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Abstract
Background: Searching for transcription factor binding sites in genome sequences is still an open
problem in bioinformatics. Despite substantial progress, search methods based on information
theory remain a standard in the field, even though the full validity of their underlying assumptions
has only been tested in artificial settings. Here we use newly available data on transcription factors
from different bacterial genomes to make a more thorough assessment of information theory-
based search methods.

Results: Our results reveal that conventional benchmarking against artificial sequence data leads
frequently to overestimation of search efficiency. In addition, we find that sequence information by
itself is often inadequate and therefore must be complemented by other cues, such as curvature,
in real genomes. Furthermore, results on skewed genomes show that methods integrating skew
information, such as Relative Entropy, are not effective because their assumptions may not hold in
real genomes. The evidence suggests that binding sites tend to evolve towards genomic skew,
rather than against it, and to maintain their information content through increased conservation.
Based on these results, we identify several misconceptions on information theory as applied to
binding sites, such as negative entropy, and we propose a revised paradigm to explain the observed
results.

Conclusion: We conclude that, among information theory-based methods, the most unassuming
search methods perform, on average, better than any other alternatives, since heuristic corrections
to these methods are prone to fail when working on real data. A reexamination of information
content in binding sites reveals that information content is a compound measure of search and
binding affinity requirements, a fact that has important repercussions for our understanding of
binding site evolution.

Background
Even though much progress has been made since the first
genomic sequences became available, the identification of
transcription factor (TF) binding sites in genomic
sequences remains a considerable challenge in bioinfor-
matics. In recent years, this problem has been aggravated

by the ever-increasing pace of genome sequencing, the
realization that junk DNA was a considerable misnomer
and by the need to reconcile inferences from high-
throughput assays with the underlying genome sequence.
New high-throughput technologies, like ChIP-chip and
ChIP-Seq [1,2], can contribute significantly to reduce the
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search space involved in the identification of some TF-
binding sites, but theoretical models of binding sites are
still required to gain insight into their function and mech-
anism, and to tackle the general problem of binding site
identification in the absence of high-throughput experi-
mental data.

Over the years, the quest for identifying TF-binding sites
has taken two natural and complementary approaches,
relying either implicitly or explicitly on experimental data.
On the one hand, de novo motif discovery methods like
MEME, consensus-building, Dyad-Analysis or Gibbs sam-
pling [3-6] use implicit experimental data to uncover
overrepresented candidate TF-binding sites in the pro-
moter regions of a set of genes that are known to be co-
expressed or co-regulated. On the other hand, different
binding site search methods have also been developed to
exploit explicit data on the sequence and location of
known TF-binding sites [7-10]. In binding site search, data
is provided by collections of aligned known sites often
referred to as motifs or prototype groups. This work deals
with binding site search methods and, in particular, with
those relying on the application of information theory to
DNA sequences.

Application of information theory to binding site 
recognition
Berg & von Hippel introduced a formal approach towards
modeling protein-DNA interaction based on the princi-
ples of statistical mechanics [10,11]. In their scheme, the
contribution to the reduction of binding free energy at
each position of a putative binding site is equated with its
relatedness to the most representative base occupying that
position in the prototype group (i.e. the consensus base),
leading to the so called Heterology Index (HI):

where  corresponds to the frequency of the con-

sensus base at position l of the prototype group, 

is the frequency of the base observed at position l of the
site and N is the number of sequences in the prototype
group (1/N acting as a small sample correction to avoid
zero frequencies). If one assumes positional independ-
ence, a global HI for the whole site can be computed by
summing HI(l) over all site positions [12].

Prior to Berg & von Hippel's statistical mechanics
approach, Schneider et al. first introduced information
theory to the problem of TF-binding site recognition as a
robust theoretical framework for defining the interactions

between binding sites and their related transcription fac-
tors [13]. Based on the theorems of communication over
a noisy channel introduced by Shannon [14], information
theory can be applied to the recognition of binding sites
by transcription factors by acknowledging that recogni-
tion of a site by a protein is, essentially, an information
process [15,16]. Just as our uncertainty over a message
decreases when we receive it, even if it is partly scrambled
by noisy interference, the uncertainty about the bases
occupying each position of an otherwise unknown
sequence decreases once a particular protein does bind it.
The amount of uncertainty associated with a variable is
called Shannon entropy, typically measured in bits, and
can be interpreted as the expectation of its information
content:

where N is the number of possible values (xi) the variable
X can take.

The expression for Shannon entropy is very similar to the
Boltzmann-Gibbs entropy in thermodynamics [17], but
they are quite different in substance [18,19]. As expected,
Shannon entropy (entropy henceforth) is maximal when
all possible states of X are equiprobable and independent,
since in this situation our uncertainty about which state
we will observe is the greatest and thus the amount of
information the variable conveys is also maximized. The
reduction in uncertainty (or information gain) that takes
place during communication over a noisy channel is
known as mutual information and is expressed in terms of
the difference in uncertainty over the original message (X)
before and after we receive a version of it (Y):

I(X;Y) = H(X) - H(X|Y) (3)

In the case of binding sites, and again after Schneider et al.,
the a priori uncertainty (Hbefore) over the base occupying
position l of a single sequence of length L is maximal and
dictated solely by the background composition of the
genome the sequence sits in:

where S corresponds to each of the four possible DNA
bases and f(S) represents its relative frequency in the
genome sequence.

If a particular protein binds a given sequence, however,
the amount of uncertainty on the bases at each position of
the sequence stems now from the relative frequency of
each base at each position of the prototype group for that
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protein. Thus, the a posteriori entropy (Hafter) at each posi-
tion of the sequence becomes:

where p(Sl) is the frequency of each base Sl at position l in
the prototype group.

Therefore, for each position, the reduction in uncertainty
(or mutual information) experienced when a protein
binds to a sequence can be expressed as the difference
between a priori (Hbefore) and a posteriori (Hafter) entro-
pies:

As defined above, mutual information provides a meas-
ure, in bits, of the importance of each position of a bind-
ing site in decreasing uncertainty. Assuming positional
independence, the term can be summed for all site posi-
tions, providing a measure for the whole site.

In the case of a TF-binding site, this equates with the spe-
cificity of the site recognition process. By definition,
mutual information has a maximum in H(X), corre-
sponding to the case of a noise-free channel (i.e perfect
site recognition; H(X|Y) = 0), and a minimum in 0 when
X and Y become independent (H(X|Y) = H(X)). For a
given protein, the specificity of the site recognition proc-
ess is a constant defined by H(X|Y). Therefore, mutual
information is maximal whenever H(X) is maximized,
which in the case of genomic sequences corresponds to an
equiprobable base distribution.

In their seminal paper, Schneider et al. also introduced a
related concept, termed Rfrequency, to denote the informa-
tion required to find sites in a genome in terms of both the
genome size and the number of sites it contains [13]. The
reasoning behind it is quite straightforward. With no
additional knowledge, a circular genome of size G will
contain G potential binding sites for a given protein. If we
assume that, a priori, all the sites have the same probabil-
ity (1/G) of being bound, we obtain the a priori entropy
as:

HG measures the initial uncertainty over any genome posi-
tion being bound by a single copy of the protein. Then
again, if a protein binds M specific sites in the genome and
we assume that these are bound with equal probability
and that the protein does not bind elsewhere, we derive
the a posteriori entropy HM:

Again, we can then express mutual information as the dif-
ference between a priori and a posteriori entropies:

As defined, Rfrequency is understood as the amount of infor-
mation required to distinguish M sites from the genomic
background. A key observation of Schneider et al. was that
Rfrequency approximates Rsequence only when considering an
equiprobable background. When moving from such an
ideal condition, Rsequence for a given prototype group
decreases steadily because of a net reduction in a priori
uncertainty (the restricted background becomes less
informative). In contrast, Rfrequency can stay constant or
may increase or decrease heavily as the sites the protein
recognizes become, respectively, either scarcer or more
abundant in the genome. For a transcriptional regulator,
and assuming that function is conserved [20], the number
of functional sites (and thus Rfrequency) will remain constant
regardless of the background. For other molecules, such as
restriction enzymes, the number of functional sites is
effectively the number of binding sites and Rfrequency will
increase or decrease in proportion to their expected fre-
quency in the new background [13]. To circumvent this
problem in the second scenario, the authors suggested the
use of an ad-hoc modification of Rsequence, (R*sequence), that
approximates Rfrequency in skewed genomes and equals Rse-

quence in an equiprobable background. This new term
turned out to be the Kullback-Leibler divergence or rela-
tive entropy [21] and was relabeled accordingly as relative
entropy (RE) by Stormo [22]:

As in Rsequence, positional independence may be assumed
in order to generate a global RE value for the whole site by
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summing up RE(l) for all positions. The Kullback-Leibler
divergence is also measured in bits, allowing direct com-
parison with Rfrequency. Following their initial introduction
by Schneider et al., both Rsequence and RE have been used by
different authors as a measure of the information content
in binding motifs [22,23].

Relative entropy was introduced without any formal or
intuitive derivation apart from its empirical relationship
with Rfrequency [13]. However, intuitive understanding of RE
can be easily attained if the term is written in expanded
form:

In this new formulation, the second term corresponds to
the a posteriori entropy (Hafter) of Rsequence, but the first
term represents now the cross-entropy between back-
ground and motif frequencies. In essence, cross-entropy
measures the amount of information required to express
the observed motif frequencies in terms of their genomic
counterparts. More intuitively, by simple manipulation of
the RE formula:

cross-entropy can be conceptualized as a weighted version
of a priori entropy (Hbefore). For each of the four possible
bases in a motif position (Sl), a priory entropy is now
weighted up or down depending on the ratio between the
motif and background frequencies for that particular base
p(Sl)/f(Sl). In this manner, if a base is for instance under-
represented in the genome but conserved in the motif, its
contribution to the a priori entropy will become higher
and, consequently, RE(l) will increase. Conversely, a con-
served base that is overrepresented in the genome will
contribute less. As a consequence, in a skewed back-
ground RE is larger for motifs relying on underrepresented
bases, agreeing with Rfrequency predictions, in which "rarer"
sites require additional information in order to be found.

Information theory-based methods for TF-binding site 
search
Apart from the aforementioned Heterology Index of Berg &
von Hippel, which serves as a search function directly, sev-
eral other methods have been proposed over the years to
search for TF-binding sites based on the availability of a
prototype group of experimentally validated binding sites.
Even though some of them were proposed before the
introduction of the information theory framework, they

all can be derived from the expressions for Rsequence and RE
seen above.

Staden first proposed a simple yet powerful index to eval-
uate the likelihood that a sequence was a binding site for
a given protein [24]. This method was later refined by Sch-
neider [23], who showed that it could be derived formally
from the expression of Rsequence and labeled it Ri, as the
information content of an individual binding sequence i:

where p(Si, l) is the frequency of occurrence in the proto-
type group of the base S observed at position l of the query
sequence i. As in the case of Rsequence, positional independ-
ence is assumed and the score for the full sequence i is the
sum of Ri(l) over all its positions.

Later on, Hertz et al. proposed the use of a term deriving
from RE to search for putative binding sites [25,26]:

that explicitly takes into account the background genomic
frequencies f(Si, l) and that again assumes positional inde-
pendence to obtain an additive score for the full site. In
this work we label this term Iseq to avoid confusion with
the relative entropy (RE) term from which it derives.

A fundamental problem of both Iseq and Ri is that they dis-
card information on the relative importance of each posi-
tion within the motif. This is clearly illustrated by a simple
example. Suppose that for a given position a of a motif we
have prototype frequencies pa(A) = 0.6, pa(C) = 0.4, pa(T)
= 0.0 and pa(G) = 0.0. If we observe a C in our query
sequence, then Ri(a) = Hbefore-log2(0.4). It is easy to see,
however, that if position b of the motif has prototype fre-
quencies pb(B) = 0.2, pb(C) = 0.4, pb(T) = 0.2 and pb(G) =
0.2 and we again observe a C in the query sequence, Ri(b)
= Hbefore-log2(0.4). That is, Ri is assigning the same score to
a C observed in a relatively well conserved position (a)
and to a C observed in a nearly random one (b). This
result is counterintuitive in the sense that we would expect
that a match in a conserved position be more significant
than a match in a poorly conserved one. O'Neill pointed
out this problem and suggested two alternative methods
to take into account the importance, or weight, of each
position in the prototype group [27,28].

A first obvious means to circumvent the loss of informa-
tion about the importance of each position within the
motif is to enter it explicitly into the search function as a
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weighting factor [27]. O'Neill applied this weighting
approach on the Heterology Index (HI) of Berg & von Hip-
pel, even though the principle can be applied as well to all
the search functions described above:

A more elegant solution to the same problem involves the
use of a differential Rsequence term. In this approach, Rse-

quence(l) is calculated both before (-) and after (+) the addi-
tion of the query sequence to the prototype group [28]. It
follows that if the query sequence concurs with the proto-
type, the expression:

will yield a positive value because R+
sequence(l) will be

improved by the addition, whereas a query sequence dis-
cordant with the prototype will result in a negative value.

Historically, there has been substantial dissention among
the appropriate definition of information content (Rse-

quence or RE) [20,22,23], the suitability of the positional
independence assumption [29,30] and the relative effi-
ciency of the abovementioned methods and later variants
[9,22,28] for locating TF-binding sites in both equiproba-
ble and skewed genomic backgrounds. Unfortunately, at
the time most of these methods were developed there was
not enough experimental data to test their shortcomings
and advantages in a real biological setting and, even in rel-
atively recent studies, most search efficiency results have
been presented on randomly generated backgrounds [9].
In this work we make use of newly available data on
experimentally validated binding sites across different
species to assess the limits of the different search methods,
to gauge the suitability of alternative definitions of infor-
mation content and to expose the drawbacks of bench-
marking on random sequence. The results reported here
point at substantial misconceptions in the derivation of
information theory methods, leading us to propose a
complete reformulation of the concept of information
content in binding sites. Consequently, they have deep
implications for the understanding of binding site evolu-
tion and for the assessment of binding site sequence func-
tion in the search and recognition processes.

Results and discussion
Assessment of search efficiency in an equiprobable 
genomic background
To assess the efficiency of the different information the-
ory-based methods on the problem of locating TF-binding
sites on an equiprobable genomic sequence, searches for

four different transcription factor binding sites were con-
ducted against the Escherichia coli genome (50.8% GC)
using collections of known binding sites derived from the
literature. The results shown in Figure 1 correspond to
Receiver-Operating Characteristic (ROC) curves [31] for
all methods when attempting to locate binding sites of
four different transcription factors (FIS, CRP, Fur and
LexA) in the E. coli genome. To generate the ROC curves
for each transcription factor, all its experimentally vali-
dated sites present in the genome were considered posi-
tives, while all other possible genome positions were
considered negatives. This is necessarily a strong assump-
tion (as some false positives might indeed be non-experi-
mentally validated true sites), but the same assumption
holds for all the assessed methods. As expected, all search
methods perform better for transcription factors with
more conserved motifs (i.e. larger Rsequence). However, Fig-
ure 1 also reveals remarkable differences and similarities
that had not previously been assessed.

The fact that Iseq and Ri perform similarly has been already
pointed out [22] and should not be surprising, since the
base distribution in E. coli is almost equiprobable and the
methods derive, respectively, from Rsequence and RE, which
are known to be equal on equiprobable backgrounds
[13]. Likewise, the similar results of Rsequence · BvH and
R'

sequence had been noted previously [28]. At first glance,
though, a more intriguing result stems from the nearly
exact equivalence of Berg & von Hippel (HI) and Ri indi-
ces, since they derive from conceptually different theoret-
ical frames. Careful examination of the Berg & von Hippel
index, however, reveals that it does not fulfill the role for
which it was intended. In principle, HI ought to take into
account the fitness of each query site position by contrast-
ing it with the consensus base at that same position in the
prototype group. However, a simple manipulation of the
original HI formulation reveals that it performs virtually
the same computation carried out by Ri. Specifically, the
expression for HI at each site position can be rewritten as:

and since the prototype group does not change for differ-
ent query sites, the first term of the expression is effectively
a constant (as is Hbefore in the expression for Ri). Therefore,
when summed up for all site positions, HI can be written
as:
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which is, for the intents and purposes of a binding-site
search function, equivalent to:

A new index, here termed FitomHI, that does explicitly
take into account the difference between consensus and
observed bases is introduced below, and its results are also
plotted in Figure 1:

By using the ratio between consensus and observed fre-
quencies as a multiplicative factor on a stripped-down ver-
sion of Ri, FitomHI ensures that the intuitive relationship
derived by Berg & von Hippel is explicitly taken into

account when scoring candidate sites. As it can be seen in
Figure 1, however, the FitomHI index does not outperform
other methods (such as Ri) suggesting that the hypothesis
behind the Berg & von Hippel scheme might have been
misguided.

The relatively poor performance of the FitomHI index
points up another obvious but nonetheless important
observation regarding the results of Figure 1. As it can be
readily seen, methods that do not take into account the
importance of each position in the prototype group (i.e.
non-weighted methods: Ri, HI, Iseq) consistently outper-
form those that do integrate this factor (weighted meth-
ods: Rsequence · BvH, R'

sequence), with the proposed FitomHI
index falling somewhat in between. As in the case of Fito-
mHI, this is at first glance an unexpected and counterintu-
itive result, since weighted methods have been shown
previously to perform well in searching [9] and to excel at
ranking TF-binding sites according to their experimental
binding affinity [27]. Moreover, both the notion of posi-

R const p Si i l

l

L

= + ( )⎡⎣ ⎤⎦
=
∑( .) log ( ),2

1

(20)

FitomHI l
p Sl

cons

p Sl
obs

p Sl
obs( )

( )

( )
log ( )= ⋅ ( )2 (21)

Search efficiency in the E. coli genomeFigure 1
Search efficiency in the E. coli genome. ROC curves for different IT-based binding site search methods attempting to 
locate known LexA, Fur, CRP and Fis sites on the E. coli genome. The plot is scaled to encompass a 1/10 true to false positive 
ratio for the transcription factor with the largest number of known sites (CRP; 210 sites). Vertical arrows indicate this same 
ratio for all transcription factors.
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tional weighting and of a ratio between consensus and
observed bases are intuitively appealing [28].

The reason why weighted methods perform poorly in
search mode when compared to non-weighted ones is,
nonetheless, relatively straightforward. By down-weight-
ing poorly conserved positions, weighted methods con-
centrate their scoring on a smaller number of conserved
positions, thereby increasing the chances that "correct"
bases might appear by chance at those positions during a
genome-wide search and thus leading to a larger number
of false positives. Conversely, non-weighted methods
bestow the same importance to all motif positions, lower-
ing the odds that false positives may arise by chance. In
this context, FitomHI can be seen as a crude weighted
method, since it is taking into consideration part of the
information profile through its explicit use of the consen-
sus-to-observed frequency ratio.

The superiority of non-weighted methods over weighted
ones in binding site searches raises important questions
regarding site recognition by proteins. To a certain extent,
the problem of ranking binding sites can be equated with
binding affinity, while the search problem ostensibly
equates with the protein's ability to locate its binding
sites. Traditionally, it has been assumed that binding site
affinity and binding site location are intrinsically linked at
the protein level and, thus, models developed for one
problem have applied to the other without much consid-
eration. However, the disparity in performance between
weighted and non-weighted methods on the search prob-
lem suggests that this may not be a good practice. The
intuitive concepts behind weighted methods and the Berg
& von Hippel approach were initially introduced to deal
with the ranking problem and thus they may not apply as
well to the related search problem. Furthermore, the main
difference between both kinds of methods (i.e. positional
weighting) points to a mechanistic difference between
these two different modes of action of DNA-binding pro-
teins.

The fact that non-weighted methods outperform weighted
ones in genome-wide searches suggests that information
lying in poorly conserved motif positions is being used
actively by the protein to discern true binding sites against
the genomic background. As mentioned above, the equal
appraising of all site positions by non-weighted methods
has the net effect of reducing the number of possible false
positives. However, given the nature of protein-DNA
interactions, it is unlikely that such discrimination is
achieved by specific recognition on all motif positions.
Instead, the uniform use of all site positions in non-
weighted methods seems to be taking into account sec-
ondary information (e.g. AT-richness) residing in poorly
conserved positions that can be of relevance to the protein

in order to make non-specific contacts or as a requirement
for optimal curvature or bendability. In contrast, the bet-
ter performance of weighted methods in ranking sites
according to their binding affinity indicates that con-
served motif positions are the main players in determin-
ing the strength of a site [27]. In agreement with this, the
mean difference in search efficiency between weighted
and non-weighted methods decreases (from 15.1% for Fis
to 0.3% for LexA) as motif conservation increases, suggest-
ing that there is an increasing dependence on secondary
information sources for proteins targeting less conserved
sites, as would be expected in that these sites remain func-
tional.

The resulting disparity between weighted and non-
weighted methods is not the only clue pointing towards
the use of additional information in the process of site
location. At Rsequence = 10.09 bits, CRP is substantially
underspecified to cover its 210 experimentally validated
sites, since Rfrequency predicts that at least 14 bits should be
necessary to specifically locate 210 sites on the E. coli
genome. This implies that, on average, 28% of the infor-
mation required to specify true CRP sites is not present as
positional information in Rsequence. In fact, the estimated
number of sites for CRP based on the equivalence
between Rsequence and Rfrequency is about 4,300, but even on a
1/30 true- to false-positive ratio (i.e. accepting ~6,100
false positives) the best search method is only able to
retrieve 80.7% of the true sites (data not shown). This
means that nearly 20% of true CRP sites are left unac-
counted for when using information theory-based meth-
ods for locating them. Moreover, the set of non-located
true sites displays very low Rsequence (6.17 bits), suggesting
again that other sources of information should be
exploited to improve these predictions [32]; the protein
could not function were it actually faced with the chal-
lenge of 100,000 pseudo-sites as this low information
level suggests. Experimental results have already hinted at
the existence of several complementary sources of infor-
mation for site location, such as curvature [33-36], pre-
recruitment or cooperative binding [37-39]. As formu-
lated originally, information theory-based methods can-
not take into account this additional information, but
they provide a robust theoretical foundation to develop
more complex methods that incorporate it explicitly. In
fact, several higher order models based on information
theory that include contextual information have already
been proposed [40-42].

Assessment of search efficiency on skewed artificial 
backgrounds
As mentioned above, skewed backgrounds disrupt the
equivalence between Rsequence and Rfrequency, as the decrease
in background entropy (Hbefore) reduces the net amount of
mutual positional information (Rsequence) while, depend-
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ing on their composition, sites can become either more or
less frequent (Rfrequency) in the skewed background. To cor-
rect for this effect, Schneider et al. introduced the concept
of Relative Entropy (RE), from which the search method Iseq
derives. By taking explicitly into account the background
frequency of the bases observed in a site, both RE and Iseq
compensate for the scarcity or overabundance of each par-
ticular base in the genome. To make a rigorous assessment
of the differences between weighted and non-weighted
methods on skewed backgrounds, here we introduce two
new search methods based on the weighted scheme pro-
posed by O'Neill [28]. Essentially, both methods are mod-
ifications of those proposed previously (Rsequence · BvH and
R'

sequence), but using RE instead of Rsequence as the weighting
factor:

and

RE' (l) = RE- (l) · (RE+ (l) - RE- (l)) (23)

Figure 2 and Figure 3 show the ROC curves for informa-
tion theory-based methods attempting to locate, respec-
tively, CRP and Fur binding sites against equiprobable,
66% GC- and 66% AT-skewed randomly generated back-
grounds, with their RE profile plots shown as insets in the
bottom-right corner. The curves show the mean and
standard deviation of three independent experiments and
thus reveal that the differences between the observed
methods are statistically significant. As it can be seen, all
methods substantially improve their results on equiprob-
able random backgrounds when compared to those
obtained on the E. coli genome. Even though the E. coli
genome is nearly equiprobable, this is to be expected,
since naive random sequences are not very good approxi-
mations of genome sequences, in which certain word fre-

RE BvH RE l HI l
l

L

· ( )· ( )=
=
∑

1

(22)

Search efficiency for E. coli CRP sites in a skewed random backgroundFigure 2
Search efficiency for E. coli CRP sites in a skewed random background. ROC curves for search methods trying to 
locate 210 CRP binding sites on randomly generated backgrounds. The ROC curve depicts the mean and standard deviation of 
three independent experiments (searches against three independently genrerated backgrounds). The plot is scaled to encom-
pass a 1/10 true to false positive ratio (2100 false positives) in the equiprobable background. RE' results, which completely 
overlap RE · BvH ones, are not shown for clarity. The RE profiles for CRP against the different backgrounds are shown in the 
bottom-right inset.
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quencies can be heavily biased [43,44] despite the overall
base frequencies. As a consequence, reports on the effec-
tiveness on TF-binding site search methods based on
searches against random sequences should be approached
with some caution.

The motifs for both CRP and Fur TF-binding sites are man-
ifestly AT-rich and, as expected, binding sites for both pro-
teins become more or less apparent in, respectively, GC-
or AT-skewed backgrounds. In accordance with this fact,
RE-based methods (i.e. Iseq and RE · BvH), which have
been devised to take into account explicitly the deviation
of sites from the background skew, consistently outper-
form Rsequence-based methods on skewed backgrounds,
although there are noticeable differences depending on
the background skew and the motif searched. In GC-rich
backgrounds, both AT-rich sites are relatively easy to
locate. Thus, the downplaying of the few G/C positions
carried out by the RE non-weighted method (Iseq) is not a
strong advantage over its Rsequence counterpart (Ri). This

does not hold true for weighted methods, which discard a
large proportion of the AT-rich sites by focusing on con-
served positions, allowing RE · BvH to clearly outperform
Rsequence · BvH when looking for CRP. On the other hand,
searches on AT-rich backgrounds yield a completely dif-
ferent picture. By playing down the dominant A/T posi-
tions in the motifs and emphasizing the scant G/C ones,
RE substantially alters the shape of the information pro-
file. As a consequence, RE-based methods are able to sep-
arate Fur and CRP sites from the AT-rich background
much more efficiently than Rsequence-based methods, and
this applies both to weighted and non-weighted methods.

Assessment of search efficiency on skewed genomes
The results of search methods on randomly generated
skewed backgrounds support the notion that deviation
from the background skew is an important element for
proteins targeting binding sites in skewed genomes.
Accordingly, it has been suggested that the use of RE-
based methods is indicated when looking for TF-binding

Search efficiency for E. coli Fur sites in a skewed random backgroundFigure 3
Search efficiency for E. coli Fur sites in a skewed random background. ROC curves for search methods trying to 
locate 45 Fur binding sites on randomly generated backgrounds. The ROC curve depicts the mean and standard deviation of 
three independent experiments (searches against three independently genrerated backgrounds). The plot is scaled to encom-
pass a 1/10 true to false positive ratio (450 false positives) in the equiprobable background. RE' results, which completely over-
lap RE · BvH ones, are not shown for clarity. The RE profiles for Fur against the different backgrounds are shown in the 
bottom-right inset.
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sites in skewed genomes [13,22,25]. However, one must
remember that these results were based on artificial
sequences. Exploiting the recent availability of data on
both CRP and Fur regulons in species with AT- and GC-
skewed genomes (Pseudomonas aeruginosa and Haemo-
philus influenzae), searches for CRP and Fur binding sites
against real genomic backgrounds were carried out to test
the validity of this hypothesis. ROC curves for RE-based
and Rsequence-based methods trying to locate P. aeruginosa,
H. influenzae and E. coli Fur and CRP binding sites in their
corresponding genome sequences are displayed in Figure
4 and Figure 5.

A main result from the above searches against real
genomic backgrounds is that RE-based methods tend to
perform worse than, or at best similarly to, Rsequence-based
ones, in contrast to the results obtained previously on ran-
domly generated backgrounds (Figure 3). This is particu-
larly true for Fur in P. aeruginosa (Figure 4). In this setting,
the RE-derived method Iseq performs on a par with the
weighted Rsequence · BvH index, while its Rsequence-based

equivalent (Ri) produces the best result. The Rsequence and
RE profiles for the P. aeruginosa Fur prototype group are
shown in Figure 6a. As it can be seen, the P. aeruginosa Fur
profile shape is different from that observed in E. coli, but
its consensus sequence and overall Rsequence remain highly
similar. Moreover, searches for P. aeruginosa Fur sites
using the E. coli prototype group make the difference
between Ri and Iseq even starker (data not shown). There-
fore, the poor efficiency of Iseq in this setting cannot lie in
a dramatic change of the prototype group, but specifically
in the transition from a randomly generated background
to a true genome.

It is a counter-intuitive fact that in P. aeruginosa and other
genomes with similar GC-skew the distribution of contin-
uous AT-rich stretches is markedly non-uniform when
compared to that of randomly generated GC-skewed
backgrounds (Figure 7). Remarkably, the corresponding
effect is observed in H. influenzae and other AT-rich
genomes, which show both a higher number of GC-rich
stretches and a lower number of AT-rich stretches than

Search efficiency for Fur sites in E. coli and P. aeruginosaFigure 4
Search efficiency for Fur sites in E. coli and P. aeruginosa. ROC curves for search methods trying to locate P. aeruginosa 
and E. coli Fur binding sites on, respectively, P. aeruginosa and E. coli genomes. Abbreviations: Eco – E. coli, Hin – H. influenzae. 
The plot is scaled to encompass a 1/10 true to false positive ratio (320 false positives) in P. aeruginosa.
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expected. The net result of these deviations from expecta-
tion is that the overweighting of anti-skew (and under-
weighting of pro-skew) positions carried out by RE-based
methods backfires when looking for sites in real skewed
genomes. This mismatch is most obvious when looking
for Fur sites (70.72% AT) in the GC-rich P. aeruginosa
genome (Figure 4), where the distribution of 70% AT
stretches more than doubles the random expectation (Fig-
ure 7). This leads RE-based methods to yield high false
positive rates because many AT-rich stretches with other
functions do easily qualify as putative Fur sites when
examined under RE. This constitutes a solid blow to RE-
based methods, because P. aeruginosa Fur sites are pre-
cisely the type of problem RE was introduced to deal with
[45]. In the case of H. influenzae CRP sites (69.89% AT),
the mismatch is not so large, because 70% AT stretches do
not deviate so strongly from expectation (down by 25%).
However, it is still enough to render the weighting scheme
of RE useless, if not counterproductive (Figure 5).

As in the case of equiprobable backgrounds, these results
stress again the need to validate search methods against
real genomic data in order to derive meaningful results.
Moreover, they also point out that the rationale for the
derivation of RE and its resulting indices (Iseq, RE · BvH)
may be partly flawed. Schneider et al. proposed RE as a
way to extend the equivalence between Rsequence and Rfre-

quency in equiprobable backgrounds to skewed genomes.
This line of reasoning has later been utilized by Stormo
and coworkers [25,26]. A main flaw in their argument
stems from the fact that Rfrequency was derived from the
expected frequency of occurrence of sites in a uniform
background. As noted above, however, in a real skewed
genome the occurrence of anti-skew stretches can be far
from uniform, and the net effect of this biased distribu-
tion is to make the use of RE meaningless or even counter-
productive, as in the case of Fur sites in P. aeruginosa.

Rsequence is free from the artifacts created by deviations in
oligonucleotide distribution and similar factors involved

Search efficiency for CRP sites in E. coli and H. influenzaeFigure 5
Search efficiency for CRP sites in E. coli and H. influenzae. ROC curves for search methods trying to locate H. influen-
zae and E. coli CRP binding sites on, respectively, H. influenzae and E. coli genomes. Abbreviations: Eco – E. coli, Hin – H. influen-
zae. The plot is scaled to encompass a 1/10 true to false positive ratio (450 false positives) in H. influenzae.
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Information profile for P. aeruginosa Fur and H. influenzae CRP motifsFigure 6
Information profile for P. aeruginosa Fur and H. influenzae CRP motifs. (A) Rsequence and RE profiles for Fur on the P. 
aeruginosa genome. (B) Rsequence and RE profiles for CRP on the H. influenzae genome, and for the mean Rsequence profile obtained 
from 10,000 45-site subsamples of the 210 E. coli binding sites. Vertical bars show the standard deviation.
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in the search problem in that it is a measure only of posi-
tional information. As such, it is a more reliable indicator
of motif positional information content than RE. There-
fore, Rsequence-derived methods (e.g. Ri) should be
expected, on average, to perform better than RE-based
ones. It should be pointed out here that an often implied
argument for the use of RE over Rsequence, the advent of neg-
ative information content in skewed genomes, is based on
a misconception. Computing Rsequence for a collection of E.
coli sites against a skewed background may indeed gener-
ate negative Rsequence values, but this perplexing result is an
artifact of the transplantation of the E. coli motif onto a
skewed background rather than a fault in the formulation
of Rsequence. On a skewed genome, the a priori entropy (Hbe-

fore) is reduced because of the background skew. To obtain
negative values for Rsequence, nucleotide frequencies in
some positions of the binding motif must be close to

equiprobability. In this case, the a posteriori entropy
(Hafter) will be greater than the a priori one, leading to a
negative Rsequence value. This is indeed the case of most
non-conserved positions in many E. coli motifs when eval-
uated on a skewed background. However, it is easy to see
that, for real binding sites evolving in a skewed genome,
positions that are not important for binding will remain
at background genomic frequencies (instead of being
actively selected towards equiprobability), thus leading to
positive or, at the most, zero values for Rsequence.

The failure of RE-based methods to outperform Rsequence-
based ones in real genomes casts serious doubts on the
validity of this approach and its main underlying assump-
tion, the equivalence between Rfrequency and Rsequence. How-
ever, the inadequacy of RE to deal with non-uniform n-
mer frequencies is not the only result pointing to a demise

Observed vs. expected frequency of 20-mers in genomesFigure 7
Observed vs. expected frequency of 20-mers in genomes. Mean ratio between observed and expected 20-mers in real 
genomes versus randomly generated sequences. Ratios were computed independently for 3 different genomes and 3 random 
sequences of similar %GC composition. Vertical bars show the standard deviation of these ratios. Genomes used for calcula-
tions: E. coli str. K-12 substr. MG1655 [50.8% GC], P. aeruginosa PAO1 [66.6% GC], H. influenzae Rd KW20 [38.1% GC], Col-
wellia psychrerythraea 34H [38.0% GC], Salinibacter ruber DSM 13855 [66.2% GC], Thiobacillus denitrificans ATCC 25259 [66.1% 
GC], Enterococcus faecalis V583 [37.5% GC], Anaplasma marginale str. St. Maries [49.8% GC] and Nitrosococcus oceani ATCC 
19707 [50.3% GC].
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of the equality between Rfrequency and Rsequence. A main cor-
ollary of the hypothesis for deriving RE is the assumption
that when a genome drifts towards skew in its base com-
position, DNA-binding proteins shall evolve to recognize
binding sites with an anti-skew composition, thus maxi-
mizing the efficiency of binding site location at a lesser
cost in overall base conservation. This line of reasoning
was explicitly developed by Schneider et al. They noted
that sites with anti-skew composition would eventually
lose positional information (Rsequence) in the course of evo-
lution, since selective pressure towards site conservation
would be reduced because the site would be over-speci-
fied and therefore easier to locate [13]. In other words,
integrating anti-skew composition in a measure of posi-
tional information, as RE does, would compensate for the
loss of standard positional information (Rsequence). The
results shown in Figure 4 and Figure 5, however, suggest
that this is not generally the case.

On the one hand, the P. aeruginosa Fur protein seems to
control a regulon of about the same size (32 known sites)
as that of E. coli Fur (51 known sites) and its motif posi-
tional information content (Rsequence = 13.69 bits) is simi-
lar to that of E. coli Fur (Rsequence = 14.31 bits). The ratio
between these Rsequence values is in accordance with previ-
ous estimates for Fur information content based on opti-
mized alignments for a smaller number of sites (20 sites
and 18.6 bits for P. aeruginosa Fur; 24 sites and 19.6 bits
for E. coli Fur [46]). Sitting in the 66.56% GC P. aeruginosa
genome, however, the Fur motif has a markedly anti-skew
composition (70.72% AT). The resulting RE value of
20.72 bits should allow Fur to target specifically as few as
two sites in the whole genome. Thus, if the main hypoth-
esis behind RE were true, P. aeruginosa Fur could have dis-
carded a substantial part of its positional information
(Rsequence) by relying on anti-skew composition. Instead, P.
aeruginosa Fur maintains a Rsequence value similar to that of
E. coli Fur despite the loss in genomic entropy (Hbefore) due
to genomic skew (i.e. P. aeruginosa Fur sites are more con-
served that E. coli Fur sites). On the other hand, in the
38.1% GC-rich H. influenzae CRP sites are strongly con-
served (Rsequence = 17.83 bits) in comparison to those of E.
coli CRP (10.09 bits). A plausible explanation for this
effect could be an error due to small sample (there are 45
described CRP sites in H. influenzae for 210 in E. coli), but
using the small sample correction proposed by Schneider
et al. on H. influenzae CRP sites does only decrease H.
influenzae CRP Rsequence to 16.51 bits [13]. Moreover, iter-
ated sub-sampling of the 210 E. coli sites into 45-site pro-
totype groups does not yield enough deviation to explain
the observed 7 bit increase either (Figure 6b). In fact, the
maximum Rsequence value for any of the 10,000 sampled
groups is still 4 bits away (13.89 bits) from the H. influen-
zae profile. As mentioned above, a corollary of RE is the
prediction that DNA-binding motifs should tend to

evolve against the skew in order to profit from easier loca-
tion. However, the H. influenzae CRP protein is not relying
substantially on anti-skew composition to detect its sites.
Instead, efficient location of these AT-rich sites in the AT-
rich background of H. influenzae seems to be based
entirely on increased Rsequence. If anything, both H. influen-
zae CRP and P. aeruginosa Fur sites seem to have adapted
towards the skew, not against it. The P. aeruginosa Fur
motif is 70.72% AT (for 74.71% AT in E. coli), while the
H. influenzae CRP motif is 69.89% AT (for 64.68% AT in
E. coli). In summary, both motifs have moved towards the
skew, and both have become more conserved.

A reappraisal of information content in binding sites
Since its introduction in 1986 [13], the assumption of
equality between Rfrequency and Rsequence that lies at the core
of RE has been considered a de facto axiom of informa-
tion theory applied to binding sites and has shaped the
way we think about binding site search, specificity and
evolution. However, the results presented above stand in
open contradiction with the predictions made by this
hypothesis and thus beg us to reconsider its validity and
applicability.

In 2000, Schneider showed by means of a genetic algo-
rithm that, given some constraints, Rsequence would evolve
towards Rfrequency [20]. Later on, Kim et al. applied a more
formal mathematical treatment to the same problem and
concluded that deviations between Rsequence and Rfrequency
are constrained to a very small range [47]. An important
assumption in both analyses is the use of an on-off switch
model for the transcription factor (i.e. sites are either rec-
ognized or not according to a threshold). Even though
some studies suggest that the transition from sites to non-
sites is relatively sharp for some transcription factors [36],
the use of an on-off model is still a strong assumption,
since it is well known that transcription factors present a
varied range of binding affinities for the binding sites they
recognize [48-51]. Therefore, the use of a "black/white"
approach centers the ensuing analysis exclusively on the
problem of how the protein identifies its target sites in the
genome, disregarding completely any functional require-
ments of the protein for differentially regulating its differ-
ent binding sites. It is worth noting here that a last implicit
constraint in both analyses is the assumption of an
equiprobable background. This is important because, as it
will be shown, it is only in such a context that Rsequence
equates to a significant degree with search and, therefore,
with Rfrequency.

As outlined in the introduction, Rsequence and Rfrequency meas-
ure subtly different things. Rsequence is associated with the
uncertainty of the recognition process, while Rfrequency
measures the uncertainty in terms of distinguishing a
sequence from the genomic background. Therefore, Rfre-
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quency is intrinsically linked to the search problem, but Rse-

quence is only partly related to it. In an equiprobable
background, where the equality between Rsequence and Rfre-

quency was first postulated [13], Rsequence is substantially
related to the search problem. This is because location of
binding sites by the protein proceeds by Brownian diffu-
sion and contacts with DNA in a random manner. Con-
tacts between DNA and protein can be non-specific
(totally electrostatic) with non-sites or specific for sites
according to the protein profile (true sites and pseudo-
sites) [52]. Thus, search efficiency improves as the affinity
of the protein for its true sites increases (i.e. Rsequence
increases), since this implies that fewer genomic positions
will qualify as pseudo-sites for the protein. Therefore, the
protein will spend less time engaged in specific binding
with pseudo-sites during its random walk and the average
time to locate its true sites will be significantly reduced. In
this setting, Rsequence can indeed approximate Rfrequency to a
substantial degree. This is a sad coincidence, because it
tricks us into assuming that ranking and searching are
equivalent problems for the protein. In doing so, we thus
disregard any constraints on Rsequence imposed by the rank-
ing problem.

By means of a little thought experiment it can be shown
that ranking and searching are in fact separate processes
operating simultaneously on TF-binding sites. One can
easily envision a 22 bp motif for a transcription factor that
had 5 totally conserved and 17 equiprobable positions.
Such a motif would have an Rsequence value of 10 bits,
roughly the same amount as E. coli CRP. The transcription
factor recognizing such a motif would still be able to
locate its binding sites with relative high efficiency on an
equiprobable background, but it would have no way of
gradating its response among them. It would, effectively,
have become an on/off switch. Since it is known that this
is not the way many transcription factors operate with
regard to their sites, one must acknowledge that there are
at least two separate processes (affinity ranking and site
search) contributing to Rsequence. As a matter of fact, it is the
way in which these two factors are integrated into Rsequence
that will determine the degree of equivalence between Rse-

quence and Rfrequency.

For any given motif size, the values of Rsequence at each posi-
tion yield two obvious limits with regard to the possible
range of an affinity ranking function. On the one hand, in
a motif with fully conserved positions (maximum motif
Rsequence) all sites are identical and cannot be differentially
regulated, even though they can be located in the genome
with the highest efficiency. On the other hand, a motif in
which all positions are equiprobable (minimum Rsequence)
makes it impossible either to distinguish among sites or to
discern them against an equiprobable background. Obvi-
ously, as in the case of the thought experiment described

above, there are many combinations of both situations
that also yield minima for ranking range while providing
different degrees of search efficiency and Rsequence values.
Between these extremes, however, there lie a wide scope of
combinations providing different Rsequence values and affin-
ity ranges. It must be noted, however, that Rsequence does
not provide direct information on the transcription factor
operating range. Instead, this information can be found
by examining the distribution of affinity values for each
binding site of the prototype group.

Weighted methods were originally developed for ranking
binding sites according to their experimental affinity and
are thus better suited than non-weighted indices to pro-
vide an estimation of affinity range for different transcrip-
tion factors [27]. Figure 8a shows the affinity ranges based
on the Rsequence · BvH index for the different transcription
factors analyzed in this work. As it has been described pre-
viously, Rsequence · BvH affinity ranges for transcription fac-
tors are highly linear [27]. Therefore affinity ranges can be
equated approximately with the slope of their linear cor-
relation, as this captures the dispersion in affinity values.
Useful as they are to assess the relative binding affinity of
sites, however, affinity plots based on ranking indices like
Rsequence · BvH do not capture the effective operating range
of a protein. This is because they disregard the search
problem by focusing exclusively in the prototype group,
much in the same manner as the Rfrequency approach disre-
gards ranking by focusing on search. Clearly, if binding
affinity is to be defined meaningfully in a genomic con-
text, it must be defined as the average occupancy of a site
by a protein. This suggests that effective binding affinity
must be a compound function of both the affinity of the
protein for the site (ranking) and its ability to locate it
within the genome (search). Such a compound function
can be approximated to a certain extent by modulating the
ranking index (Rsequence · BvH) for each site with the frac-
tion of false positives required to locate it, thus combining
information on both the ranking and search processes.
The results of this compound function are presented in
Figure 8b and they reveal how transcription factors can
make use of the search process to alter dramatically the
linear shape of their affinity range.

If one assumes an equivalent protein concentration for
the different E. coli transcription factors shown in Figure
8b, it can be seen that transcription factors targeting
motifs with low Rsequence values, like Fis, present a strong
dispersion in their effective binding affinity, since all but
the best sites become rapidly indiscernible from the back-
ground. For higher Rsequence values, transcription factors
can exploit their potential affinity range in different man-
ners, aiming at reaching a balance among site conserva-
tion (Rsequence), the desired effective affinity range and a
viable concentration of transcription factor. Based on the
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Standard and effective affinity range for different transcription factorsFigure 8
Standard and effective affinity range for different transcription factors. (a) Estimation of the affinity range for the dif-
ferent transcription factors analyzed in this work. For each transcription factor, the affinity range is represented as the distribu-
tion of affinities for all its experimentally determined binding sites. The affinity of each binding site is estimated using the Rsequence 
· BvH ranking index. (b) Estimation of the effective affinity range. For each transcription factor, the effective affinity range is rep-
resented as the distribution of normalized affinities for all its experimentally determined binding sites. Normalized affinities are 
estimated by normalizing the Rsequence · BvH ranking index for each site with the number of false positives required to find that 
site. For comparison purposes, in both affinity range plots Rsequence · BvH values (Y-axis) are normalized to the length of the 
binding motif for each transcription factor and ranges (X-axis) are shown as the percentage of experimentally determined sites 
(collection).
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results shown in Figure 8, it can be argued that transcrip-
tion factors covering a large number of sites, like CRP, sac-
rifice part of their linear affinity range in order to
effectively cover the vast majority of their sites without
incurring in a large cost in conservation (Rsequence) and pro-
tein concentration. On the other hand, transcription fac-
tors for more specific responses like Fur, which target a
lower number of sites, can maintain higher Rsequence values
and higher linear ranges. This would allow such transcrip-
tion factors to operate strongly on a number of sites at the
same time as they maintain a much looser control on the
rest of the regulon. A biological rationale for this mode of
operation can be the necessity to strongly activate/repress
several genes important for the specific response while
relaying relaxed regulation to less specific genes.

Without prior knowledge of the specific functional
requirements for a given transcription factor it is difficult
to predict the evolutionary pathway it will follow to meet
the equilibrium between Rsequence, protein concentration
and its effective affinity range. The SOS response repressor
LexA, however, poses an interesting case example since a
part of its functional requirements is well known. LexA
targets around 30 palindromic binding sites in E. coli [53]
and its binding motif has an Rsequence value of 20.27 bits.
This has long defied interpretation by the standard infor-
mation theory approach because Rfrequency calculations
indicate that the LexA binding motif ought to contain
17.39 bits (Rfrequency). Instead, the observed Rsequence sug-
gests that LexA is over-specified to the point of targeting
efficiently as few as 4 sites in the E. coli genome. Schneider
and Stormo suggested that specific binding of other pro-
teins to T7 promoters might account for extreme over-
specification in these sites [54], but no such cross-interac-
tion has ever been described for E. coli LexA-binding sites.
Most probably, the reason for the over-specification of
LexA lies in its regulation of the sulA gene, encoding a cell
division inhibitor that leads to lethal lexA- mutant pheno-
types, and several DNA damage-inducible error-prone
polymerases and DNA helicases that can substantially
hamper viability if unregulated [55-58]. As it has been
postulated previously, the negative effects of these genes
require that they be under very tight repression in normal
circumstances [48,56,58,59]. Figure 8b shows that LexA
enforces efficient repression of key genes by using a rela-
tively high protein number (1300 molecules per cell) and
an unexpected amount of site conservation (Rsequence). This
allows LexA to operate effectively in its original linear
range, as the search process contributes little to the effec-
tive affinity range. By maintaining a high ratio (~1/6) with
the concentration of inducer (RecA), the system is able to
guarantee a fast response time, which is also known to be
a requirement of the SOS response [60,61].

Rsequence is by definition a measure of positional informa-
tion content. This has been interpreted previously by dif-
ferent authors as being either primarily a measure of
affinity range [27] or an estimate of search performance
[13]. Following the line of reasoning outlined above,
however, Rsequence provides an averaged measure of the
informational requirements for both the search and rank-
ing processes. This suggests that, to some degree, part of
Rsequence may be devoted to one or the other process. Tran-
scription factors targeting palindromic motifs offer a good
benchmark to test this hypothesis. If one assumes a dimer
search pathway [62], specificity against the background is
obtained mainly by dimer binding, suggesting that
approximately the same amount of information should
be present in both half-sequences. Nonetheless, many
palindromic motifs in E. coli, like CRP, exhibit a slightly
asymmetrical shape, with one half-sequence more con-
served than the other. By reversing known sites on the
basis of half-site conservation, it is possible to accentuate
this effect, leading to heavily asymmetrical motifs (Figure
9 inset).

Here we assessed the efficiency of the Ri search method
operating on a collection of weakened CRP sites. The
weakened collection (Rsequence = 7.27 bits) was derived
from the highly asymmetrical CRP motif by substituting
the strong half-sequence with a mirror copy of the weak
half-sequence for each site (Figure 9 inset). Despite a 31%
reduction in information content on an already under-
specified motif and the arbitrary introduction of artificial
symmetry, the search results of the mirrored CRP collec-
tion are quite close (5.5% difference) to those obtained
using both the original and asymmetric CRP collections
(Figure 9). The fact that similar results are obtained when
the same mirroring procedure is applied to other palin-
dromic motifs, like Fnr (data not shown), leads us to sug-
gest that the excess information observed in the strong
dyad of asymmetrical palindromic profiles may be used
primarily for binding affinity, while search operates
mainly on the remaining symmetrical information.

Reassessing binding site evolution
Given the number of factors governing the equilibrium
among Rsequence, protein concentration, binding site
number and effective affinity range, it is difficult to accu-
rately assess the theory outlined above in the case of
skewed genomes. Nonetheless, certain broad predictions
can still be made for the evolution of transcription factors
trapped in a genome drifting towards skew. As discussed
above, based on the equality between Rfrequency and Rsequence,
RE predicts that anti-skew motifs on a skewed genome are
prone to lose some positional information because the
search problem is overtly simplified in the skewed
genome. As the P. aeruginosa Fur case illustrates, however,
this does not seem to be the case. In fact, the evidence sug-
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gests that, for the transcription factor to fulfill an equiva-
lent function in the skewed genome, its anti-skew motif
must retain or even increase its positional information
content. This is due to the fact that affinity ranking must
now operate in a background in which the search process
does not contribute significantly to the effective affinity
range (Figure 8b). Transcription factors may adapt partly
to this situation by lowering their number of copies in the
cell (and thus increasing the relevance of the search proc-
ess in determining effective affinity), but it is difficult to
see how they might shed away positional information, as
this would only limit further their operational range.

Transcription factors targeting pro-skew sites face the
opposite problem. In this case, the search problem
becomes a fundamental limiting factor and high Rsequence
values are required in order to distinguish sites from the
genomic background. Nonetheless, the minimum Rsequence
value required for efficient location of sites does not guar-

antee per se a desirable effective range for affinity. Thus,
additional information content may still be required to
provide an effective affinity range. In particular, one must
take into account that, due to the pro-skew composition
of sites, any increase in the linear affinity range will result
in a very large increase in effective affinity range, as search
requirements will very rapidly disrupt the original affinity
scope. This suggests that a considerable amount of addi-
tional information will be required to maintain an ade-
quate effective affinity range. Although they do not
constitute solid proof, the search results for Fur shown in
Figure 3 certainly support this hypothesis. These results
suggest that 14 bits of information in a 33% GC-rich
genome ought to be enough to provide a search efficiency
roughly similar to that of CRP in E. coli. Nevertheless, H.
influenzae CRP displays 17.83 bits, indicating that addi-
tional information is being used to provide it with an ade-
quate operating range.

Search efficiency in E. coli with "weakened" CRP sitesFigure 9
Search efficiency in E. coli with "weakened" CRP sites. Mean ROC curves for the Ri search method trying to locate CRP 
binding sites on the E. coli genome, using the original, asymmetric and mirrored collections of CRP. The plot is scaled to 
encompass a 1/10 true to false positive ratio for CRP (2100 false positives). The Rsequence profile of the original, asymmetrical 
and mirrored CRP motifs is shown in the inset.
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From a broader perspective, the fact that Rsequence values do
not decrease for P. aeruginosa Fur and H. influenzae CRP is
in agreement with a peculiarity of Rsequence that has been
puzzling researchers for decades. As outlined in the intro-
duction, in skewed genomes Rsequence decreases without
regard to the direction of the motif skew. The reason is
that the background genomic entropy (Hbefore) decreases,
making less information available for encoding recogni-
tion. Schneider et al. argued that by going against the skew
a transcription factor might exploit search efficiency and
benefit from the skew [13], but in terms of information
theory this would be akin to a free lunch proposition:
motifs could become more informative in a less informa-
tive setting. As we have shown above, however, a skew in
genome composition introduces a net reduction in infor-
mation that influences both the search and ranking prob-
lems to different extents. Thus, search might be facilitated
by the genomic skew, but at the cost of hampering the
effective affinity range. In order to compensate for the
overall loss in information content and maintain compa-
rable functionality, transcription factors in skewed
genomes are forced to increase or at the least maintain the
positional information content of their motifs.

In contrast to the conventional viewpoint, anti-skew sites
trapped in a genome drifting towards skew would benefit
from moving towards the skew instead of remaining
against it. Clearly, if P. aeruginosa Fur moved towards the
skew, the search problem would gain relevance, yielding a
larger effective affinity range for the same positional infor-
mation. In addition, it can be argued that positional infor-
mation would be less expensive to maintain for a motif
more attuned to the genomic skew. Indeed, P. aeruginosa
Fur seems to be drifting towards the skew, but its drift
appears to be remarkably slow. A possible explanation for
this fact is that migration towards the skew implies a co-
evolutionary process between a transcription factor and
its binding sites that may not be easy to attain without
temporal loss of functionality. Given this constraint,
maintenance or increase of positional information con-

tent against the skew may be a much simpler pathway and
thus act as a powerful attractor in the evolutionary land-
scape faced by transcription factors trapped in genomes
drifting towards skew.

Reassessing binding site search
In the light of the arguments expounded above, it seems
apparent that straightforward heuristic improvements and
ad-hoc modifications of information theory methods are
ill-suited to cope with the inherent complexity of the
interactions between transcription factor binding sites
and the genomes they sit in. The poor results of RE-
derived methods in skewed genomes certainly support
this idea. Arguably, more complex methods can be used to
model the background genomic sequence more accu-
rately, as it is routinely done in motif discovery tools using
Markov models [63-65]. This would allow implementing
more reliable corrections to improve search in skewed
genomes. However, it must be borne in mind that func-
tional affinity range requirements on site conservation
may still degrade performance even if accurate back-
ground models are used. This is because any background
correction becomes effectively a weighting factor in the
analysis of putative binding sites. As we have shown here,
weighting increases the chances of random false positives
by making methods focus on fewer positions. Therefore,
any excess weighting due to affinity range requirements
on Rsequence will tend to increase false positive rates in spite
of accurate background corrections. In the light of this,
non-weighted methods based on Rsequence (Ri, HI) seem on
average the best choice in the general problem of site
search because they make the least assumptions (Table 1).
The avoidance of prior assumptions is also a characteristic
of several machine-learning paradigms, like Artificial
Neural Networks (ANN) or Hidden Markov Models
(HMM). Due to their iterative training nature, these meth-
ods are ideally suited to detect and incorporate into their
internal model complex deviations in the genomic back-
ground [66,67]. Therefore, they have the potential to
match and even outperform information theory methods

Table 1: Summary of relative method performances.

Random background Genomic background

Method Type Equiprobable Skewed Equiprobable Skewed Reference

Ri NW ++++ ++ ++++ ++++ [23]
Iseq NW ++++ ++++ ++++ +++ [25]
Rsequence · BvH
R'sequence

W ++ + ++ +++ [27,28]

RE · BvH
RE'

W ++ +++ ++ ++ This work

FitomHI W ++ + ++ ++ This work

Summary of relative method performance on the search problem against different backgrounds. Increasing numbers of + signs symbolize higher 
accuracy. W stands for weighted and NW for non-weighted method.
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for site search. Moreover, these methods can also use and
infer different types of information (e.g. curvature)
encoded within the sequence, as well as existing interde-
pendences between motif positions [67-69]. Still, method
standardization and broad applicability remain a thorny
issue for these computing paradigms, and a substantial
effort in this direction is required before they can be suc-
cessfully applied to the binding site search problem.

Conclusion
The results presented above have several important impli-
cations for the understanding of binding site search, infor-
mation and evolution. On the search problem, we
conclude that non-weighted Rsequence-based methods
should be used preferentially, as they contain fewer
assumptions and are thus less prone to misfire on real bio-
logical data. Conversely, weighted Rsequence-based methods
seem to be better indicated to affinity rank sites. Relative
entropy and similar heuristic corrections for skew compo-
sition should be avoided, since they are based on the mis-
guided hypothesis that search and differential regulation
are equivalent problems for the protein. In contrast, we
propose that information content as defined by Rsequence is
a compound measure that incorporates requirements
from the search and regulation processes. This revised par-
adigm suggests that binding sites will tend to drift towards
the genomic skew, not against it, and increase their con-
servation to circumvent the global loss of information
content in skewed genomes.

Methods
Sequences and collections of binding sites
Complete genome sequences for E. coli str. K-12 substr.
MG1655 [NC_000913], P. aeruginosa PAO1
[NC_002516], H. influenzae Rd KW20 [NC_000907], Col-
wellia psychrerythraea 34H [NC_003910], Salinibacter ruber
DSM 13855 [NC_007677], Thiobacillus denitrificans ATCC
25259 [NC_007404], Enterococcus faecalis V583
[NC_004668], Anaplasma marginale str. St. Maries
[NC_004842] and Nitrosococcus oceani ATCC 19707
[NC_007484] were downloaded from the Entrez database
at NCBI http://www.ncbi.nlm.nih.gov/Entrez/.

Collections of binding sites (Table S2, Additional file 1)
for E. coli Fis, CRP and Fur sites, and for P. aeruginosa Fur
sites were downloaded from the Prodoric database [70].
The collection of E. coli LexA binding sites was obtained
from [53]. H. influenzae CRP binding sites were provided
by Rosie Redfield [71].

Computer programs
Searches for binding sites using the different methods
described herein were conducted entirely with Fitom, a
program to locate binding sites in genomic sequences
[72]. Fitom allows different modes of action, in which the

user can chose on a variety of search methods, threshold
adjustments, report styles and background entropy calcu-
lations. For the purposes of this work, all searches were
carried using the computed background entropy of the
full genome sequence [23] and no small sample correc-
tion [13] in the estimation of Rsequence and RE.

Random backgrounds with different skews were gener-
ated with RandSeq, a simple program written in C++ to
generate random sequences based on a naïve Bernoulli
model of mononucleotide frequencies. To simulate search
processes on random backgrounds, binding sites from
experimentally validated collections (Table S2, Additional
file 1) were inserted at known positions in the randomly
generated sequences. Frequencies for 20-mers in real and
artificial genomes were computed with NmerFreq. Execut-
able programs, user manuals and source code are availa-
ble for download at http://research.umbc.edu/~erill.

ROC curves
All reported ROC curves correspond to simulated search
processes, either on real genomic sequence or on artifi-
cially generated sequence. In a simulated search process, a
collection of experimentally validated binding sites is pro-
vided to Fitom and the program scans both strands of the
target sequence. Experimentally validated binding sites
present in the target sequence are considered positives. All
other sites in the target sequence are considered negatives.
For a given threshold , sensitivity is computed as the ratio
between true positives (positives reported as positives by
Fitom according to ) and positives. Likewise, specificity
is computed as the ratio between true negatives (negatives
reported as negatives by Fitom according to ) and nega-
tives. ROC curves of simulated search processes on artifi-
cially generated sequence show the mean and standard
deviation of three independent experiments (on three dif-
ferent randomly generated sequences).
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