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Abstract
Background: RNA secondary structure prediction is one major task in bioinformatics, and
various computational methods have been proposed so far. Pseudoknot is one of the typical
substructures appearing in several RNAs, and plays an important role in some biological processes.
Prediction of RNA secondary structure with pseudoknots is still challenging since the problem is
NP-hard when arbitrary pseudoknots are taken into consideration.

Results: We introduce a new method of predicting RNA secondary structure with pseudoknots
based on integer programming. In our formulation, we aim at minimizing the value of the objective
function that reflects free energy of a folding structure of an input RNA sequence. We focus on a
practical class of pseudoknots by setting constraints appropriately. Experimental results for a set
of real RNA sequences show that our proposed method outperforms several existing methods in
sensitivity. Furthermore, for a set of sequences of small length, our approach achieved good
performance in both sensitivity and specificity.

Conclusion: Our integer programming-based approach for RNA structure prediction is flexible
and extensible.

Background
Functional noncoding RNAs (ncRNAs) have been recog-
nized as regulatory or catalytic molecules, and have
received much attention in recent years. It is known that
ncRNA genes cover a fair proportion of the whole genome
in higher organisms including humans [1], and studying
functional ncRNAs is an important task to understand
complex mechanism of higher organisms. Structure anal-
ysis of ncRNAs will help us elucidate their functions since
it is widely recognized that there is correlation between

structure and function. Due to difficulty in determining
RNA 3D structure (tertiary structure) by experimental
techniques, many attempts have so far been made at pre-
dicting secondary structure given an RNA sequence (pri-
mary structure). A secondary structure is defined as a set of
hydrogen-bonding base pairs such as Watson-Crick com-
plementary pairs (i.e., A-U and C-G). One of the funda-
mental secondary structures is shown in Figure 1(a),
which is called a hairpin loop or stem loop. Another dia-
grammatic representation is arc depiction where base
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pairs are connected by arcs over the RNA sequence (see
Figure 1(b)). Among several RNAs, including rRNAs, tmR-
NAs and viral RNAs, there are substructures called pseudo-
knots (Figure 1(c)) where some arcs over the sequence
cross in the arc representation as shown in Figure 1(d).
Prediction of RNA secondary structure with pseudoknots
has increased in importance since pseudoknots have been
known to play an important role in a number of RNA
functions such as ribosomal frameshifting and splicing.
Furthermore, a biologically reliable database called Pseu-
doBase [2] has been constructed, which contains struc-
tural, functional and sequence data on RNA pseudoknots.

Many single-stranded RNAs are considered to fold back
on themselves to be thermodynamically stable. This idea
has led to the development of several algorithms that
minimize the equilibrium free energy of RNA. In the pio-
neering work, we refer to the Zuker's algorithm [3] that
predicts secondary structure with the lowest free energy by
using a dynamic programming (DP) technique, and its
implementation named Mfold [4] is one of the major
softwares for RNA secondary structure prediction. The
time complexity of the Zuker's algorithm is O(n3) where n
is the length of an input RNA sequence. However, this
algorithm cannot deal with pseudoknots. To predict pseu-
doknotted structure, several DP algorithms that minimize
free energy in the range from O(n4) to O(n6) time were
proposed including PKNOTS [5], pknotsRG [6] and iter-

ated loop matching (ILM) [7]. These algorithms focus on
some restricted pseudoknots for solvability in polynomial
time since prediction of arbitrary pseudoknotted structure
was proven to be NP-hard [8,9]. 

There have also been several grammatical approaches to
modeling some kinds of pseudoknots, including use of
tree adjoining grammar [10,11], crossed-interaction
grammar [12], parallel communicating grammar [13] and
multiple context-free grammar [14]. In these grammatical
approaches, secondary structure prediction can be inter-
preted as parsing of the grammars, which can be
addressed in O(n4) to O(n6) time. Although performance
of these grammar-based methods is comparable to that of
energy-based methods, grammatical approaches have the
advantage of the capability of constructing profile (or
modeling consensus structure) when multiple structural
alignment is given in advance.

The sequence alignment information is also useful for
RNA secondary structure prediction. Sankoff [15] pro-
posed a DP algorithm that can simultaneously solve the
sequence alignment and folding problems for multiple
sequences. Later, Sankoff's algorithm was improved by
Mathews and Turner [16], where their proposed algo-
rithm is called Dynalign. Dynalign combines free energy
minimization and comparative sequence analysis to find
a low free energy structure common to two sequences

Example of RNA secondary structureFigure 1
Example of RNA secondary structure. (a) Hairpin loop. (b) Arc representation of (a). (c) Pseudoknot. (d) Arc representa-
tion of (c).
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without requiring any sequence identity.

Recently, Parisien and Major [17] presented a new analy-
sis of RNA secondary structure prediction by incorporat-
ing all base pairs including noncanonical ones. They
introduced a new representation of the nucleotide rela-
tionships in structural RNAs, called the nucleotide cyclic
motif (NCM). NCM is incorporated into the scoring func-
tion of a folding algorithm, which is also based on DP.

Returning to the viewpoint of energy minimization, RNA
secondary structure prediction can be regarded as a kind
of optimization problem. In fact, several problems in bio-
informatics can be formulated as combinatorial optimiza-
tion problems. One of the successful applications is
RAPTOR [18], which calculates protein threading using an
integer programming (IP) formulation. Although IP prob-
lems are known to be NP-hard, descriptive power of IP is
strong and flexible. In addition, recent commercial opti-
mization softwares can deal with relatively large-scale
instances even if a problem is computationally hard to
solve. 

In this paper, we present a new method of predicting RNA
secondary structure with pseudoknots based on IP. In our
model, thermodynamic information is incorporated into
the objective function whose value is to be minimized,
and structural information is represented by constraints. It
should be noted that we focus on a practical class of pseu-
doknots by setting constraints appropriately. We use the
CPLEX software [19] to solve the IP problem and evaluate
our method on a set of RNA sequences contained in Pseu-
doBase [2] and Rfam [20]. Advantages of our proposed
method are summarized as follows:

• Our prediction method using IP is flexible. Specifically,
various types of secondary structures can be handled by
adding or removing constraints. In fact, we can describe
pseudoknot-free structures as well as generalized planar
pseudoknots (see [8] for definition) by IP formulations,
and in this paper we provide a modeling of a certain type
of recursive pseudoknot (see Methods).

• The IP-based method outperforms three existing meth-
ods PKNOTS, pknotsRG and ILM in sensitivity for 34 RNA
sequences known to have pseudoknots. In particular, for
a set of sequences of small length (≤ 46), our approach
achieved good performance in both sensitivity and specif-
icity.

• Once we can model the prediction problem by an IP for-
mulation, we need not develop any algorithm from
scratch because high-performance solvers for IP are now
available. Thus, we can focus on how to describe the

topology of structure and how to assign appropriate
scores to the model.

• The IP-based approach is extensible. If we have incom-
plete data on secondary structure where parts of the struc-
ture (i.e., a set of base pairs) have been determined by
experiment, we can complement the incomplete structure
by modeling the known parts of the structure as con-
straints and solving the IP problem.

Methods
Definitions of RNA secondary structure and pseudoknot
In this section we will describe the preliminary definitions
of RNA secondary structure including pseudoknots.

Definition 1 (RNA secondary structure). An RNA
sequence is represented by a string of n characters s = s1s2
� sn where si ∈ {A, C, G, U}. A secondary structure of the
sequence s is defined as a set S of base pairs (si, sj) such that
the following conditions are satisfied:

1. 1 ≤ i <j ≤ n, meaning, two bases that form a pair must
be located at different positions.

2. j - i > t where t is a small positive constant, meaning, the
sequence does not fold too sharply on itself.

3. For all base pairs (si, sj) and (si', sj') in S, i = i' if and only
if j = j', meaning, each base can be paired with at most one
base.

Here, we allow only Watson-Crick base pairs (A, U) and
(C, G), and a wobble base pair (G, U) to form the second-
ary structure, which we call valid base pairs.

Definition 2 (Pseudoknot). An RNA secondary structure
S is said to contain a pseudoknot if and only if there exist
(si, sj), (s'i, s'j) ∈ S (i <i') such that i <i' <j <j'.

Definition 3 (Pseudoknot free). An RNA secondary struc-
ture S is called pseudoknot free if and only if for all pairs (si,
sj), (si', sj') ∈ S (i <i'), one of the following conditions is
satisfied:

1. i <j <i' <j', i.e., (si, sj) precedes (si', sj'), or

2. i <i' <j' <j, i.e., (si, sj) includes (si', sj').

There are various kinds of pseudoknots, depending on
how arcs representing base pairs cross above the sequence.
For tractability in computational complexity, several
classes of pseudoknots were proposed.

Definition 4 (Simple pseudoknot [8]). Let 

be a consecutive RNA subsequence. A set of base pairs

s s si i k0 0 01+
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 is called a simple pseudoknot if there exist positions

j0,  (i0 <  <j0 <k0) satisfying the following conditions

(see Figure 2(a)):

1. Each (i, j) ∈  satisfies either i0 ≤ i <  ≤ j <j0 or 

≤ i <j0 ≤ j ≤ k0.

2. There exists (i, j) ∈  satisfying i0 ≤ i <  ≤ j <j0.

3. There exists (i, j) ∈  satisfying  ≤ i <j0 ≤ j ≤ k0.

4. If pairs (i, j) and (i', j') in  satisfy either i <i' <  or

 ≤ i < i', then j > j' holds.

Definition 5 (Recursive pseudoknot [8]). If internal
unpaired regions of a simple pseudoknot (e.g., subse-
quences u, v and w in Figure 2(a)) fold into pseudoknot-
free structure and/or simple pseudoknot, the structure is
called a recursive pseudoknot (see Figure 2(b)).

In this paper, we propose an integer programming-based
method that can predict a subclass of recursive pseudo-
knots. It should be noted that our formulation allows
unpaired regions of a simple pseudoknot to fold into
pseudoknot-free structure only.

Integer programming-based model
Definitions of integer programming
Integer programming (IP) is an extension of linear pro-
gramming. A linear programming (LP) problem is one of
the optimization problems, which optimizes a linear
function subject to linear equality and/or inequality con-

straints. An LP problem is composed of decision variables
whose values are to be decided in some optimal fashion,
an objective function to be maximized or minimized, and a
set of constraints. The constraints consist of linear equali-
ties and/or inequalities with respect to the decision varia-
bles. When the decision variables are required to be
integer, the problem is called an integer programming (IP)
problem. In general, an IP problem can be written as fol-
lows:

where aij, bi, cj ∈ � (i = 1, 2, ..., m; j = 1, 2, ..., n) and xj (j =
1, 2, ..., n) denotes a decision variable defined over a set of
nonnegative integers +. Note that the maximization prob-
lem is equivalent to the minimization problem where the
sign of the objective function is inverted.

Formulation for RNA pseudoknot prediction
We will formulate the RNA pseudoknotted structure pre-
diction problem as an IP problem. Specifically, we define
the decision variables, the objective function and the lin-
ear constraints with respect to the decision variables.

We first define the following decision variables:

for i, j = 1, 2, ..., n. The difference between xij and yij is that
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′j0 ′j0

′Si k0 0, ′j0 ′j0

′Si k0 0, ′j0

′Si k0 0, ′j0

′Si k0 0, ′j0

′j0

minimize

subject to

c x

x b i m

x

j j

j

n

ij j i

j

n

j

=

=

+

∑

∑ ≤ =

∈

1

1

1 2α , , , ...,

,Z jj n= 1 2, ,...,

x y
s s

ij ij
i j,

(( , ) ),

( )
=

⎧
⎨
⎩

1

0

 is a valid pair

otherwise

Illustration of pseudoknotsFigure 2
Illustration of pseudoknots. (a) Simple pseudoknot. (b) Recursive pseudoknot.
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xij = 1 corresponds to an arc that connects two bases drawn
above the sequence, while yij = 1 represents an arc drawn
below the sequence (see Figure 3(a)).

In order to incorporate stacking energy into decision vari-
ables, we use 6 × 6 (row × column, resp.) energy parame-
ter matrix E = (ekl) (k, l = 1, 2, ..., 6) shown in Table 1 . This
matrix provides stacking energy parameters for RNA fold-
ing at 37°C given by Mfold version 3.0 [4]. Note that the
value of k denotes the "type" of six valid pairs. For exam-
ple, k = 1 indicates A-U pair and we call it "type 1." This
statement also holds for the value of l.

We then define variables for representing the stacking pair
of (si, sj) and (si+1, sj-1) as follows:

for i, j = 1, 2, ..., n and k, l = 1, 2, ..., 6 (see Figure 3(b)).
Note that the above definitions include illegal variables
xi+1,0 and xn+1,j-1 for each i and j respectively (which also
applies to yij), though we allow this notation for simplic-
ity.

Let  = 1 and  = 1 if and only if the base si pairs with

some base at any other position greater than i and less

than i respectively. In other words,  = 1 means that si is

on the left side of a base pair and  = 1 means that si is

on the right side of a base pair. This set of variables also

applies to yij, defined by  and .

We will use variables  and  to represent a recursive

pseudoknotted structure. We let  = 1 if and only if for

a base pair (si, sj) below the sequence, there is at least one

base pair above the sequence (si', sj') such that i' <i <j'. Sim-

ilarly, let  = 1 if and only if for a pair (si, sj) below the

sequence, there is at least one base pair above the
sequence (si', sj') such that i' <j <j' (see Figure 4(d)). With

these variables, we can formulate an IP problem for RNA
pseudoknot prediction as follows:

subject to

((si,sj) is type k and (si+1,sj-1) is type l),

((si,sj) is type k and (si+1,sj-1) is type l),

xij + yij ≤ 1, (4)

xij + xi'j' ≤ 1 (∀i <i' <j <j'), (5)
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yij + yi'j' ≤ 1 (∀i <i' <j <j'), (6)

yij + yi'j' ≤ 1 (∀i <j <i' <j'), (18)

where i, j, i', j' = 1, 2, ..., n; k, l = 1, 2, ..., 6.

The first term in summations of the objective function is
the sum of the overall energy of stacking base pairs
formed above the sequence, while the second term is the
sum of the overall energy of the stacking base pairs
formed below the sequence. We multiply the second term
by a positive weighting parameter σ. The weighting
parameter restricts the occurrence of base pairs below the
sequence. This is to take into account that pseudoknotted
structure frequently does not appear in nature. The value
of σ suggested in [5] is σ < 1, though the early work

employed a dynamic programming-based approach. In
our model, we define σ ∈ {0.55, 0.6, 0.65, 0.7, 0.75, 0.8}.

Constraints (1) and (2) mean that if (si, sj) is a valid pair

with type k and (si+1, sj-1) is a valid pair with type l, the

energy parameter associated with (k, l) stacking type will
contribute to the total energy of the structure (Figure
3(b)). Constraints (3) and (4) say that each base can be
paired with at most one base regardless of whether the
pair is formed above or below the sequence (Figure 4(a)).
Constraints (5) and (6) inhibit crossing pairs both above
the sequence and below the sequence (Figure 4(b)). In

constraints (7), (8), (9) and (10), , ,  and 

are defined respectively. Constraints (11), (12), (13) and
(14) guarantee that if a base is paired with another one, its
adjacent base must also form a base pair (Figure 4(c)). The
purpose of these constraints is to promote stacking pairs
because they are known to help to stabilize the structure.

Constraints (15) and (16) define  and  respec-

tively. In the constraint (17), if (si, sj) is a base pair formed

below the sequence, either  or  can take the value

1. This means that the crossing region can occur once at a
time (Figure 4(d)). Notice that base pairs can be formed
recursively in the loop regions, for example, the region

Illustration of decision variablesFigure 3

Illustration of decision variables. (a) xij and yi' j'. (b) .z x
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Table 1: Stacking energy parameter matrix E [4].

A-U C-G G-C G-U U-G U-A

A-U -1.1 -2.1 -2.2 -1.4 -0.9 -0.6
C-G -2.1 -2.4 -3.3 -2.1 -2.1 -1.4
G-C -2.2 -3.3 -3.4 -2.5 -2.4 -1.5
G-U -1.4 -2.1 -2.5 -1.3 -1.3 -0.5
U-G -0.9 -2.1 -2.4 -1.3 -1.3 -1.0
U-A -0.6 -1.4 -1.5 -0.5 -1.0 -0.3

Lxi
Rxi

Lyi
Ryi

Lt ij
Rt ij

Lt ij
Rt ij
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from i' to i and the region from i to j' in Figure 4(d). By
virtue of constraints (15), (16), (17), this IP model can
handle a subclass of recursive pseudoknots where internal
unpaired regions of a simple pseudoknot can have pseu-
doknot-free structure. The constraint (18) is used for pro-
hibiting bifurcation structure from occurring below the
sequence (Figure 4(e)). The constraint (19) guarantees all
variables to be either 0 or 1.

Results and discussion
Data set
Test sequences that are known to form pseudoknots were
taken from PseudoBase [2], where we selected 34
sequences of several kinds of secondary structures and of
various lengths (21–137 bases) from different families
(viral 3'UTR, mRNA, rRNA, ribozymes and tRNA-like).
Specifically, we first selected a set of sequences of lengths
20–140 bases uniformly. We then checked the secondary

structure of each sequence and removed sequences of sim-
ilar secondary structure from the set.

Other test sequences that do not contain any pseudoknots
were obtained from Rfam [20]. Seven pseudoknot-free
sequences from different families were selected in the
same way as the sequences that contain pseudoknots, so
that their secondary structures and lengths are different
(26–88 bases).

Implementation
After formulating the IP problem for prediction of RNA
secondary structure, we employed the optimizer software
called ILOG CPLEX 10.1 [19] to solve the IP formulation.
CPLEX is a commercial software that can solve mathemat-
ical optimization problems, including IP problems. We
implemented the IP formulation by C++ and included the
C++ optimization library provided by CPLEX on a
machine with Intel Xeon CPU 5160 3.00 GHz and 8.00
GB RAM.

Illustration of several constraintsFigure 4
Illustration of several constraints. (a) Constraints (3) and (4). (b) Constraints (5) and (6). (c) Constraints (11)–(14). (d) 
Constraints (15)–(17). (e) Constraint (18).
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In our implementation, we reduced the set of variables xij
and yij to solve the problem fast. During implementation
of xij and yij, we focused on the fact that at least two base
pairs are likely to appear consecutively on the sequence.
We considered not only the pair of (si, sj) but also its adja-
cent pairs, i.e., (si-1, sj+1) and (si+1, sj-1). If (si, sj) and at least
one of those adjacent pairs are valid, we implemented xij
and yij as decision variables.

Tests
Prediction accuracy of our method was measured by the
sensitivity and specificity. Specificity is defined as the pro-
portion of the number of correctly predicted base pairs to
the number of base pairs of the known structure. Specifi-
city is defined as the proportion of the number of correctly
predicted base pairs to the total number of base pairs pre-
dicted by the algorithm.

We carried out pseudoknotted structure prediction with
each value of σ in order to determine the most proper
value (see Table 2 . We then chose σ that yielded the high-
est average prediction accuracy on our data set. From
Table 2 , the best value of σ is 0.70. However, increasing
or decreasing value of σ did not show any definitive way
to find the optimal value of σ.

We compared the prediction results on the best σ (σ =
0.70) of IP with the results from ILM [7], pknotsRG [6]
and PKNOTS [5], shown in Table 3 . Note that PKB
number is an identification number of each RNA
sequence used in PseudoBase. Moreover, we compared
computation time of each method (see Table 4 ). As the
table shows, computation time of the IP-based method
depends on the sequence length. Specifically, as the
sequence length elongates, the computation time
increases exponentially.

We also tested the IP-based model with the pseudoknot-
free sequences. The IP-based model with σ = 0.7 gives
63.30% of average sensitivity and 47.89% of average spe-
cificity. Since the input data set is a set of pseudoknot-free
sequences, the appropriate value of σ should be close to 0.
Hence, we tested the model with σ ∈ {0.05, 0.1, 0.15,
0.2}. The results showed that σ = 0.1 gives the best average
sensitivity (72.18%) and the best average specificity
(55.93%).

Discussion
We averaged the sensitivity and specificity to examine the
overall performance of each prediction method. Our IP-
based method gives 75.91% sensitivity, which is the high-
est of the four models. For specificity, the IP-based
method gives 65.40%, which is the third highest, and the
best specificity is given by PKNOTS (75.09%). From Table
3 , it is obvious that for short sequences (less than 70

bases), the accuracy of IP is very high and at least compa-
rable to the other algorithms. For sequences of lengths
70–116 bases, ILM yields the highest sensitivity and spe-
cificity for most of the sequences in this group. One rea-
son might be that some statistical information that ILM
uses plays a key role in achieving good accuracy for long
sequences. It is a challenge to incorporate some kind of
statistical information into our IP-based method. 

The reason why the IP-based method does not yield high
specificity could be that when IP is being optimized, xij
and yij are assigned to be 1 as many as possible because the
energy parameters are negative values and the objective
function is to minimize the overall energy. This results in
the occurrence of a number of false positive pairs. There-
fore, the specificity of our method is lower than that of the
other methods.

When we observed predicted structures, we found that IP
always outputs pseudoknotted structure. Although ILM
and PKNOTS provide good specificity, it is not guaranteed
that base pairs forming pseudoknots are always predicted,
especially for short sequences (see Figure 5). Since the
proportion of base pairs that constitute pseudoknots in
RNA secondary structure is small compared to the total
number of base pairs, the specificity of those algorithms is
high.

We considered using the leave-one-out strategy to verify
the optimality of σ, resulting in a drop in accuracy
(70.19% average sensitivity and 60.33% average specifi-
city). Among 34 leave-one-out experiments, there are 28
experiments where σ = 0.70 yields the best prediction
result. However, there is one experiment that gives low
accuracy (11.11% sensitivity and 8.70% specificity),
where PKB147 is used as a test sequence and σ = 0.75. As
a result, the average sensitivity and specificity is lower
than the results shown in Table 3  where we do not per-
form the cross validation for σ. As stated before, σ is a
fixed weighting parameter to restrict the occurrence of
base pairs that form pseudoknots. It is not necessary to
train the value of σ because our main purpose is not to
optimize the σ parameter but to test the applicability of
the IP-based model to the secondary structure prediction

Table 2: Average sensitivity and specificity of each value of σ.

σ Avg. sensitivity (%) Avg. specificity (%)

0.55 75.67 64.92
0.60 72.70 62.21
0.65 70.53 60.86
0.70 75.91 65.40
0.75 75.09 65.02
0.80 70.53 60.89
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problem. If we aim at training parameters of the predic-
tion algorithm, we should consider not only σ but also the
other coefficients of the objective function (i.e., energy
parameters), which is left as future work.

As explained in Implementation subsection, we imple-
mented decision variables xij and yij based on two valid
consecutive base pairs. It should be noted that the number
of these variables is fewer than the number of original var-
iables before the reduction (seeTable 5 ). Such a reduction

contributes to lower memory usage, which leads to the
capability of dealing with long sequences for prediction.
Furthermore, we also considered three valid consecutive
pairs, i.e., (si-2, sj+2), (si-1, sj+1), (si+1, sj-1), and (si+2, sj-2) for
each pair of (si, sj) so that we can further reduce the
number of variables and can expect to increase the predic-
tion accuracy. However, the performance using two con-
secutive pairs was better than using three consecutive
pairs. This might reveal that reducing too many variables
could make the problem harder to optimize, which results

in worse prediction accuracy and more computation time.
Note that in this paper we only show the results using var-
iables on two consecutive pairs.

Since actual RNA structure does not necessarily have the
lowest energy, it is important to consider suboptimal
structures, which might improve prediction accuracy.
From this viewpoint, Zuker [21] proposed an efficient

Table 3: Prediction results of the IP-based method (σ = 0.7) and prediction results of the other algorithms.

PKB num. Length Sensitivity (%) Specificity (%)

IP ILM pknotsRG PKNOTS IP ILM pknotsRG PKNOTS

PKB115 21 100.00 66.67 100.00 66.67 100.00 100.00 100.00 100.00
PKB102 24 100.00 87.50 100.00 87.50 80.00 77.78 88.89 77.78
PKB119 24 88.89 0.00 77.78 66.67 88.89 0.00 87.50 100.00
PKB103 25 100.00 57.14 57.14 42.86 70.00 66.67 50.00 50.00
PKB123 26 90.00 90.00 70.00 60.00 90.00 90.00 77.78 85.71
PKB154 26 100.00 90.00 100.00 100.00 100.00 100.00 100.00 100.00
PKB152 26 100.00 90.00 100.00 100.00 90.91 90.00 90.91 90.91
PKB126 27 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
PKB124 29 100.00 70.00 100.00 70.00 100.00 100.00 100.00 100.00
PKB100 31 100.00 91.67 91.67 100.00 92.31 91.67 91.67 100.00
PKB105 32 88.89 88.89 88.89 88.89 88.89 100.00 100.00 100.00
PKB118 33 90.00 80.00 90.00 80.00 81.82 72.73 81.82 72.73
PKB120 36 100.00 100.00 100.00 100.00 85.71 100.00 100.00 100.00
PKB65 46 93.33 93.33 0.00 73.33 70.00 87.50 0.00 68.75
PKB205 48 23.08 0.00 23.08 23.08 15.00 0.00 23.08 23.08
PKB147 51 77.78 55.56 50.00 50.00 63.64 55.56 47.37 52.94
PKB248 66 80.00 65.00 35.00 65.00 64.00 72.22 33.33 61.90
PKB72 67 100.00 0.00 35.29 100.00 62.96 0.00 31.58 73.91
PKB140 69 73.91 65.22 13.04 43.48 62.96 65.22 15.79 50.00
PKB143 71 62.50 91.67 29.17 70.83 48.39 78.57 29.17 68.00
PKB144 71 79.17 95.83 29.17 66.67 70.37 95.83 31.82 72.73
PKB173 73 63.64 77.27 36.36 77.27 50.00 68.00 44.44 77.27
PKB276 73 42.86 76.19 33.33 38.10 30.00 80.00 30.43 38.10
PKB275 85 65.38 96.15 15.38 50.00 50.00 83.33 15.38 72.22
PKB75 88 71.88 93.75 18.75 81.25 62.16 85.71 22.22 81.25
PKB76 89 56.00 100.00 52.00 44.00 40.00 69.44 48.15 34.38
PKB164 96 38.71 74.19 48.39 35.48 29.27 65.71 53.57 34.38
PKB168 105 61.76 79.41 35.29 76.47 50.00 81.82 34.29 86.67
PKB252 110 15.38 97.44 35.90 97.44 13.04 80.85 35.90 92.68
PKB191 113 74.36 82.05 56.41 71.79 61.70 80.00 55.00 73.68
PKB135 116 82.05 84.62 38.46 74.36 69.57 84.62 40.54 74.36
PKB236 120 50.00 37.50 0.00 67.50 42.55 30.61 0.00 72.97
PKB137 133 70.45 84.09 63.64 86.36 65.96 80.43 63.64 86.36
PKB134 137 40.91 59.09 40.91 84.09 33.33 50.00 41.86 80.43

Average 75.91 74.12 54.85 71.74 65.40 73.07 54.89 75.09
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suboptimal folding algorithm. In our case, the optimal
solution depends on how the solver (CPLEX) works out
the IP problem, which is hidden to us, and thus we cannot
retrieve suboptimal solutions from the solver. However,
once an optimal solution (structure) is determined by the
solver, we might be able to calculate some of the subopti-
mal structures by describing constraints where some
stacking pairs are forbidden.

Conclusion
We proposed an integer programming (IP)-based method
of predicting RNA secondary structure with a certain kind
of recursive pseudoknot. Prediction tests on a set of RNA
sequences were carried out, which showed good perform-
ance in accuracy for a data set of relatively small length.
Furthermore, our method achieved higher average sensi-
tivity than that of several existing prediction methods for
the same test set, as well as guaranteed that base pairs
involved in pseudoknots are always predicted.

We also tested the IP-based model with pseudoknot-free
sequences. Although this IP formulation is specifically
designed for pseudoknotted structure, the results showed
that the IP-based method can also be useful in predicting
secondary structure in the absence of pseudoknots. How-
ever, based on this IP formulation, we can formulate
another IP-based model to predict pseudoknot-free struc-
ture and would be able to obtain better prediction accu-
racy.

As described before, our IP-based approach is flexible and
extensible. Recall that the IP-based prediction method
takes much time for long RNA sequences. In general, com-
putation time of IP is exponential to the number of varia-
bles and thus it is important to reduce the number of
variables. Although in this paper we used an IP variable
(e.g., xij) to represent just one base pair, we would be able
to define variables in such a way that they can handle
larger units at a time, which results in further reduction of
the number of variables. A kind of divide-and-conquer
approach could also be useful where a long input

sequence is divided into several subsequences of short
length and then we apply the IP-based prediction method
to each short subsequence. This approach will shorten the
computation time, as well as increase the prediction accu-
racy, which is left as our future work.
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