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Abstract

Background: Nucleosomes regulate DNA accessibility and therefore play a central role in
transcription control. Computational methods have been developed to predict static nucleosome
positions from DNA sequences, but nucleosomes are dynamic in vivo.

Results: Motivated by our observation that transcriptional interaction is discriminative
information for nucleosome occupancy, we developed a novel computational approach to identify
dynamic nucleosome positions at promoters by combining transcriptional interaction and genomic
sequence information. Our approach successfully identified experimentally determined
nucleosome positioning dynamics available in three cellular conditions, and significantly improved
the prediction accuracy which is based on sequence information alone. We then applied our
approach to various cellular conditions and established a comprehensive landscape of dynamic
nucleosome positioning in yeast.

Conclusion: Analysis of this landscape revealed that the majority of nucleosome positions are
maintained during most conditions. However, nucleosome occupancy at most promoters
fluctuates with the corresponding gene expression level and is reduced specifically at the phase of
peak expression. Further investigation into properties of nucleosome occupancy identified two
gene groups associated with distinct modes of nucleosome modulation. Our results suggest that
both the intrinsic sequence and regulatory proteins modulate nucleosomes in an altered manner.

Background segments of DNA wrapped around an octamer of histone
Nucleosomes are the fundamental repeated units of  proteins [2]. The positions of nucleosomes play impor-
eukaryotic genomes [1]. They are comprised of 147-bp  tant roles in diverse cellular processes that rely on access
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to genomic DNA, including DNA replication, recombina-
tion, repair, transcription, chromosome segregation, and
cell division [3]. In general, there are three main ways in
which cells regulate nucleosomal influences on these cel-
lular processes: chromatin remodeling [4], histone modi-
fication [5], and incorporation of histone variants [6].
Recently, high-resolution nucleosome positions across
genomes have been identified in yeast (Saccharomyces
cerevisiae) [7-11] and human [12-14]. These valuable
data make it possible to understand how nucleosome
positions are exactly determined in vivo.

The coordination of nucleosome positions is a complex
process involving combined interactions among multiple
factors. Experimental evidence indicates that certain DNA
sequences have strong ability to wrap around the histone
octamer [15]. Consequently, the intrinsic DNA sequence
is one dominant factor for governing nucleosome posi-
tioning. Recent studies have used DNA sequence features
to predict genome-wide nucleosome positions with mod-
est success [16-19], confirming that nucleosome position-
ing is partially encoded in the genomic DNA sequence.
On the other hand, other factors also contribute to nucle-
osome positioning [9,19,20]. One genomic study has
shown that the chromatin remodeling complex Isw2 can
override the underlying DNA sequence to reposition
nucleosomes [9].

It has become clear that nucleosome positions are highly
dynamic [21-23]. Recent genome-wide studies have fur-
ther supported this concept [10,13,24]. Hogan et al. have
reported cell cycle-specified fluctuation of nucleosome
occupancy at gene promoters [24]. Shivaswamy et al. have
identified changes in individual nucleosome positions
before and after subjecting cells to heat shock [10]. These
studies have also collectively revealed that the dynamic
nucleosomal template influences the capacity of genes to
alter expression levels in response to various signals.
Insights into nucleosome positioning dynamics should
enhance our understanding of the mechanism of gene
expression. However, as high-resolution measurement of
global nucleosome positions is still experimentally costly,
there lacks a comprehensive map of dynamic nucleosome
positioning in various cellular conditions.

Previous computational methods have predicted static
nucleosome positions using DNA sequences with nucleo-
some formation or inhibition signals [16-19]. However,
more information besides the intrinsic DNA sequence is
required to model nucleosome positioning dynamics. To
our knowledge, there has been no report on computa-
tional identification of dynamic nucleosome positions. In
this paper, we report a novel computational approach for
identifying dynamic nucleosome positioning at gene pro-
moters on the base of dynamic transcriptional interaction
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and genomic sequence information. Our predictions are
in good agreement with experimentally determined
nucleosome occupancy available in three cellular condi-
tions. We use our method to offer a landscape of yeast
nucleosome positions in various cellular conditions.
Insights into this landscape show that nucleosome occu-
pancy at most promoters is negatively correlated with the
corresponding gene expression level. The underlying DNA
sequence itself tends to account for nucleosome position-
ing for promoters whose nucleosome occupancy does not
fluctuate with their corresponding expression levels. We
also find additional features of the global nucleosomal
landscape.

Results and discussion

Transcriptional interaction is discriminative information
for nucleosome occupancy

A recent study has used nucleosome occupancy informa-
tion to assist identification of transcription factor (TF)
binding sites [25]. Conversely, we asked whether TF bind-
ing profiles can be used to discriminate nucleosome occu-
pancy profiles. We used yeast data in YPD medium to
address this question. We first used k-means clustering to
assign 5,446 yeast genes to 50 patterns based on their TF
binding profiles (Methods). We next calculated average
nucleosome occupancy profile at promoters for each gene
cluster, and then computed pair-wise Euclidean distances
among these average profiles. The resulting distance
reflected the degree of difference between the nucleosome
occupancy profiles of two gene clusters. Fixing the
number of genes in each cluster, we reassigned 5,446
genes to 50 patterns at random and repeated the calcula-
tion of pair-wise Euclidean distances. The average pair-
wise distance for genes clustered based on TF binding pro-
files was greater than any one in 10,000 random experi-
ments (P < 1027, Mann-Whitney U-test). Nucleosome
occupancy profiles could be well discriminated by the
information of TF binding, an important type of transcrip-
tional interactions. This result demonstrates that tran-
scriptional interaction is discriminative information for
nucleosome occupancy.

A novel computational approach for identifying dynamic
nucleosome positioning

Motivated by the observation above, we asked whether it
is possible to employ TF binding information to predict
nucleosome positioning. Indeed, the positions of TF bind-
ing sites are strongly associated with nucleosome posi-
tions [8,12]. Nucleosomes in promoter regions limit
accessibility of DNA to TFs [26], thus TF binding sites typ-
ically locate in nucleosome-free regions [7]. Previous
studies have indicated that nucleosomes help TFs appro-
priately bind their targets by exposing functional binding
sites and covering those nonfunctional [11,18]. It has also
been shown that dynamic regulation of nucleosome posi-
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tioning is linked to changes in accessibility of DNA to TFs
[13]. All the prominent stress-related TFs show a strong
increase in accessibility of their binding sites after heat
shock, whereas nucleosomes appear to cover nonfunc-
tional binding sites upon transcriptional perturbation
[10]. Based on these results, we reason that functional
DNA motifs that are associated with TFs tend to be
depleted of nucleosomes, while nonfunctional motifs
tend to locate into nucleosomes to prevent improper TF
binding.

It is well accepted that TFs bind their targets in a dynamic
manner, and their corresponding nucleosomal templates
undergo dynamic changes [23]. However, dynamic TF
binding data during multiple cellular conditions is still
unavailable. A question arises concerning how to model
this dynamic process. We can identify TFs that can poten-
tially bind their targets at one phase by determining their
presence or absence in the cell from their concentration,
and can determine their functional and nonfunctional
motifs through statistical methods. From a dynamic per-
spective, if one TF is present at one phase under one cellu-
lar condition, its functional DNA motifs tend to be
depleted of nucleosomes at that phase, whereas its non-
functional motifs tend to be covered by nucleosomes
then. As TFs differ in their phases of presence, positions of
all functional and nonfunctional motifs at one promoter
may vary with phases. These differences among phases are
linked to changes in nucleosome positions.

Based on dynamic transcriptional interaction and
genomic sequence information, we developed a novel
computational approach for identifying dynamic nucleo-
some positioning at promoters (Figure 1; Methods).
Given gene expression data during one cellular condition,
DNA sequences at gene promoters, and known position
weight matrixes (PWMs) that correspond to candidate
TFs, we could identify nucleosome positioning dynamics
during the condition. Using the proposed computational
method, we are able to identify dynamic nucleosome
positioning during multiple cellular conditions. Since our
method only requires gene expression data, known
PWMSs, and promoter sequences as prior information, it
can be widely applied in many organisms. As gene expres-
sion data and known PWMs are abundant in yeast, we
focus on yeast cellular conditions in this paper.

Validation of our method

We first applied our method to cell cycle-regulated genes.
Yeast cell cycle-regulated genes have been identified and
grouped into five phases during which they display peak
expression: M/G1, G1, S, S/G2, and G2/M [27]. We
directly applied our method to these classified gene
groups. Hogan et al. have used a method termed FAIRE
(formaldehyde-assisted isolation of regulatory elements),
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coupled with whole-genome DNA microarrays, to meas-
ure nucleosome occupancy through the yeast cell cycle
[24]. The FAIRE enrichment values reflect the enrichment
for nucleosome-free regions. The measurements in their
experiment are single promoter-resolution, whereas our
predictions are individual nucleosome-resolution. For
comparison, we used the total length of linker DNA
between predicted adjacent nucleosomes to represent the
enrichment for nucleosome-free regions at the promoter.
As our predictions and experimental measurements have
different scales, we assessed our method by comparing
their change trends throughout the cell cycle (Figure 2).
Our predictions showed good agreement with experimen-
tal measurements for G1, G2/M, and M/G1 promoters,
and modest agreement for S/G2 promoters. During S
phase, nucleosomes are disrupted as the replication fork
proceeds and new nucleosomes are deposited onto repli-
cated DNA [28]. As mentioned in original literature [24],
changes in nucleosome occupancy during this process
may obscure experimental measurement. Our method
using transcriptional interaction may not account for the
nucleosome occupancy in this complex process. In other
words, the disagreement in S promoters is attributable to
inaccuracies both in our method and in experimental
measurement. Hogan et al. have observed that G2/M pro-
moters are relatively depleted of nucleosomes throughout
the cell cycle [24]. Our predictions also reflected this prop-
erty (Figure 3), suggesting that this phenomenon may be
correlated with the distribution of functional motifs at
G2/M promoters because our approach is based on TF
binding.

To examine whether our approach is applicable to exoge-
nous conditions, we identified nucleosome positioning in
the response of cells to hydrogen peroxide [29]. Pokholok
et al. have profiled histone H3 occupancy across the yeast
genome with an average probe density of 266 bp after
subjecting cells to hydrogen peroxide for 20 minutes [30].
We referred to H3 occupancy as nucleosome occupancy,
although histone H3 variants are assembled into some
nucleosomes [31]. We compared our predictions to exper-
imentally measured H3 occupancy [30]. Predicted nucle-
osomes had significantly higher H3 occupancy than
predicted nucleosome-free regions (P < 0.003, Mann-
Whitney U-test). We asked whether transcriptional inter-
action information contributes to the significant corre-
spondence between our predictions and experimental
measurements. To this end, we predicted nucleosome
positions using only genomic sequence information
(Methods). Predicted nucleosomes still had higher H3
occupancy than predicted nucleosome-free regions (P <
0.02, Mann-Whitney U-test), but the statistical signifi-
cance became less. This result validates that transcrip-
tional interaction is important information for
nucleosome positioning.
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Overview of the approach. The procedure takes as input gene expression data during one cellular condition, known posi-
tion weight matrixes (PVWMs) that correspond to candidate TFs and promoter sequences. The method determines phases of
presence for each present TF, and combines their binding information with genomic sequence information to identify dynamic
nucleosome positions during the condition. Dark sea green squares represent nonfunctional DNA motifs (i.e. motifs unbound
by the corresponding present but nonfunctional TFs), while other squares represent functional DNA motifs (i.e. motifs bound
by the corresponding present and functional TFs). Gray ellipses represent nucleosomes. Green ellipses, purple pentagons and

orange trapezia represent functional TFs.

Recently, Shivaswamy et al. have measured genome-wide
nucleosome positions after subjecting cells to heat shock
for 15 minutes [10]. We applied our method to expression
data measured in a similar experimental condition [29].
We evaluated our method by calculating the overlap
between experimentally measured and predicted nucleo-
some positions in base-pair resolution. That is, if our pre-
dicted state (covered by nucleosome or nucleosome free)
of one base pair is the same as its experimentally meas-
ured state, the base pair is considered to be accurately pre-
dicted. The result shows that we accurately predicted

~56% of base pairs, compared with ~51% for predictions
solely from genomic sequence information. This compar-
ison result reveals that transcriptional interaction infor-
mation  significantly  contributes to  successful
identification of nucleosome positioning.

Taken together, these results validate our method in three
available datasets of dynamic nucleosome occupancy. It is
noteworthy that both expression data and nucleosome
occupancy were not measured in exactly the same experi-
mental medium for either exogenous condition. As
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Correlation between our predictions and experimental measured nucleosome occupancy during cell cycle. (A)
Average enrichment for nucleosome-free regions obtained through FAIRE (black) [24] and average linker DNA length pre-

dicted by our method (red) are shown for G| promoters during cell cycle. R refers to Pearson correlation coefficient between
the two profiles. (B) Same as (A), but for G2/M promoters. (C) Same as (A), but for M/G| promoters. (D) Same as (A), but for

S promoters. (E) Same as (A), but for S/G2 promoters.

expression data is prior information for our method and
experimentally measured nucleosome occupancy is used
to evaluate our method, these discrepancies in experimen-
tal conditions inevitably limit assessment of our method.
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Figure 3

Comparison of predicted nucleosome occupancy at
G2/M promoters and other promoters during cell
cycle. The black line indicates the average linker DNA length
of G2/M promoters at each phase throughout the cell cycle.
The average linker DNA length of other promoters (red) is
also shown.

Nevertheless, our results show that TF binding informa-
tion improves significantly the performance of prediction,
which is based on the intrinsic DNA sequence alone.

Alandscape of dynamic nucleosome positioning in various
conditions

Having validated our approach in available datasets, we
applied it to 22 cellular conditions to study global proper-
ties of the dynamic nucleosome organization [27,29,32-
34]. First, visual inspection of nucleosome occupancy pro-
files indicated that the majority of nucleosome positions
were maintained during most conditions (Figure 4). How-
ever, drastic changes in nucleosome occupancy still
occurred during some conditions (Figure 5). Investigation
into individual nucleosomes revealed that most nucleo-
some positions were conserved during the corresponding
condition: ~66% of positioned nucleosomes were within
30 bp of their positions at the start phases. These results
suggest that nucleosome remodeling tends to reposition
most nucleosomes on their nearby locations, rather than
to give rise to broad region-wide changes. This notion is
supported by recent experimental evidence that individ-
ual nucleosome positions were largely maintained after
heat shock [10].

Second, we studied nucleosome organization by compar-
ing nucleosome occupancy at the phases of peak expres-
sion to those at other phases (Figure 6A). Indeed, peak
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the condition of sporulation.

expression was correlated with lower nucleosome occu-
pancy in promoter regions. We asked whether the lower
nucleosome occupancy is caused by the intrinsic DNA
sequence or other factors. We found that genes also had
significantly lower nucleosome occupancy at the phases
of peak expression compared to that were predicted based
on DNA sequence only (Figure 6B). This result indicates
that factors except the intrinsic DNA sequence are associ-
ated with the lower nucleosome occupancy. The peak in
Figure 6A around -1000 is mainly due to the genomic
sequence (see a similar peak in Figure 6B for the nucleo-
some occupancy predicted based on DNA sequence only).

Third, we further investigated mechanisms of nucleosome
positioning. Genes sharing the same phase of peak expres-
sion during each cellular condition were clustered into a
group. In this way, we obtained a total of 132 groups.
Region between -400 and -1 bp upstream of the gene is

important for transcription. We focus on nucleosome
positioning in this region. Visual comparison between
nucleosome occupancy at the phase of peak expression
and DNA sequence-directed nucleosome occupancy
divided these gene groups into two clusters (Figure 7).
Genes in cluster 1 (87 groups) had much lower nucleo-
some occupancy at the phases of peak expression com-
pared to that DNA sequence-directed. Genes in cluster 2
(45 groups) showed similarity in these two profiles. For
genes in cluster 1, DNA sequence-directed nucleosome
occupancy cannot ensure transcription for peak expres-
sion in the corresponding condition. Some factors (e.g.
chromatin remodeling complexes) should override DNA
sequences to reposition nucleosomes, paving the way for
transcription. For genes in cluster 2, DNA sequence-
directed nucleosome occupancy can suffice transcription
for peak expression in the corresponding condition.
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amino acid starvation.

We next sought to understand mechanisms of nucleo-
some positioning in other conditions for genes in cluster
2. As microarray experiments for all cellular conditions
were carried out with the cell cycle as the start point, we
analyzed gene transcription frequency over the cell cycle
[35]. Genes in cluster 2 exhibited lower transcription
activity than the rest of the genes (P < 10-4, Mann-Whitney
U-test), whereas genes in cluster 1 did not show this prop-
erty (mean transcription frequency = 7.39 for genes in
cluster 1 and 7.42 for the rest of the genes). We hypothe-
size that the underlying DNA sequence plays less impor-
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tant roles in nucleosome positioning for genes in cluster
2, as their DNA sequence-directed nucleosome occupancy
can suffice transcription, which is contradictive with their
low transcription activity. To test this hypothesis, we com-
pared experimentally measured nucleosome occupancy
profiles to DNA sequence-directed nucleosome profiles in
promoter regions [8]. Genes in cluster 2 had lower Pear-
son correlation coefficients between these two profiles
than the rest of the genes (P < 10-5, Mann-Whitney U-test).
This result demonstrates that the intrinsic DNA sequence
explains less nucleosome positioning in promoter regions
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occupancy profiles are plotted for the phases of peak expression (black) and other phases (red) during all conditions. (B) Aver-
age identified nucleosome occupancy profiles are plotted for the phases of peak expression (black) during all conditions and the
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of gene cluster 2. In other words, regulatory proteins
should account for more nucleosome positions in pro-
moter regions of gene cluster 2 over the cell cycle. We fur-
ther analyzed gene activity in various conditions for gene
cluster 2. We compiled gene expression data from 1,082
published microarray experiments under various cellular
conditions (Methods). For each gene, we calculated the
proportion of experiments in which it displayed signifi-
cantly up-regulated expression changes, and defined the
normalized resulting value as open rate. The open rate
reflected the general gene activity in various conditions.
Genes in cluster 2 showed lower open rates than the rest
of the genes (P < 10-°, Mann-Whitney U-test). Overall, as
DNA sequence-directed nucleosome occupancy at gene
promoters of cluster 2 may permit accessibility to TFs, reg-
ulatory proteins should reposition nucleosomes to pre-
vent improper transcription in repressed state. In contrast,
as DNA sequence-directed nucleosome occupancy at gene
promoters of cluster 1 can not suffice transcription for
peak expression, nucleosome remodeling is required for
transcription.

Finally, we sought to explore the relationship between
nucleosome occupancy and gene expression level. As
mentioned above, we used total length of linker DNA to
represent the enrichment for nucleosome-free regions at
the promoter. 88 of 132 gene groups showed high posi-
tive correlation (correlation coefficient, R > 0.5) between
linker DNA lengths and gene expression levels during the
corresponding condition (Figure 8). This result is consist-
ent with a general observation that the level of nucleo-
some occupancy is inversely proportional to the
transcription initiation rate at the promoter [36]. But what

lead to the low positive correlation for the other 44
groups? One possibility is the retention of nucleosome
occupancy throughout the corresponding condition;
another one is the inverse changing trend between length
of linker DNA and gene expression level. Only 4 of these
44 groups had correlation coefficients less than -0.5. To
test the former possibility, we calculated the standard
deviation of linker DNA lengths during the corresponding
condition for each group. These 44 groups showed lower
standard deviation than the other groups (P < 10-3, Mann-
Whitney U-test), indicating that their nucleosome occu-
pancy in promoter regions is relatively maintained during
the corresponding condition. Furthermore, these 44
groups showed a moderate overlap with gene cluster 2 (P
< 0.05, hypergeometric), implying that their maintenance
of nucleosome occupancy is linked with the intrinsic DNA
sequence.

To sum up, we provided a map of nucleosome positioning
in various cellular conditions and provided insights into
global characteristics of this map. Moreover, we classified
genes based on properties of their nucleosome occupancy,
and found that these gene groups are correlated with dis-
tinct modes of nucleosome modulation.

Conclusion

We have developed a novel computational approach for
identifying dynamic nucleosome positioning at promot-
ers during cellular conditions, and have successfully pre-
dicted the experimentally determined nucleosome
positions using this approach. These results demonstrate
that the simplified assumptions in our approach are feasi-
ble. A combination of transcriptional interaction and
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lation coefficient between the two profiles. (B) Same as (A), but for genes displaying peak expression at the first phase of amino
acid starvation [29]. (C) Same as (A), but for genes displaying peak expression at the third phase of heat shock (from 25°C to

37°C) [29].

genomic sequence information can give good modelling
of in vivo nucleosome positioning dynamics. Application
of our method established a comprehensive map of
dynamic nucleosome positioning during various condi-
tions. Analysis of our predicted nucleosomes revealed
mechanisms of nucleosome positioning in various condi-
tions.

Our identifications, based on TF binding and genomic
sequence information, showed stronger correspondence
with in vivo data than predictions on the base of genomic
sequence information alone. This result suggests that TF
binding is critical information for nucleosome position-
ing. However, whether the changes in nucleosome occu-
pancy facilitate TF binding or occur as a consequence of TF
binding is not known. TFs Abfl, Cbfl and Rapl are
involved in nucleosome remodeling as indicated by Gene
Ontology [37]. The 132 gene groups did not show signif-
icant enrichment for targets of these three TFs, instead, a
modest depletion for their targets was observed (P < 0.05,
chi-test). Although we cannot rule out the possibility that
other nucleosome remodeling-related TFs have not yet
been identified, one plausible explanation for this obser-
vation is that TF binding is not the main source of nucle-
osome remodeling. We speculate that the main manner of
nucleosome remodeling is through nonspecific remode-
ling complexes to permit or impede site-specific access to
TFs. Other study has indicated that nucleosome occu-
pancy plays an instructive role in determining TF Leu3 tar-
geting [38]. A recent study has demonstrated that the
chromatin remodeling complex Isw2 repositions nucleo-
somes to prevent transcription initiation from spurious
sites [9]. The studies above have collectively implied that
changes in nucleosome occupancy control TF binding.
This causal relationship indicates that TF binding also
reversely reflect information of nucleosome occupancy.

Therefore, we do not only predict nucleosome positioning
using its determinant (i.e. genomic sequence) like previ-
ous approaches, but also infer nucleosome positioning
using its outcome (i.e. TF binding). Our results validated
that the incorporation of TF binding information can
improve the identification of dynamic nucleosome posi-
tioning.

We found that the global characteristics of nucleosome
occupancy landscape persist throughout most conditions.
Experimental evidence has supported our observation in
two conditions (i.e. heat shock and cell cycle) [10,24]. The
maintenance of nucleosome organization may be due to
three reasons. First, the intrinsic DNA sequence provides a
concrete framework for positioning nucleosomes. Nucle-
osome regulation is implemented upon this framework.
Second, nucleosome remodeling is energy cost, and it
may not be the most dominant determinant of nucleo-
some positioning in that yeast cells are likely to be nutri-
ent-limited in their natural environment. One example is
that Isw2 influences nucleosome positions of only ~7% of
yeast genes [9]. Moreover, nucleosome remodeling does
not always result in drastic changes in nucleosome occu-
pancy. Third, nucleosomes should be required to cover
spurious motifs to prevent inapposite transcription. DNA
motifs of TFs are usually short and degenerate. As a result,
there are redundant motifs in the genome. Furthermore,
highly degenerate motifs bound by TFs can also contrib-
ute to gene expression [39]. Nucleosomes are therefore
positioned in a stereotypical manner to protect nonfunc-
tional motifs.

A key finding of this study is that genes exhibit distinct
modes of nucleosome modulation. Nucleosome posi-
tions are determined by a combination of DNA sequence
composition and regulatory proteins. However, it is
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unclear how these factors work in concert. For genes
whose DNA sequence-directed nucleosome occupancy
can suffice transcription, regulatory proteins are required
to remodel nucleosomes in repressed state. On the other
hand, regulatory proteins remodel nucleosomes to acti-
vate transcription for genes whose DNA sequence-
directed nucleosome occupancy does not enable tran-
scription. We found that these two gene clusters are not
cellular condition-specific, and there is no significant dif-
ference in DNA sequence preferences for nucleosomes
between these two clusters (data not shown). We specu-
late that these two modes of nucleosome modulation are
linked with evolutionarily conservation in nuclear organ-
ization and sequence composition. Genes in the former
cluster display lower transcription activity over the cell
cycle, implying that regulatory proteins are involved in
nucleosome positioning for these genes. The interaction
between regulatory proteins and nucleosomes should be
relatively stable. Regulatory proteins and their targets
should be adjacent in nucleus. Otherwise the interaction
between them may be transient. For genes in the latter
cluster, DNA sequence-directed nucleosome occupancy
does not enable transcription, TF binding sites thus
should be enriched in regions with high DNA sequence
preferences for nucleosomes. Nevertheless, the cause for
these two modes of nucleosome modulation remains to
be explored.

We have only begun to explore the potential of the appli-
cation of factors besides genomic sequence information
to predict nucleosome positions. Despite the successes
described above, our approach still has limitations.
Nucleosomes govern the access of DNA to transcription
apparatus. However, known TFs represent most, but not
all, transcription apparatus. This discrepancy may limit
the performance of our approach. As discussed above, TF
binding seems to be a consequence of the changes in
nucleosome occupancy. Although TF binding is critical
information for nucleosome positioning, ATP-dependent
chromatin remodeling and histone modification are the
main ways of nucleosome remodeling. But they still lack
comprehensive experimental data in multiple conditions.
Until recently, models for dynamic nucleosome modifica-
tion have been developed [40,41], which provides the
possibility of predicting nucleosome modification. Future
studies integrating more information are essential to our
understanding of dynamic nucleosome positioning.

Methods

Data preparation

Yeast genome sequences were downloaded from the Sac-
charomyces Genome Database [42]. The TF-binding data
set is from Harbison et al. [43], which includes the TF-
binding levels of 203 TFs to 5,446 promoters in YPD
medium. We used the matrix (with promoters as row

http://www.biomedcentral.com/1471-2105/10/S1/S31

entries and with TFs as column entries), with binding
ratio as its element, as input for k-means clustering. We
used the kmeans function in Matlab with default setting
to divide these promoters into 50 groups. Genome-wide
nucleosome occupancy data with 4-bp resolution in YPD
medium is from Lee et al. [8]. For analysis, we converted
the data into 1-bp resolution by linear interpolation. In
this way, the nucleosome occupancy profile for each gene
between -1,000 and -1 (relative to the +1 ATG transla-
tional start codon) was obtained.

We compiled available gene expression data from the Sac-
charomyces Genome Database [42], a total of 1,082 pub-
lished microarray experiments for 6,260 genes in various
cellular conditions. For each gene, we calculated the pro-
portion of experiments in which it displayed significantly
up-regulated expression changes, and defined the normal-
ized resulting value as open rate. To avoid confusion due
to experimental noise, we set a relatively strict threshold
(2.5-fold) for significantly up-regulated expression
changes.

The proposed computational approach for identifying
dynamic nucleosome positions

Given gene expression data during one cellular condition,
DNA sequences at gene promoters, and known PWMs
that correspond to candidate TFs, we used following pro-
cedures to identify nucleosome positioning dynamics
during the condition. First, we identified genes displaying
significantly up-regulated changes in gene expression
(hereinafter referred to as condition-regulated genes) and
assigned them to phases (time points for exogenous con-
ditions) at which they display peak expression (hereinaf-
ter referred to as phase-related genes), for example, G2/M-
phase genes of cell cycle. To identify nucleosome posi-
tions for more genes, we set a less strict threshold (2-fold)
for significantly up-regulated changes in gene expression.
Genes displaying peak expression at the same phase dur-
ing one condition should tend to be regulated by similar
TFs, for example, TFs Mcm1 and Fkh2 regulate G2/M-
phase genes [44]. The gene assignment can assist identifi-
cation of functional and nonfunctional TFs for each con-
dition-regulated gene.

Second, we used known PWMs and statistical test to
derive functional and nonfunctional TFs for each condi-
tion-regulated gene. We collected 135 known PWMs that
correspond to TFs from MYBS [45], a comprehensive web
server integrating ChIP-chip data and phylogenetic foot-
printing data. For each TF, we scored every subsequence in
terms of its PWM, and assigned the highest score in each
promoter region to the corresponding gene. We also iden-
tified positions of DNA motifs at promoters according to
thresholds from MYBS. We then tested whether DNA
motifs are bound by the corresponding TFs. If the TF binds
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a subset of genes, their PWM scores should be different
from those of the other genes. To examine whether the TF
functions during the condition, we used the Kolmogorov-
Smirnov (K-S) statistical test to evaluate the difference in
the distribution of PWM scores between the condition-
regulated genes and the rest of the genes as well as
between the phase-related genes and the rest of the genes.
The K-S P value provides the statistical significance of the
difference between the two distributions. We set 0.01 to
the threshold for P value. In this way, we could derive
functional TFs, nonfunctional TFs and positions of their
DNA motifs for each condition-regulated gene.

Third, we determined the presence or absence of each TF
and the phases of presence for each present TF. We can
identify TFs that can potentially bind their targets at one
phase by determining their presence or absence in the cell
from their concentration. However, there still lacks
dynamic protein concentration data during multiple cel-
lular conditions. Previous studies have shown that there is
a strong correlation between protein and mRNA levels
[46], and have also revealed that mRNA abundance can
explain 73% of variance in protein levels [47]. We used
mRNA level as a close approximation to protein concen-
tration. Like the method in [48], we determined the pres-
ence or absence of each TF by assessing its absolute
expression level over the cell cycle and relative expression
level during the condition, as microarray experiments for
all cellular conditions were carried out with the cell cycle
as the start point. Jansen et al. have offered a comprehen-
sive reference set of absolute mRNA expression levels by
merging and scaling together from a variety of data sets
[49]. From the absolute expression data, we grouped TFs
into those showing high (greater than 1.5), medium (less
than 1.5 and more than 0.5) or low (less than 0.5) abun-
dance. For each TF, if its encoding gene displayed up-reg-
ulated (for TFs showing high, medium or low abundance)
or moderate down-regulated changes (for TFs showing
high abundance) relative to absolute expression level, the
corresponding phases were defined as its phases of pres-
ence; otherwise it was determined to be absent. For each
present TF, its functional motifs are assumed to be
depleted of nucleosomes at the phases when it is present,
whereas its nonfunctional motifs are assumed to be cov-
ered by nucleosomes at the phases of its presence. In this
way, we obtained loci in promoter regions covered by
nucleosomes or depleted of nucleosomes for each phase.

Fourth, we integrated transcriptional interaction informa-
tion obtained above and DNA sequence-directed nucleo-
some formation potential to identify nucleosome
positions at each phase. We divided the promoter into
some segments, each of which began with the right end of
one nucleosome-depleted locus and ended with the left
end of the next nucleosome-depleted locus. The genomic

http://www.biomedcentral.com/1471-2105/10/S1/S31

DNA sequence itself is one dominant determinant of
nucleosome positioning in vivo. The nucleosome posi-
tioning in each segment was identified by DNA sequence-
directed nucleosome formation potential and the known
nucleosome-covered loci. Lee et al. have integrated most
sequence features related to nucleosome positioning to
model nucleosome occupancy [8], and we used their pre-
dicted nucleosome formation potential in this paper.
DNA sequences with high affinity for nucleosomes are
preferable for nucleosomes. Therefore, nucleosomes are
more likely to locate on favourable DNA sequences. For
every possible nucleosome covering the nonfunctional
motif, the one with the greatest sequence-directed nucleo-
some formation potential was identified as nucleosome as
long as it did not overlap with any previously determined
nucleosome. For other nucleosomes, we determined their
positions by iterating over the sequence-directed nucleo-
some formation potential in decreasing order as long as
the new nucleosome did not overlap with any previously
determined nucleosome. This iteration proceeded until
no more nucleosomes could be laid at the promoter.

Analysis of our predictions

We applied our approach to the following 22 cellular con-
ditions: cell cycle (1 condition) [27], stress response (17
conditions) [29], diauxic shift (1 condition) [32], DNA
damage (2 conditions) [33] and sporulation (1 condi-
tion) [34]. For cell cycle and sporulation, we directly
applied our method to classified gene groups from origi-
nal publications. Expression data were downloaded from
journals' or papers' web supplements.

The approach for predicting nucleosome positions based
on genomic sequence alone is as follows: we determined
nucleosome positions by iterating over the sequence-
directed nucleosome formation potential in decreasing
order as long as the new nucleosome did not overlap with
any previously determined nucleosome. This iteration
proceeded until no more nucleosomes could be laid at the
promoter.

We used a Gaussian kernel to model predicted nucleo-
some occupancy. The mean of the Gaussian was taken as
the centre of the identified nucleosome position under
consideration, with the standard deviation set at 25 bp.
This threshold is set according to the length (147 bp) of
nucleosome so that the modelled nucleosome occupancy
of predicted linker DNA approximates to 0.
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