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Abstract
Background: Protein-protein interactions underlie many important biological processes.
Computational prediction methods can nicely complement experimental approaches for identifying
protein-protein interactions. Recently, a unique category of sequence-based prediction methods
has been put forward - unique in the sense that it does not require homologous protein sequences.
This enables it to be universally applicable to all protein sequences unlike many of previous
sequence-based prediction methods. If effective as claimed, these new sequence-based, universally
applicable prediction methods would have far-reaching utilities in many areas of biology research.

Results: Upon close survey, I realized that many of these new methods were ill-tested. In addition,
newer methods were often published without performance comparison with previous ones. Thus,
it is not clear how good they are and whether there are significant performance differences among
them. In this study, I have implemented and thoroughly tested 4 different methods on large-scale,
non-redundant data sets. It reveals several important points. First, significant performance
differences are noted among different methods. Second, data sets typically used for training
prediction methods appear significantly biased, limiting the general applicability of prediction
methods trained with them. Third, there is still ample room for further developments. In addition,
my analysis illustrates the importance of complementary performance measures coupled with
right-sized data sets for meaningful benchmark tests.

Conclusions: The current study reveals the potentials and limits of the new category of sequence-
based protein-protein interaction prediction methods, which in turn provides a firm ground for
future endeavours in this important area of contemporary bioinformatics.

Background
Protein-protein interaction (PPI) plays a central role in
many biological processes. Information on PPIs can hint
at potential functions for uncharacterized proteins [1]. On
a broader scale, PPI networks allow for a systems-level
understanding of molecular processes underpinning life

[2]. Powered by high-throughput techniques, yeast two-
hybrid screens have been applied on a genomic scale to
several organisms for a systematic identification of PPIs
[3-9]. Related techniques have also been developed,
allowing researchers to address different aspects of PPIs
than yeast two-hybrid screens [10,11]. On the other hand,
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PPIs in protein complexes have been investigated by affin-
ity purification followed by mass spectrometry analysis
[12,13].

Concurrently, there have been intensive efforts to develop
computational methods for predicting PPIs. Early
approaches tried to mine patterns from genomic data that
are a priori expected for PPIs such as gene neighborhoods
and gene order [14], the existence of fusion genes [15,16],
the co-evolution of interaction partners [17], phyloge-
netic profiles [18] and similarity of phylogenetic trees
[19,20]. Some of these ideas have recently been explored
again in a refined manner [21,22]. Since domain-domain
interactions underlie many PPIs, they have also been
intensively studied [23-37]. More generalized concepts
than protein domains, such as linear sequence motifs or
sets of discontinuous sequence motifs defined on the
basis of protein structures, have also been explored [38-
48]. Approaches combining different types of data in a
self-consistent manner have been put forward [49,50]. In
addition, microarray gene expression data have been
explored as a potential source for predicting PPIs [51-53].

Recently, a unique category of sequence-based prediction
methods has been put forward - unique in the sense that
it does not require homologous protein sequences [54-
58]. This enables it to be universally applicable to all pro-
tein sequences unlike many of previous sequence-based
prediction methods. For example, domain-based meth-
ods do not work for query protein pairs without domain
information, and the Rosetta-stone methods [15,16] and
the co-evolution-based methods [17-21] can not be
applied to proteins without homologous protein
sequences. The new sequence-based, universally applica-
ble prediction methods would have far-reaching utilities
in many fields of biology research, if effective as claimed.
Upon close survey, however, I realized that many of them
were not properly benchmarked, e.g., tested on ill-sized
data sets often fraught with homologous proteins. Moreo-
ver, newer methods were often published without per-
formance comparison with previously proposed ones.
Thus, it is not clear how good they are and whether there
are significant performance differences among them.
These are important issues to investigate for both a true
advancement of this research field and maximizing the
benefits of computational predictions for the general
research community. In this work, I have implemented
and thoroughly tested four different methods using large-
scale, non-redundant data sets to address these issues.

Results and Discussion
Four methods for comparative benchmarking
In this study, I tested 4 different methods. The selection
criteria were 1) the original purpose of the method was to
predict physical binary PPIs, 2) the method is sequence-

based, yet does not require homologous protein
sequences and 3) either trainable versions of the software
are available or the description in the original report is
specific enough for me to confidently implement it on my
own. The four methods are as follows.

• M1: the signature product-based method proposed
by Martin and co-workers [55]. In this method, the
sequence information for a protein pair is encoded by
a product of signatures, which is then classified by a
support vector classifier (SVC) [59]. For individual
proteins, signatures are defined to be a culled set of
subsequences. I used their "sym" kernel since prelimi-
nary analysis showed that it worked slightly better
than their Gaussian kernel, i.e., exp(-0.5× [sym((A,
B),(A, B)) - 2×sym((A, B),(C, D)) + sym((C, D),(C,
D))]), where sym((A, B),(C, D)) is the "sym" kernel
for a pair of protein pairs A-B and C-D, and sym((A,
B),(A, B)) and sym((C, D),(C, D)) are analogously
defined. For the details, please refer to the original
paper [55].

• M2: the method developed by Pitre and coworkers,
also known as PIPE [58,60]. For a pair of proteins,
PIPE looks for the co-occurrences of their subse-
quences in protein pairs that are known to interact.

• M3: the method introduced by Shen and coworkers
[57]. In this method, a protein sequence is represented
by a reduced set of amino acids. Then, each protein
sequence is encoded by a feature vector that represents
the frequencies of 3 amino acid-long subsequences.
The feature vectors are then concatenated for a pair of
proteins and classified by an SVC.

• M4: the method developed by Guo and coworkers
[56]. A feature vector for a protein sequence comprises
its auto-correlation values of 7 different physicochem-
ical scales. The feature vectors are then concatenated
for a protein pair and classified by an SVC.

Cross-validation on the yeast and the human data
I first estimated their performance on the yeast and the
human data in 4-fold cross-validation (Fig. 1 and Table
1). The following points are apparent in Table 1. First, M1
significantly excels the others in terms of the area under
the receiver-operating characteristic (ROC) curve (AUC)
across both the yeast and the human data: see the Addi-
tional File 1 for detailed p values. Second, M2 significantly
outperforms the others in terms of recall-precision across
both the yeast and the human data. Third, M3 is least
effective regardless of which performance measure to use
for comparison. The dominance order among the four
methods is the same for both the yeast and the human
data, in spite of the fact that each data set is uniquely
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biased (see below). Moreover, these three points are
repeatedly observed in other analyses presented below.
Thus, the analysis in Fig. 1 and Table 1 appears to unravel
genuine performance differences.

Another point worth discussing is the use of two comple-
mentary performance measures in the above analysis.
AUCs are a widely used figure for assessing the perform-
ance of computational prediction methods. Since AUCs
are solely based on ranks of positives relative to those of
negatives, AUCs are to a large extent insensitive to abso-
lute numbers of false positives. This may be a significant
drawback. For example, for experimental biologists who
want to use prediction results for prioritizing candidates

for in-depth experimental follow-ups, the absolute
number of false positives may equally matter. Thus, esti-
mation of prediction performance by AUCs alone can be
misleading if absolute numbers of false positives become
as relevant. In this regard, recall-precision analysis is com-
plementary to AUCs because it is sensitive to absolute
numbers of false positives. For a clear demonstration of
this point, prediction performance for each method was
re-estimated using the original positive set (size N) and a
negative subset of size 10N randomly chosen from the
original 100N negative set. By reducing the negative set
size from 100N to 10N, we effectively reduced the number
of potential false positives by 10 fold. As shown in Table
1, AUCs change little between the 10N and the 100N sets

Cross-validation on the yeast and the human dataFigure 1
Cross-validation on the yeast and the human data. ROC and recall-precision plots for the four tested methods and the 
consensus method. The title of each plot is of the 'D1_D2_(ROC|RP)100' format, where D1 is the training data set, D2 is the 
testing data set, and '100' indicates that the size of the negative test data set is 100 times that of the positive test data set. 
'ROC' indicates an ROC plot whereas 'RP' indicates a recall-precision plot. When D1 and D2 are identical as is here, 4-fold 
cross-validation was performed. When not identical, D1 and D2 are used for training and testing, respectively.
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for all four methods. Yet, the P20R values (precision at
20% recall; see the Methods section) dramatically
improve for all four methods for the 10N set compared to
the 100N set. Similar improvements are also obvious in
recall-precision plots (not shown). Improvements coming
from the use of the 10N set instead of the 100N set are, of
course, not real: they are just artefacts coming from the use
of ill-sized negative data. The number of potential pro-
tein-protein pairings is expected to be > 100 times the
number of PPIs in the cell. In this sense, negative sets of
size 10N are grossly ill-sized, let alone 1N sets that were
used for benchmarking for some of the four methods in
the original reports. Even the 100N set may not still be
large enough. However, prohibitively high computational
expenses made it very difficult to use significantly larger
ones. Taken together, Table 1 illustrates the importance of
complementary performance measures along with data
sets right-sized in a physiological sense for meaningful
performance estimation of prediction methods. Given the
importance of right-sized negative data sets for meaning-
ful benchmark tests, all the results reported hereafter are
based on negative data sets of size 100N, unless otherwise
stated.

As noted above, M1 dominates in terms of AUC while M2
excels in terms of recall-precision. This dominance
reversal between AUC and recall-precision may be
inferred by the cross between the ROC plot of M1 and that
of M2 in Fig. 1. M2 is based on counting how frequently
pairs of subsequences in the query protein pair occur in
protein pairs known to interact. When the count is low, its
prediction outcome is no interaction. Since the count is
based on similarity of 20 amino acid-long segments, it is

more often low than high. This conservative prediction
behavior is thought to underlie its good performance in
terms of recall-precision. This core idea of M2 has been
successfully exploited in one form or another by other
related prediction methods [38-43].

The performance of M1 reported here appears not to be as
good as that reported in Fig. 1 of the original paper [55].
A very likely reason for this is that the two studies adopt
different definitions for true positives: the current study
defines a true positive as a pair of proteins known to inter-
act and predicted to interact, whereas the source code for
M1 that I downloaded from the original authors' website
defines a true positive as a pair of proteins assumed not to
interact and predicted not to interact.

Insight into the performance difference between M1 and 
M3
The performance contrast between M1 and M3 is interest-
ing, given that their approaches stem from overall similar
ideas. Methodological differences between them can be
decomposed into 1) feature representation of individual
proteins and 2) how to combine the features of individual
proteins to represent protein pairs. We investigated the
effects of the second factor on prediction performance
because this is a recurring issue whenever it is necessary to
encode protein pairs rather than individual proteins. M1
computes the outer product of individual feature vectors
(i.e., abT for two column vectors a and b) while M3 con-
catenates them. Specifically, we wanted to investigate
which of the two approaches - computing the outer prod-
uct of individual feature vectors as in M1 and concatenat-
ing them as in M3 - leads to better prediction
performance. To this end, we modified M1 such that the
outer product of individual feature vectors is replaced by
their concatenation, and the modified M1 was tested on
the yeast and the human data as in Table 1. Table 2 sum-
marizes the results. A comparison of M1's performance in
Tables 1 and 2 indicates that the two approaches lead to
similar prediction performance, even though the perform-
ance of M1 in Table 1 is significantly better than that of
M1 in Table 2 (all four p values < 10-7). This suggests that
the outer product approach for encoding protein pairs is
not a critical factor for the success of M1. Conversely, this
suggests that the poor performance of M3 is mostly attrib-
utable to its less effective feature representation of individ-
ual proteins. At first glance, this may seem odd because

Table 1: Cross-validation results on the yeast and the human 
data

Yeast 10N1 Yeast 100N
AUC P20R2 AUC P20R

M1 0.83 0.55 0.83 0.11
M2 0.79 0.82 0.79 0.33
M3 0.60 0.28 0.60 0.04
M4 0.75 0.35 0.75 0.05
C 0.85 0.84 0.85 0.34

Human 10N1 Human 100N
AUC P20R AUC P20R

M1 0.86 0.70 0.86 0.19
M2 0.81 0.91 0.81 0.51
M3 0.67 0.36 0.67 0.05
M4 0.83 0.59 0.83 0.12
C 0.91 0.95 0.90 0.67

1Evaluation using a negative subset of size 10N randomly chosen from 
the 100N negative set, where N is the size of the positive set.
2Precision values at 20% recall

Table 2: Prediction performance of the modified M1 on the yeast 
and the human data

Yeast 100N Human 100N
AUC P20R AUC P20R

M1 0.82 0.10 0.84 0.17
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the feature encoding system of M1 may look similar to
that of M3. The feature encoding system of M1 is, how-
ever, much more sophisticated than that of M3. M1's fea-
ture vectors are culled sets of 3 amino acid-long
subsequences that are based on 20 naturally occurring
amino acid types whereas M3's feature vectors are full sets
of 3 amino acid-long subsequences that are based on a
reduced set of 7 "amino acid" types. For efficient handling
of large feature vectors, M1 was implemented using spe-
cial data structures [55]. Apparently, these seemingly
small differences led to considerable performance differ-
ences. In this regard, it is also to be noted that a previous
study has shown that feature vector encoding systems like
that of M3 do not work well for PPI predictions [45]. The
respectable performance of M4 suggests that protein pairs
that interact do display some physicochemical properties
that not all potential protein pairs share.

Cross-species benchmarking
In the above analyses, prediction methods were trained
and tested on the same species data in 4-fold cross-valida-
tion. What about training prediction methods on the
yeast data and testing them on the human data or vice
versa? This is a relevant question to ask because many pre-
diction servers have been trained on one species' data and
yet predict also for other species' protein pairs. Although
it is not fully clear whether PPIs taking place in yeast are
of a fundamentally different nature than those taking
place in human, yeast PPI data that are typically used for
training prediction methods are certainly expected to con-
tain distinct biases from human PPI data. As such, it is not
clear, for example, whether prediction methods trained
with the human data work as well on the yeast data as
when trained with the yeast data.

Cross-species benchmarking resultsFigure 2
Cross-species benchmarking results. The title of each plot reads in the same way as in Fig. 1.
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In Table 3 and Fig. 2, we trained prediction methods with
the human data and tested them on the yeast data and vice
versa. Comparison of Table 3 with Table 1 reveals that
prediction methods are much more effective on the yeast
data when trained with the yeast data than when trained
with the human data. This is in spite of the fact that much
more data points were used during training with the
human data (34862 data points) than during training
with the yeast data (~5800 data points in 4-fold cross-val-
idation). This strongly suggests that data sets typically
used for training prediction methods contain peculiar
biases that limit the general applicability of prediction
methods trained with them. Likewise, prediction methods
are more effective on the human data when trained with
the human data than when trained with the yeast data.
However, in this case, the asymmetric numbers of data
points used for the two trainings might also have affected
the results. In sum, this analysis indicates that prediction
methods trained only with particular PPI data sets are
likely to have greater generalization errors than those sug-
gested by cross-validation with such particular sets - a
point overlooked by many of the four methods in their
original benchmarks.

Combined set benchmarking
The above analysis suggests that one straightforward way
of developing generally applicable prediction methods is
to use diverse training data so that they learn only features
common to diverse data. To test this idea, I trained the
four methods on the data that combines the yeast and the
human data (the combined set). Then, their prediction
performance was evaluated for three different sets (the
yeast data, the human data and the combined data) in 4-
fold cross-validation. Fig. 3 and Table 4 summarize the
results. First, the inclusion of the yeast data did not signif-
icantly affect the prediction performance of all four meth-
ods on the human data. This may be due to the fact that
the size of the human data is ~4.5 times larger than that of
the yeast data, dominating the combined set. Second, the
inclusion of the human data slightly degraded the per-
formance of some methods (M1 and M2) on the yeast

data, although the results in Table 4 are much better than
those in Table 3.

Consensus approach
Having carried out a thorough comparative analysis for
the four methods, a naturally arising question is how
good their performance is. Another formulation of this
question would be "would it be easy to develop another
method that consistently outperforms the four methods
in terms of both AUC and recall-precision?" Since the pri-
mary interest in this work is not to develop a novel
method that surpasses existing ones, I touched on this
issue simply by designing a consensus approach and ask-
ing how it compares with the four methods. As described
in the Methods section, I tried an SVC with a linear kernel
as a simple consensus approach, with all its parameters set
to default values. In this case, the feature vector consisted
of classification scores generated by the four methods.

Tables 1, 3 and 4 and Figs. 1, 2 and 3 summarize the
results ("C" below M4 in each Table). The consensus
approach consistently outperforms all four methods in
terms of both AUC and recall-precision, and this is even
without any serious attempts to optimize SVC parameters.
These results strongly suggest that there is still ample
room for further developments. The use of the linear ker-
nel in the consensus methods makes it possible to look
into how much each method contributes to them. Table 5
lists the mean coefficients of each method for each data
set. The mean coefficients were normalized by dividing by
their sum. The large contributions of M1 and M2 to the
consensus methods are consistent with the results pre-
sented above, as is the least contribution of M3. However,
since the four methods are not "orthogonal" to each
other, other drastically different linear combinations of
the four methods could lead to separating hyperplanes as
optimal as the one with the coefficients in Table 5. In
other words, the redundancy of the four methods makes
it difficult to infer, from the magnitudes of the linear SVC
coefficients, how useful each method is in forming the
consensus methods.

One potential way of evaluating the usefulness of the four
methods while overcoming the redundancy is to form
consensus methods that selectively include component
methods (M1 through M4) and compare their perform-
ance with that of full consensus methods that incorporate
all four. Table 6 shows the results for all possible combi-
nations of 2 or 3 methods, revealing the following points.
First, methods that combine M1 and M4 favourably rival
full consensus methods in terms of both AUC and recall-
precision. This is rather surprising because M1 and M4
tended to be much worse than M2 in terms of recall-pre-
cision in the above analyses. For this reason, it was
expected that consensus methods should incorporate M2

Table 3: Cross-species testing results

Human - Yeast1 100N Yeast - Human 100N
AUC P20R AUC P20R

M1 0.67 0.03 0.65 0.03
M2 0.72 0.06 0.67 0.04
M3 0.52 0.02 0.51 0.01
M4 0.62 0.02 0.62 0.02
C 0.73 0.07 0.68 0.04

1"A - B" signifies training with the A data and testing on the B data.
In this Table, prediction methods were trained with all the data from 
one species and tested on all the data from another species (no 4-fold 
cross-validation).
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in order to be good in terms of recall-precision. Appar-
ently, the simple linear SVC could learn how to combine
M1 and M4 in such a way that the combined predictions
are now good not only in terms of AUC but also in terms
of recall-precision, even without M2. Second, as expected,
it is consistently observed that exclusion of M1 leads to
decrease in AUC values. This is also true for M4 to some
extent. Third, the presence of M2 does not necessarily lead
to good performance in terms of recall-precision. In sum,
M1 and M4 appear to be sufficient to fully account for the
success of the full consensus methods.

Analysis of prediction results by protein types
Would there be any protein types that could be better pre-
dicted by the prediction methods tested in this study?
Could it be that some methods significantly outperform
others for special categories of proteins, even though their
overall performance as shown above is not as good as that
of others? To address these issues in a systematic way, I
analyzed the prediction results by the gene ontology (GO)
slims [61]. The GO slim annotations for the yeast and the
human proteins were downloaded from the GO project
website. Altogether 128 GO terms were considered. For

each combination of a data set (the yeast, the human or
the combined data) and an evaluation scheme (AUC or
P20R), Table 7 lists five GO terms for which best perform-
ance was achieved. The complete results are available in
Additional File 2. A first obvious point in Table 7 is that
the consensus method is the best-performing method in
terms of AUC. In terms of P20R, it is either the consensus
method or M2 that is most effective. This effectiveness of
M2 in terms of P20R is consistent with the analysis shown
above. Another obvious point in Table 7 is that the GO
terms for which best performance was achieved in the
yeast cross-validation do not overlap those for which best
performance was achieved in the human cross-validation.
This appears to reflect the distinct biases in the yeast and
the human data sets, as shown above in the cross-species
benchmark tests. Finally, GO terms for which good per-
formance was achieved in terms of AUC tend to overlap
those for which good performance was achieved in terms
of P20R. Specifically, the Spearman's rank correlation
coefficients between the ranking according to AUC and
that according to P20R are 0.67 (p value < 2.2×10-16), 0.68
(p value < 5.2×10-10) and 0.77 (p value < 2.2×10-16) for the
yeast, the human and the combined data, respectively.

Table 4: Testing results on the combined data set

Combined - Yeast 100N Combined - Human 100N Combined - Combined 100N
AUC P20R AUC P20R AUC P20R

M1 0.79 0.07 0.86 0.18 0.85 0.15
M2 0.79 0.24 0.82 0.52 0.81 0.48
M3 0.62 0.04 0.68 0.05 0.67 0.05
M4 0.74 0.05 0.83 0.11 0.81 0.10
C 0.84 0.31 0.89 0.63 0.88 0.59

Cross-validation on the combined dataFigure 3
Cross-validation on the combined data. The title of each plot reads in the same way as in Fig. 1.
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This indicates that a selective use of prediction methods
for proteins with such GO terms may yield more fruitful
results. It is to be noted that the prerequisite for this is just
either protein having such GO annotations because the
analysis in Table 7 was based on GO terms applying to
either protein in protein pairs.

Conclusions
In this work, I have implemented and thoroughly tested
four different sequence-based PPI prediction methods
that do not require homologous protein sequence. It
revealed 1) significant performance differences among

Table 5: Mean coefficients of the four methods in the linear SVC 
consensus methods

Yeast Human Combined

M1 0.35 0.30 0.13

M2 0.42 0.26 0.52

M3 0.08 0.12 0.11

M4 0.15 0.32 0.24

Table 6: Prediction performance of consensus methods that combine two or three methods

Results on the yeast data

Full model M2-M3-M4 M1-M3-M4 M1-M2-M4 M1-M2-M3 M1-M2 M1-M3 M1-M4 M2-M3 M2-M4 M3-M4

AUC 0.85 0.81 0.85 0.85 0.85 0.85 0.85 0.85 0.79 0.81 0.81

P20R 0.34 0.37 0.34 0.35 0.29 0.29 0.29 0.35 0.32 0.38 0.37

Results on the human data

Full model M2-M3-M4 M1-M3-M4 M1-M2-M4 M1-M2-M3 M1-M2 M1-M3 M1-M4 M2-M3 M2-M4 M3-M4

AUC 0.90 0.88 0.90 0.90 0.89 0.89 0.89 0.90 0.82 0.88 0.88

P20R 0.67 0.63 0.67 0.67 0.64 0.64 0.64 0.67 0.52 0.62 0.63

Results on the combined data

Full model M2-M3-M4 M1-M3-M4 M1-M2-M4 M1-M2-M3 M1-M2 M1-M3 M1-M4 M2-M3 M2-M4 M3-M4

AUC 0.88 0.86 0.88 0.88 0.86 0.86 0.86 0.88 0.81 0.86 0.86

P20R 0.59 0.54 0.59 0.59 0.54 0.54 0.54 0.59 0.48 0.54 0.54

Results on the cross-species testing, Human - Yeast1

Full model M2-M3-M4 M1-M3-M4 M1-M2-M4 M1-M2-M3 M1-M2 M1-M3 M1-M4 M2-M3 M2-M4 M3-M4

AUC 0.73 0.71 0.73 0.73 0.73 0.73 0.73 0.73 0.72 0.71 0.71

P20R 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.07 0.06 0.07 0.07

Results on the cross-species testing, Yeast - Human1

Full model M2-M3-M4 M1-M3-M4 M1-M2-M4 M1-M2-M3 M1-M2 M1-M3 M1-M4 M2-M3 M2-M4 M3-M4

AUC 0.68 0.65 0.68 0.68 0.67 0.67 0.67 0.68 0.67 0.65 0.65

P20R 0.04 0.03 0.04 0.04 0.03 0.03 0.03 0.04 0.04 0.03 0.03

1"A - B" signifies training with the A data and testing on the B data.
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Table 7: Analysis of prediction results by the gene ontology slims

Results on the yeast data sorted according to AUC

GO term # of cases Best method AUC GO term explanation

1 0005198 39513 C1 0.90 Structural molecular activity

2 0007124 9192 C 0.89 Pseudohyphal growth

3 0006997 10093 C 0.89 Nucleus organization

4 0007047 18668 C 0.89 Cell wall organization

5 0005215 44019 C 0.89 Transporter activity

Results on the yeast data sorted according to P20R

GO term # of cases Best method P20R GO term explanation

1 0005618 8689 M2 1.00 Cell wall

2 0006997 10093 C 0.97 Nucleus organization

3 0042254 44304 C 0.95 Ribosome biogenesis

4 0005198 39513 C 0.92 Structural molecule activity

5 0008289 10690 M2 0.92 Lipid binding

Results on the human data sorted according to AUC

GO term # of cases Best method AUC GO term explanation

1 0008907 245 C 1.00 Integrase activity

2 0004871 71939 C 0.92 Signal transducer activity

3 0051704 88280 C 0.92 Multi-organism process

4 0008219 98990 C 0.92 Cell death

5 0016740 244001 C 0.91 Transferase activity

Results on the human data sorted according to P20R

GO term # of cases Best method P20R GO term explanation

1 0009405 1017 M2 1.00 Pathogenesis

2 0008907 245 M2 1.00 Integrase activity

3 0004871 71939 C 0.91 Signal transducer activity

4 0004872 208752 C 0.88 Receptor activity

5 0016301 110554 C 0.88 Kinase activity
Page 9 of 13
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them and 2) ample room for further developments. In
addition, it illustrated the importance of complementary
performance measures along with right-sized data sets for
meaningful benchmark tests. Thus, the current work pro-
vides a firm ground for future endeavors in computational
prediction of protein-protein interactions. Regarding
practical use of predicted PPIs in experimental biological
research, PPI prediction results may be best used in con-
junction with other types of biological data.

Methods
Data sources
Yeast PPI data were collected from the Saccharomyces cere-
visiae core subset of the Database of Interacting Proteins
(DIP) [62]. Human PPI data were collected from the
Human Protein Reference Database [63]. The PPI data
from the two databases were refined as follows. First, for
each species (yeast and human), a representative set of
non-redundant protein sequences at the identity level of
40% was generated by clustering analysis with the CD-
HIT program [64]. Second, proteins whose length is less
than 50 amino acids were removed. This refinement proc-

ess led to 3867 and 17431 positive interactions for yeast
and human, respectively. High-quality negative PPI data
(i.e. protein pairs that are known not to interact) are also
needed for benchmarking, yet are not readily available.
Thus, one has to make up one on the basis of a priori
assumptions (e.g., proteins that reside in different subcel-
lular locations tend not to interact). A thorough analysis
by Ben-Hur and Noble [65] showed that one of the best
ways of generating negative PPI data is to randomly pair
proteins that are not known to interact. Thus, I generated
negative PPI data for each species by randomly pairing
proteins from its positive set. I made sure that no such ran-
dom pairs appear in the respective positive set. All the data
sets used in this work are available at http://www.marcot
telab.org/users/yungki.

Method implementation
M1 and M2 were implemented by downloading and
modifying the source code from the authors' websites,
respectively. M3 and M4 were implemented on my own
using the libsvm package [66]. The integrity of the M4

Results on the combined data sorted according to AUC

GO term # of cases Best method AUC GO term explanation

1 0008907 245 C 0.99 Integrase activity

2 0004871 77553 C 0.92 Signal transducer activity

3 0015267 7183 C 0.91 Channel activity

4 0004872 208752 C 0.91 Receptor activity

5 0051704 88280 C 0.91 Multi-organism process

Results on the combined data sorted according to P20R

GO term # of cases Best method P20R GO term explanation

1 0005618 8689 M2 1.00 Cell wall

2 0009405 1017 M2 1.00 Pathogenesis

3 0008907 245 M2 1.00 Integrase activity

4 0006997 10093 M2 0.97 Nucleus organization

5 0008289 10690 M2 0.92 Lipid binding

1C: the consensus method that integrates the four methods M1 through M4.
For each combination of a data set (the yeast, the human or the combined data) and an evaluation scheme (AUC or P20R), five GO terms are listed 
for which best performance was achieved. For each GO term, the number of protein-protein pairs in the data set is shown in the third column for 
which either protein in the pair is annotated with that GO term. Also shown are the best-performing method (column 4) and its performance 
(column 5).

Table 7: Analysis of prediction results by the gene ontology slims (Continued)
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implementation was verified by correspondence with the
authors.

Given that the number of PPIs in the cell is expected to be
much smaller than that of possible protein-protein pair-
ings, I initially tried to use negative PPI data of size > 2N,
where N is the size of the positive PPI data, for training
purposes. This procedure did not always lead to enhanced
performance compared to using negative data of size N. In
addition, it required unacceptably long computational
time for some methods. Thus, I used negative data of size
N for all training purposes. However, for testing purposes,
I used negative data of size 100N for physiologically
meaningful benchmarking (see the Results and Discus-
sion section).

Consensus approaches
Two different consensus approaches were tried, an SVC
with a linear kernel (the linear SVC) and an SVC with a
Gaussian kernel (the Gaussian SVC). The mathematical
details of SVC and the linear and Gaussian kernels can be
found in machine learning textbooks such as [59]. Both
were implemented using the libsvm package [66], with all
the parameters set to default values. Unlike the four meth-
ods, consensus approaches required additional training
using classification scores generated by the four methods
as input vectors. Thus, cross-validation was applied in a
two-stage manner to prevent double-training and ensure
unbiased performance estimation. The detailed scheme is
shown in Additional File 3. The two SVCs yielded similar
results. Here, I only discuss the results obtained with the
linear SVC.

Performance measure
Performance of each prediction method was measured in
4-fold cross-validation unless otherwise noted. Due to
prohibitively high computational expenses, 4-fold cross-
validation was carried out instead of 10-fold cross-valida-
tion, a more popular choice. Two figures were computed
for estimating prediction performance. One is AUC, a
widely used figure in these settings. The other is recall-pre-
cision. Recall is TP/(TP + FN), and precision is TP/(TP +
FP), where TP is the number of true positives (i.e. a pro-
tein pair known to interact predicted to interact), FN is
that of false negatives (i.e. a protein pair known to interact
predicted not to interact), and FP is that of false positives
(i.e. a protein pair assumed not to interact predicted to
interact). As a single figure summarizing full recall-preci-
sion analysis, I report precision values at 20% recall
(P20R) in the Tables. This is for reasons of space. How-
ever, all statistical analyses were based on full recall-preci-
sion plots. P values for estimating the statistical
significance of performance differences between pairs of
prediction methods were computed using the Wilcoxon
signed rank test and are available in the Additional File 1.

Abbreviations
PPI: protein-protein interaction; SVC: support vector clas-
sifier; AUC: area under the receiver operating characteris-
tic curve; P20R: precision value at 20% recall

Authors' contributions
YP designed the project, carried it out and wrote the man-
uscript.

Additional material

Acknowledgements
I thank Edward Marcotte, Traver Hart and Taejoon Kwon for critically 
reading the manuscript. This work was supported by grants to Edward Mar-
cotte from the NIH (GM067779, GM088624) and the Welch (F1515) and 
Packard Foundations. YP acknowledges financial support from the Deut-
sche Forschungsgemeinschaft (DFG-Forschungsstipendium).

References
1. Sharan R, Ulitsky I, Shamir R: Network-based prediction of pro-

tein function.  Mol Syst Biol 2007, 3:88.
2. Levy ED, Pereira-Leal JB: Evolution and dynamics of protein

interactions and networks.  Curr Opin Struct Biol 2008,
18(3):349-357.

3. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lock-
shon D, Narayan V, Srinivasan M, Pochart P, et al.: A comprehen-
sive analysis of protein-protein interactions in
Saccharomyces cerevisiae.  Nature 2000, 403(6770):623-627.

4. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y: A compre-
hensive two-hybrid analysis to explore the yeast protein
interactome.  Proc Natl Sci Acad USA 2001, 98(8):4569-4574.

5. Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, Sahalie J, Hiro-
zane-Kishikawa T, Gebreab F, Li N, Simonis N, et al.: High-Quality
Binary Protein Interaction Map of the Yeast Interactome
Network.  Science 2008, 322(5898):104-110.

6. Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain P-
O, Han J-DJ, Chesneau A, Hao T, et al.: A Map of the Interactome
Network of the Metazoan C. elegans.  Science 2004,
303(5657):540-543.

7. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL,
Ooi CE, Godwin B, Vitols E, et al.: A Protein Interaction Map of
Drosophila melanogaster.  Science 2003, 302(5651):1727-1736.

Additional file 1
Pvalues for estimating statistical significance of performance differ-
ence between pairs of different prediction methods.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-419-S1.DOC]

Additional file 2
Complete results for the analysis of prediction results by the GO slims.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-419-S2.PDF]

Additional file 3
Detailed scheme for a two-stage 4-fold cross-validation for the consen-
sus method.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-419-S3.DOC]
Page 11 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-10-419-S1.DOC
http://www.biomedcentral.com/content/supplementary/1471-2105-10-419-S2.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-10-419-S3.DOC
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17353930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17353930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18448325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18448325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18719252
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18719252
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18719252
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14704431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14704431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14605208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14605208


BMC Bioinformatics 2009, 10:419 http://www.biomedcentral.com/1471-2105/10/419
8. Rual J-F, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N,
Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, et al.:
Towards a proteome-scale map of the human protein-pro-
tein interaction network.  Nature 2005, 437(7062):1173-1178.

9. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H,
Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, et al.: A
Human Protein-Protein Interaction Network: A Resource
for Annotating the Proteome.  Cell 2005, 122(6):957-968.

10. Miller JP, Lo RS, Ben-Hur A, Desmarais C, Stagljar I, Noble WS, Fields
S: Large-scale identification of yeast integral membrane pro-
tein interactions.  Proc Natl Sci Acad USA 2005,
102(34):12123-12128.

11. Tarassov K, Messier V, Landry CR, Radinovic S, Molina MMS, Shames
I, Malitskaya Y, Vogel J, Bussey H, Michnick SW: An in Vivo Map of
the Yeast Protein Interactome.  Science 2008,
320(5882):1465-1470.

12. Gavin A-C, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau
C, Jensen LJ, Bastuck S, Dumpelfeld B, et al.: Proteome survey
reveals modularity of the yeast cell machinery.  Nature 2006,
440(7084):631-636.

13. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu
S, Datta N, Tikuisis AP, et al.: Global landscape of protein com-
plexes in the yeast Saccharomyces cerevisiae.  Nature 2006,
440(7084):637-643.

14. Dandekar T, Snel B, Huynen M, Bork P: Conservation of gene
order: a fingerprint of proteins that physically interact.
Trends in Biochemical Sciences 1998, 23(9):324-328.

15. Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA: Protein inter-
action maps for complete genomes based on gene fusion
events.  Nature 1999, 402(6757):86-90.

16. Marcotte EM, Pellegrini M, Ng H-L, Rice DW, Yeates TO, Eisenberg
D: Detecting Protein Function and Protein-Protein Interac-
tions from Genome Sequences.  Science 1999,
285(5428):751-753.

17. Pazos F, Helmer-Citterich M, Ausiello G, Valencia A: Correlated
mutations contain information about protein-protein inter-
action.  J Mol Biol 1997, 271(4):511-523.

18. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO:
Assigning protein functions by comparative genome analy-
sis: Protein phylogenetic profiles.  Proc Natl Sci Acad USA 1999,
96(8):4285-4288.

19. Goh C-S, Bogan AA, Joachimiak M, Walther D, Cohen FE: Co-evo-
lution of proteins with their interaction partners.  J Mol Biol
2000, 299(2):283-293.

20. Pazos F, Valencia A: Similarity of phylogenetic trees as indica-
tor of protein-protein interaction.  Protein Eng 2001,
14(9):609-614.

21. Juan D, Pazos F, Valencia A: High-confidence prediction of global
interactomes based on genome-wide coevolutionary net-
works.  Proc Natl Acad Sci USA 2008, 105(3):934-939.

22. Burger L, van Nimwegen E: Accurate prediction of protein-pro-
tein interactions from sequence alignments using a Bayesian
method.  Mol Syst Biol 2008, 4:165.

23. Wojcik J, Schachter V: Protein-protein interaction map infer-
ence using interacting domain profile pairs.  Bioinformatics
2001, 17(suppl_1):S296-305.

24. Sprinzak E, Margalit H: Correlated sequence-signatures as
markers of protein-protein interaction.  J Mol Biol 2001,
311(4):681-692.

25. Kim WK, Park J, Suh JK: Large scale statistical prediction of pro-
tein-protein interaction by potentially interacting domain
pair.  Genome Inform 2002, 13:42-50.

26. Nye TMW, Berzuini C, Gilks WR, Babu MM, Teichmann SA: Statis-
tical analysis of domains in interacting protein pairs.  Bioinfor-
matics 2005, 21(7):993-1001.

27. Riley R, Lee C, Sabatti C, Eisenberg D: Inferring protein domain
interactions from databases of interacting proteins.  Genome
Biol 2005, 6(10):R89.

28. Guimaraes K, Jothi R, Zotenko E, Przytycka T: Predicting domain-
domain interactions using a parsimony approach.  Genome Biol
2006, 7(11):R104.

29. Deng M, Mehta S, Sun F, Chen T: Inferring Domain-Domain
Interactions From Protein-Protein Interactions.  Genome Res
2002, 12(10):1540-1548.

30. Liu Y, Liu N, Zhao H: Inferring protein-protein interactions
through high-throughput interaction data from diverse
organisms.  Bioinformatics 2005, 21(15):3279-3285.

31. Chen X-W, Liu M: Prediction of protein-protein interactions
using random decision forest framework.  Bioinformatics 2005,
21(24):4394-4400.

32. Singhal M, Resat H: A domain-based approach to predict pro-
tein-protein interactions.  BMC Bioinformatics 2007, 8(1):199.

33. Iqbal M, Freitas AA, Johnson CG, Vergassola M: Message-passing
algorithms for the prediction of protein domain interactions
from protein-protein interaction data.  Bioinformatics 2008,
24(18):2064-2070.

34. Lee H, Deng M, Sun F, Chen T: An integrated approach to the
prediction of domain-domain interactions.  BMC Bioinformatics
2006, 7(1):269.

35. Ng S-K, Zhang Z, Tan S-H: Integrative approach for computa-
tionally inferring protein domain interactions.  Bioinformatics
2003, 19(8):923-929.

36. Akiva E, Itzhaki Z, Margalit H: Built-in loops allow versatility in
domain-domain interactions: Lessons from self-interacting
domains.  Proc Natl Acad Sci USA 2008, 105(36):13292-13297.

37. Kim WK, Henschel A, Winter C, Schroeder M: The Many Faces of
Protein-Protein Interactions: A Compendium of Interface
Geometry.  PLoS Comput Biol 2006, 2(9):e124.

38. Aloy P, Russell RB: Interrogating protein interaction networks
through structural biology.  Proc Natl Sci Acad USA 2002,
99(9):5896-5901.

39. Aytuna AS, Gursoy A, Keskin O: Prediction of protein-protein
interactions by combining structure and sequence conserva-
tion in protein interfaces.  Bioinformatics 2005, 21(12):2850-2855.

40. Betel D, Breitkreuz KE, Isserlin R, Dewar-Darch D, Tyers M, Hogue
CWV: Structure-Templated Predictions of Novel Protein
Interactions from Sequence Information.  PLoS Comput Biol
2007, 3(9):e182.

41. Espadaler J, Romero-Isart O, Jackson RM, Oliva B: Prediction of
protein-protein interactions using distant conservation of
sequence patterns and structure relationships.  Bioinformatics
2005, 21(16):3360-3368.

42. Li H, Li J, Wong L: Discovering motif pairs at interaction sites
from protein sequences on a proteome-wide scale.  Bioinfor-
matics 2006, 22(8):989-996.

43. Guo J, Wu X, Zhang D-Y, Lin K: Genome-wide inference of pro-
tein interaction sites: lessons from the yeast high-quality
negative protein-protein interaction dataset.  Nucl Acids Res
2008, 36(6):2002-2011.

44. Schelhorn S-E, Lengauer T, Albrecht M: An integrative approach
for predicting interactions of protein regions.  Bioinformatics
2008, 24(16):i35-41.

45. Gomez SM, Noble WS, Rzhetsky A: Learning to predict protein-
protein interactions from protein sequences.  Bioinformatics
2003, 19(15):1875-1881.

46. Wang H, Segal E, Ben-Hur A, Li Q-R, Vidal M, Koller D: InSite: a
computational method for identifying protein-protein inter-
action binding sites on a proteome-wide scale.  Genome Biol
2007, 8(9):R192.

47. Chou K-C, Cai Y-D: Predicting Protein-Protein Interactions
from Sequences in a Hybridization Space.  Journal of Proteome
Research 2006, 5(2):316-322.

48. Henschel A, Winter C, Kim W, Schroeder M: Using structural
motif descriptors for sequence-based binding site prediction.
BMC Bioinformatics 2007, 8(Suppl 4):S5.

49. Jansen R, Yu H, Greenbaum D, Kluger Y, Krogan NJ, Chung S, Emili
A, Snyder M, Greenblatt JF, Gerstein M: A Bayesian Networks
Approach for Predicting Protein-Protein Interactions from
Genomic Data.  Science 2003, 302(5644):449-453.

50. Ben-Hur A, Noble WS: Kernel methods for predicting protein-
protein interactions.  Bioinformatics 2005, 21(suppl_1):i38-46.

51. Zanivan S, Cascone I, Peyron C, Molineris I, Marchio S, Caselle M,
Bussolino F: A new computational approach to analyze human
protein complexes and predict novel protein interactions.
Genome Biol 2007, 8(12):R256.

52. Soong T-T, Wrzeszczynski KO, Rost B: Physical protein-protein
interactions predicted from microarrays.  Bioinformatics 2008,
24(22):2608-2614.

53. Ramani AK, Li Z, Hart GT, Carlson MW, Boutz DR, Marcotte EM: A
map of human protein interactions derived from co-expres-
sion of human mRNAs and their orthologs.  Mol Syst Biol 2008,
4:180.

54. Bock JR, Gough DA: Predicting protein-protein interactions
from primary structure.  Bioinformatics 2001, 17(5):455-460.
Page 12 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16189514
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16189514
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16189514
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16169070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16169070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16169070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18467557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18467557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16429126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16429126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16554755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16554755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9787636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9787636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10573422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10573422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10573422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10427000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10427000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9281423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9281423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9281423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10860738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10860738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11707606
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11707606
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18199838
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18199838
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18199838
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18277381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18277381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18277381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11473021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11473021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11518523
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11518523
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14571373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14571373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14571373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15509600
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15509600
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16207360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16207360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17094802
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17094802
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368246
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368246
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15905281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15905281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15905281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16234318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16234318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17567909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17567909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18641010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18641010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18641010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16725050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16725050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12761053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12761053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18757736
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18757736
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18757736
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17009862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17009862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17009862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15855251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15855251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15855251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16446278
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16446278
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18281313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18281313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18281313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18689837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18689837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14555619
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14555619
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17868464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17868464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17868464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16457597
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16457597
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17570148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17570148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14564010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14564010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14564010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18053208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18053208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18829707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18829707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18414481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18414481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18414481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11331240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11331240


BMC Bioinformatics 2009, 10:419 http://www.biomedcentral.com/1471-2105/10/419
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

55. Martin S, Roe D, Faulon J-L: Predicting protein-protein interac-
tions using signature products.  Bioinformatics 2005,
21(2):218-226.

56. Guo Y, Yu L, Wen Z, Li M: Using support vector machine com-
bined with auto covariance to predict protein-protein inter-
actions from protein sequences.  Nucl Acids Res 2008,
36(9):3025-3030.

57. Shen J, Zhang J, Luo X, Zhu W, Yu K, Chen K, Li Y, Jiang H: Predict-
ing protein-protein interactions based only on sequences
information.  Proc Natl Acad Sci USA 2007, 104(11):4337-4341.

58. Pitre S, North C, Alamgir M, Jessulat M, Chan A, Luo X, Green JR,
Dumontier M, Dehne F, Golshani A: Global investigation of pro-
tein-protein interactions in yeast Saccharomyces cerevisiae
using re-occurring short polypeptide sequences.  Nucl Acids Res
2008, 36(13):4286-4294.

59. Hastie T, Tibshirani R, Friedman J: The Elements of Statistical
Learning.  New York: Springer-Verlag; 2001. 

60. Pitre S, Dehne F, Chan A, Cheetham J, Duong A, Emili A, Gebbia M,
Greenblatt J, Jessulat M, Krogan N, et al.: PIPE: a protein-protein
interaction prediction engine based on the re-occurring
short polypeptide sequences between known interacting
protein pairs.  BMC Bioinformatics 2006, 7(1):365.

61. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM,
Davis AP, Dolinski K, Dwight SS, Eppig JT, et al.: Gene Ontology:
tool for the unification of biology.  Nat Genet 2000, 25(1):25-29.

62. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D:
The Database of Interacting Proteins: 2004 update.  Nucl Acids
Res 2004, 32(suppl_1):D449-451.

63. Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda CK,
Surendranath V, Niranjan V, Muthusamy B, Gandhi TKB, Gronborg M,
et al.: Development of Human Protein Reference Database as
an Initial Platform for Approaching Systems Biology in
Humans.  Genome Res 2003, 13(10):2363-2371.

64. Li W, Godzik A: Cd-hit: a fast program for clustering and com-
paring large sets of protein or nucleotide sequences.  Bioinfor-
matics 2006, 22(13):1658-1659.

65. Ben-Hur A, Noble WS: Choosing negative examples for the
prediction of protein-protein interactions.  BMC Bioinformatics
2006, 7(Suppl 1):S2.

66. Chang C-C, Lin C-J: LIBSVM: a library for support vector
machine.  2001 [http://www.csie.ntu.edu.tw/~cjlin/libsvm].
Page 13 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15319262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15319262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18390576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18390576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18390576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17360525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17360525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17360525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18586826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18586826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18586826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16872538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16872538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16872538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681454
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681454
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14525934
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14525934
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14525934
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16731699
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16731699
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16723005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16723005
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and Discussion
	Four methods for comparative benchmarking
	Cross-validation on the yeast and the human data
	Insight into the performance difference between M1 and M3
	Cross-species benchmarking
	Combined set benchmarking
	Consensus approach
	Analysis of prediction results by protein types

	Conclusions
	Methods
	Data sources
	Method implementation
	Consensus approaches
	Performance measure

	Abbreviations
	Authors' contributions
	Additional material
	Acknowledgements
	References

