Bone marrow-derived macrophages were
extracted from three mice of each strain, primed with
interferon gamma and then infected with MTB in vitro.
RNA was extracted for gene expression analysis on
Affymetrix 4302 microarrays at four time points: prior to
infection (0 hours) and 6, 30 and 78 hours post infection.
Details are given in Additional File 1: Supplementary
Methods. The raw CEL files were normalized using the Li-
Wong method [16,17]. A filter was applied to remove
probe sets with constant expression across all arrays,
defined as an intensity range of less than 500. The result-
ing 10,042 probe data set representing 6,458 genes was

analyzed using the four time-course tools. Experimental
data is available from ArrayExpress (accession # E-MTAB-
90).

Simulated Data
Although simulated data may fail to capture all of the fea-
tures of and correlations within gene expression data, it is
useful for understanding the properties of a new analytical
method. Simulated data has the advantage that we know
the 'truth' and allows us to compare the performance of
different methods helping us broadly define the condi-
tions under which particular methods are most suitable. A
major difficulty in simulating microarray data sets lies in
our lack of understanding of the true correlation structure
of such data. This includes the correlation between genes
and in the case of time-course data, the correlation
between successive time points. To address these con-
cerns, we began with the TB data and randomly selected
2000 genes that were expressed above background in the
C57BL/6 resistant strain, thus preserving some of the cor-
relations in the real data. To create data for the second
condition, we then selected 100 genes, shifted their
expression levels by 1.5- to 3-fold at 1 to 4 time points,
and added random Gaussian noise with a mean of 1.5
fold to the expression levels for all 2000 genes.

Results and Discussion
In order to identify the set of differentially expressed genes
in an experiment genes are ranked in order of decreasing
evidence for differential expression and a cutoff is chosen
that balances the numbers of false positives and false neg-
atives. A receiver operating characteristic (ROC) curve
plots the true positive rate as a function of the false posi-
tive rate as the cutoff is changed and can be used to assess
the performance of the ranking criteria. For simulated
data where it is known which genes are differentially
expressed, ROC analysis is possible. Consequently, we
analyzed each simulated dataset using limma, EDGE, the
MB-statistic and BETR, and evaluated their ROC perform-
ance. In limma we fit an eight coefficient linear model to
model the two conditions and four time points. Genes
were ranked according to the moderated F-test of the four
between-strain contrasts [5]. The corresponding EDGE
analysis was carried out using the default natural cubic
spline basis and choosing the option to include the base-
line levels in analysis. The MB-statistic was calculated
using the R package timecourse with default options.

Analysis of simulated data
Figure 2 shows the results of analyzing a four time point
simulated dataset comparing two experimental condi-
tions. Five percent of the genes are differentially
expressed, with three or four time points affected by a 1.5-
to 3-fold change. The graph shows the average of ten sim-
ulations. The power, or true positive rate, (y-axis) can be
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thought of as the probability that a truly differentially
expressed gene will be correctly identified as such. BETR
has greater power to detect differentially expressed genes
with the most pronounced benefit at low false positive
rates in the commonly used range of 5-20%. At a false pos-
itive rate of 5%, for example, BETR successfully identifies
65% of the differentially expressed genes, compared to
62% for limma, 56% for the MBstatistic and EDGE.

To test the hypothesis that BETR's advantage would be
most pronounced in the case of noisy data with small but
sustained effects, we characterized BETR's performance
under a variety of different conditions, varying the dura-
tion of differential expression. In each case we chose a cut-
off to achieve a false positive rate of 5% and assess the
power to correctly identify differentially expressed genes
(the true positive rate). The results presented are the aver-
age of ten simulations.

We estimate the power to detect differentially expressed
genes as a function of the number of time points with dif-

ferential expression, ranging from a short spike at a single
time point to differential expression across all four time
points (Figure 3). The true positive rate for each method
was read from its ROC curve. When only a single time
point has differential expression we gain nothing by con-
sidering the order of the time points and as a result, there
is no benefit to using BETR. The relative power of BETR
improves as a function of the number of time points at
which a gene is differentially expressed and it dominates
the other methods when there is differential expression at
3 or 4 time points.

Analysis of mouse TB host-response data
The tuberculosis infection time-course experiment was
analyzed with each of the four methods to detect differen-
tially expressed genes. For BETR, limma and EDGE we
chose a cutoff to obtain an estimated false discovery rate
of 1%. Since there is currently no way to estimate false dis-
covery rates with the MB-statistic the size of this gene list
was chosen for the purposes of comparison to be the aver-
age of the other methods. The union of the four lists con-

Performance assessment: ROC curvesFigure 2
Performance assessment: ROC curves. ROC curves showing the true positive/false positive rates for detecting differen-
tially expressed genes using simulated data.
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tained 528 genes of which only 146 were common to all
methods.

To investigate the differences between the results pro-
duced by the four methods we used Gene Set Enrichment
Analysis (GSEA) to identify Gene Ontology terms and
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways that show concordant differences between the
strains [18,19]. In each case the full ranked gene list was
used as input to GSEA. Gene sets with fewer than 15 or
more than 500 genes were excluded. Genes with multiple
probe sets were represented by the most significant.

Each of the four methods is equally capable of detecting
pronounced differences. For example, the core set of
enriched categories that are consistently ranked highly by
all the methods includes the KEGG pathway cell adhesion
molecules (p < 0.05; Additional File 1: Supplemental
Tables S1-S4). These proteins play a key role during the
immune response through their mediation of physical cell

interactions. A key mechanism of tuberculosis control is
the formation of inflammatory lesions called granulomas.
These cellular aggregates, consisting largely of macro-
phages and lymphocytes, serve to contain and destroy the
tuberculosis bacteria [20]. Reduced adhesion molecule
activity has been shown to lead to significant reduction in
lymphocyte recruitment to the lungs and inability to form
well-defined granulomas, leading to dissemination of
bacteria throughout the lungs and hastened death
[21,22].

A related and particularly notable gene set that is uniquely
identified by BETR is the KEGG pathway leukocyte transen-
dothelial migration. Factors that govern immune cell migra-
tion can significantly influence the effectiveness of host
response to tuberculosis infection through their role in
recruitment of cells to sites of granuloma formation [23].
One of the key distinguishing features of tuberculosis dis-
ease in susceptible mice is their reduced capacity to form
effective granulomas, possibly related to their inability to

Performance assessment: True positive rate vs. number of time points with differential expressionFigure 3
Performance assessment: True positive rate vs. number of time points with differential expression. True posi-
tive rate as a function of the number of the four time points with differential expression. The significance cutoff is chosen to 
maintain a false positive rate of 5%.
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localize leukocytes within the lung [24]. A successful gran-
ulomatous response depends on correct cellular composi-
tion and local organization, both of which are sensitive to
disruptions in leukocyte migration. Structural deficiencies
in granuloma architecture have been identified as a factor
underlying heightened susceptibility to tuberculosis [25].
The core set of genes driving significance of the leukocyte
endothelial migration gene set includes the matrix metal-
lopeptidase MMP-9 which has been shown to be an essen-
tial component of resistance through its roles in the cell
recruitment and tissue remodeling required for the forma-
tion of well organized granulomas [26]. Interestingly, the
Wnt signaling pathway, also uniquely identified by BETR,
has recently been shown to play an important role in
recruiting T cells to sites of inflammation through direct
induction of MMP-2 and MMP-9 [27].

The distinguishing feature of the genes uniquely identi-
fied by BETR is a small and/or noisy differential expres-
sion signal that is sustained over several time points. An

example is guanine nucleotide binding protein, alpha 13
(GNA13) shown in Figure 4. The GNA13 protein has been
found to play a key role in leukocyte migration [28] and
is expressed at subtly higher levels in the C57BL/6 (resist-
ant) mice compared to the C3H.B6-sst1 (susceptible)
mice with an average difference of 1.4 fold. The improved
power of BETR to detect such genes reveals leukocyte
migration as an interesting process that plays a potential
role in mediating the strain-specific differences in ability
to control tuberculosis.

Conclusions
Based on simulated data our proposed method, BETR,
outperforms three commonly used techniques in the
analysis of time-course data. This advantage is particularly
noticeable for genes with a small but sustained differential
expression signal. When the magnitude of differential
expression is of similar magnitude to background noise, it
is difficult to identify by examining each time point in iso-
lation. These patterns of differential expression become

An example of a gene uniquely identified by BETRFigure 4
An example of a gene uniquely identified by BETR. BETR has greater power than existing methods to detect genes with 
subtle and noisy differential expression patterns that are sustained over time. GNA13 is expressed at subtly higher levels in the 
TB resistant C57BL/6 mice compared to the more susceptible C3H.B6-sst1 mice.

0 20 40 60 80

10
.0

10
.5

11
.0

11
.5

GNA13

Hours post infection

Lo
g2

(I
nt

en
si

ty
)

C57BL/6
C3H.B6−sst1
Page 8 of 10
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:409 http://www.biomedcentral.com/1471-2105/10/409
easier to identify when the time series structure of the data
is taken into account; a small, noisy signal becomes iden-
tifiable if it is sustained across several adjoining time
points.

While BETR has no advantage when the differential
expression signal is transient, its relative performance
improves as the signal is sustained over additional time
points. This improvement is due to the fact that BETR
accounts for the correlation between successive time
points. The significance of this correlation increases as a
function of the number of differentially expressed time
points increases. Analysis of the mouse TB host-response
data confirms that our method has greater power to detect
such sustained differences in a real dataset. We identified
a set of genes involved in cell homing during immune
response that was not detected by the other methods. Sev-
eral genes in this class respond with small expression
changes whose significance is only apparent when their
sustained nature is taken into account. These results sug-
gest that poor control of tuberculosis infection is in part
driven by deficient regulation of cell migration factors,
resulting in poor granuloma formation and subsequent
inability to limit bacterial growth.

An inherent challenge in genomic data analysis is identi-
fying effects that are robust yet subtle. Based on results
from theory, simulated data, and application to the
genomic data presented here, we expect BETR to outper-
form existing methods under these circumstances. This
increased sensitivity has the potential to elucidate impor-
tant biological themes that may otherwise go unobserved.
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