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Abstract

Background: Intrinsically unstructured or disordered proteins are common and functionally
important. Prediction of disordered regions in proteins can provide useful information for
understanding protein function and for high-throughput determination of protein structures.

Results: In this paper, algorithms are presented to predict long and short disordered regions in
proteins, namely the long disordered region prediction algorithm DRaai-L and the short disordered
region prediction algorithm DRaai-S. These algorithms are developed based on the Random Forest
machine learning model and the profiles of amino acid indices representing various physiochemical
and biochemical properties of the 20 amino acids.

Conclusion: Experiments on DisProt3.6 and CASP7 demonstrate that some sets of the amino
acid indices have strong association with the ordered and disordered status of residues. Our
algorithms based on the profiles of these amino acid indices as input features to predict disordered
regions in proteins outperform that based on amino acid composition and reduced amino acid
composition, and also outperform many existing algorithms. Our studies suggest that the profiles
of amino acid indices combined with the Random Forest learning model is an important
complementary method for pinpointing disordered regions in proteins.

Background

Proteins are linear chains composed of 20 amino acids
(aa), also called residues when they form chains by
detaching water molecules, linked together by polypep-
tide bonds and folded into complex three-dimensional
(3D) structures. Disordered regions (DRs) in protein
sequence are structurally flexible and usually have low
sequence complexity [1-4]. Physicochemically, DRs are
enriched in charged or polar amino acids, and depleted in

hydrophobic amino acids [5-7]. Proteins containing long
DRs are called intrinsically unstructured or disordered
proteins (IUPs or IDPs).

A number of protein disorder predictors have been devel-
oped by several groups, such as PONDR [8], RONN
[9,10], DisProt [11,12], NORSp [13,14], DISpro [15],
DISOPRED and DISOPRED2 [16,17], DisEMBL [18],
IUPred [19], DRIP-PRED [20] and Spritz [21], and more
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recently DisPSSMP [22], VSL1 and VSL2 [23,24], POO-
DLE-L [25], POODLE-S [26], Ucon [27], PrDOS [28] and
metaPrDOS [29]. Most existing predictors are based on
the Neural Network and Support Vector Machine learning
models. The features used to construct the prediction
models include amino acid composition (AAC) or
reduced amino acid composition (RAAC) combined with
the physiochemical properties of amino acids including
aromaticity, net charge, flexibility, hydropathy, coordina-
tion number and sequence complexity [8-10]. To achieve
high prediction accuracy, typically algorithms use many
features as input. Some algorithms are based on the
sequence alignment scores from PSI-BLAST or protein sec-
ondary structure information [16,17,21]. Either approach
lowers the efficiency of these algorithms and hinders their
application in high-throughput analysis.

It has been shown that short disordered regions have dif-
ferent characteristics from long disordered regions [30].
Algorithms perform well in predicting long disordered
regions rarely perform well in predicting short disordered
regions. In this paper, algorithms for predicting short and
long DRs are developed separately based on the Random
Forest learning model [31] and the profiles of the amino
acid indices. The algorithm for long disordered regions,
DRaai-L, can achieve an area of 85.1% under the receiver
operating characteristic (ROC) curves in the 10 fold cross
validation test. The algorithm targeting all kinds of disor-
dered regions, DRaai-S, can achieve an area of 81.2%
under the ROC curve in the 10 fold cross validation test
and about 72.2% in the blind test on CASP7 targets. Both
DRaai-L and DRaai-S achieve higher prediction accuracy
as well as higher computation efficiency than many exist-
ing algorithms, which make them efficient tools for high-
throughput prediction of disordered regions in proteins.

Training and test data

In this study, the training data is derived from DisProt
(version 3.6) [32] and PDB-Select-25 (the Oct.2004 ver-
sion) [33]. DisProt is a collection of disordered regions of
proteins based on published literature descriptions. It has
472 proteins entries and 1121 disordered regions. Only
long disordered regions (>30aa) in DisProt3.6 are used to
train DRaai-L, and it is denoted as DL-train hereafter. All
disordered regions in DisProt3.6 were used to train
DRaai-S, and it is denoted as DS-train hereafter. The
ordered training data is extracted from PDB-Select-25, a
representative set of protein data bank (PDB) chains that
shows less than 25% sequence homology. We selected
366 high-resolution (< 2 A) segments with well-defined
structures which has no missing backbone or side chain
coordinates and contains at least 80 residues. This collec-
tion of ordered training set includes a total of 80324 resi-
dues, and is referred to as O-train hereafter. The CASP7
targets were used as an independent test dataset to blind

http://www.biomedcentral.com/1471-2105/10/S1/S42

test the performance of prediction. The disorder contents
of CASP7 are very different from those of DisProt3.6. The
CASP7 dataset contains 96 sequences with a total of
19,891 residues, where only 170 disordered regions, or
1,189 (6%) residues are annotated as disordered. There is
a significant amount (28% in aa) of short disordered
regions containing 1 or 2 aa, and only 4 are long DRs of
>30 aa (<2% in aa). While DisProt3.6 contains 352
regions of >30 aa with 47251 aa in total (36% in aa).

The amino acid indices and feature selection

The amino acid index (AA-index) database AAindex [34]
is a database of numerical indices representing various
physiochemical and biochemical properties of amino
acids or pairs of amino acids. Especially the AAindex1
database comprises 544 sets of numerical indices for the
20 amino acids, and all of them are derived from pub-
lished literature.

The AA-indices that are highly correlated with the disor-
dered or ordered status of the residues in the training pro-
tein sequences were used to construct the prediction
model in our studies. The process of choosing these indi-
ces was implemented in three steps. First of all, given a set
of indices and a training sequence, the training sequence

is transformed into two vectors V1 and V2. V1 is gener-
ated by replacing ordered and disordered resides with the
number -1 and 1 respectively based on the annotations

from the databases. V2 is the result by substituting the
amino acid code by the corresponding AA-index value.

Note that as different sets of AA-index are of different
scales in the AA-index database, the Z-transformation
(P ) is applied for each set of index before the substitu-

tion. For a set of AA-index, the Z-transformation is shown
in Equation 1.

p =Pl (1)

P, represents an AA-index value and r varies for the 20

amino acids denoted as 1..20. P and o are the mean and
standard deviation of the 20 AA-index values:

20
=1 Pr (2)
20

ﬁ:

and

20
g:\/zl()Z(pr_ﬁ)z (3)
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After the AA-index substitution, the structural influence to
a residue by its surroundings is calculated using a smooth
function. The Savitzky-Golay filter [35] is used to smooth

both V1 and V2 in our study with a window of 17 aa.
This filter essentially performs a polynomial regression on

the V1 and V2 to determine the smoothed value for each
point. The main advantage of Savitzky-Golay is to pre-
serve features of the distribution such as relative max
score, min score and width of disordered or ordered
regions, which are usually "flattened" by other smooth

techniques. The smoothed vectors V1’ and V2’ denote

the results of filtering V1 and V2 respectively.

Finally the correlation coefficient of an AA-index set and a
protein sequence is calculated as shown in Equation 4,
where N represents the length of the sequence under
consideration.

N "/_:/ 7 /_: ’
zhibn v1xv2 vz) @

Rs 5., =
V1'v2

(N-1)oy1.0vY

The correlation coefficient Ry,
positive coefficient indicates that the set of AA-indices is
positively correlated with the order/disorder status of res-
idues in the sequence, whereas a negative coefficient indi-

cates negative correlation.

, isin therange [-1..1]. A

The sets of AA-indices that are mostly related to the disor-
der/order status of residues in all our training sequences
were used to construct the prediction model. Specifically
these sets of indices were chosen so that

¢ To maximize the summarization of the absolute correla-
tion coefficients of the index over all training sequences.

¢ To maximize the number of protein sequences that the
index uniformly correlates with.

Based on the above two criteria, the top 40 AA-index sets
were selected. Among the 40 sets, many are highly corre-
lated (with correlation coefficient of at least 0.8), and as a
result five representative index sets were selected, as
shown in Table 1.

From the description of these 5 sets of AA-indices listed in
Table 1, we can see that they are strongly correlated with
protein structures. For example, index BULH740101 rep-
resents hydrophobicity while it is known that ordered
regions tend to be hydrophobic, indices CHOP780203
and CHOP780211 represent alpha and turn propensities
which has been widely used in secondary structure
prediction.

http://www.biomedcentral.com/1471-2105/10/S1/S42

The Moreau-Broto autocorrelation functions of AA-indices
The profiles of amino acid indices along a protein
sequence have been used in the protein structural and
functional classification studies [36-38]. Given an AA-
index set, the normalized Moreau-Broto autocorrelation
coefficient for an amino acid protein sequence is defined
in Equation 5:

=
AC(W) = % z PP, (5)
i=1
where N is the length of the sequence under considera-
tion, and d is an integer larger than zero and describe the
lag of the autocorrelation or the distance in the number of
residues separated in the protein sequence. In this study,
dissetto 1..30. P;and P;, ; are the AA-index values at posi-
tions i and i + d normalized by Z-transformation respec-
tively. We wused the Moreau-Broto autocorrelation

functions generated from smoothed vector V2’ under dif-
ferent windows as input to develop the DRaai-L algo-
rithm, and used the vector

sN 1(\71’—\71’)( \72’—\72’)

VIV —

R directly to develop

(N-1)oyi.ovy
the DRaai-S algorithm.

Methods

The Random Forest machine learning model is the under-
lying model in this study. A random forest is an ensemble
of unpruned decision trees, where each tree is grown using
a (bootstrap) subset of the training dataset [39]. Bootstrap
is the training set drawn randomly from the original train-
ing set with an equal number of training samples. Each
tree induced from bootstrap samples grows to full length
and the number of trees in the forest is adjustable. After
training, every path from the root of a tree to a leaf gives
one if-then rule and can be used for prediction. As an
ensemble machine learning model the random forest has
no risk of overfitting with an increasing number of trees.
However, after certain point, the increase of number of
trees leads to trivial improvement of prediction accuracy
while prolonging the time of training and prediction sig-
nificantly. The random forest implementation of the
WEKA data mining package [40] is used to build our
models.

DRaai-L: predicting long DRs using AA-indices

DL-train and O-train are used to train the algorithm
DRaai-L. For each ordered or disordered region in the DL-
train and O-train datasets, a window of w aa (by default w
=31) slides along a sequence from N-terminus to C-termi-
nus one residue at a time. The Moreau-Broto autocorrela-
tion of the 5 sets of AA-indices in each window is
calculated with d assigned from 1..30. Son =5 x 30 = 150
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Table I: Amino acid indices related to (dis)order. The five sets of amino acid indices that are most correlated to the (dis)order of

proteins are the features used in prediction.

AA-index set Description

VINM940102 Normalized flexibility parameters (B-values) for each residue surrounded by none rigid neighbours
BULH740101 Surface tension of amino acid solutions: A hydrophobicity scale of the amino acid residues
PUNTO030102 Knowledge-based membrane-propensity scale from 3D_Helix in MP- topo databases
CHOP780203 Normalized frequency of beta-turn

CHOP78021 | Normalized frequency of C-terminal non beta region

elements are generated from a window. When a window
of w residues slides along a protein sequence of L; resi-
dues, the sequence is represented by (L,/w) x n elements.
These elements are used as the input parameters to the
random forest to train the DRaai-L model.

For a query sequence, a window slides along the sequence

and its corresponding vectors V2 ' is computed using the
Moreau-Broto autocorrelation functions. The smoothed

vectors V2 ' are then input to the DRaai-L model, and the
disordered/ordered status of each residue is predicted.

DRaai-S: predicting short DRs using AA-indices

All disordered regions in DisProt3.6, DS-train, were used
to train DRaai-S. Each amino acid sequence in the training
set was replaced with numerical sequences by the 5 sets of
AA-indices and smoothed using the Savitzky-Golay filter

(with awindow of 17 aa). Then the smoothed vectors V2"
are directly used as input parameters to develop the
DRaai-S model,

To predict the disorder of a query sequence, the sequence

is transformed similarly to the 5 smoothed vectors V2",
and then they are input to the DRaai-S model to predict
the disorder/order of each residue.

Evaluation

The distribution of ordered/disordered residues are very
imbalanced in both DisProt3.6 and CASP7. With the fact
that disordered residues are by far the minority in both
databases, overall accuracy (Q2) is not a good measure to
evaluate disorder prediction algorithms [41]. Ideally a dis-
order algorithm should be highly sensitive on disordered
regions while not producing many false positive predic-
tions. The confusion matrix of an algorithm, which com-
prises True Positive (TP), False Positive (FP), True
Negative (TN) and False Negative (FN), can be used to
evaluate the performance of the algorithm. Note that in
the context of disorder prediction P and N are the total
number of labelled disordered and ordered residues
respectively.

The receiver operating characteristic (ROC) curves were
used to evaluate the prediction accuracy. Each point of a
ROC curve is defined by a pair of values for the false pos-
itive rate (x = FP/N) and the true positive rate (y = TP/P).
For a prediction algorithm, by adjusting the parameters,
the true positive rate can be plotted under different false
positive rates and a smooth ROC curve can be obtained.

The performance of DRaai-L and DRaai-S is measured in
different methods as described below.

¢ The Sensitivity is the true positive rate, which is the per-
centage of residues correctly predicted as disordered in
relation to the total number of actual disordered residues.

¢ The Precision is the percentage of true positives in rela-
tion to the total number of predicted positives.

¢ The Specificity is the percentage of residues correctly pre-
dicted as ordered in relation to the total number of
ordered residues. The false positive rate is 1-Specificity.

® Spoduct 18 @ single measurement combining sensitivity
and specificity: S,,4,, = Sensitivity x specificity. S
favours disorder prediction.

product

e The Matthew Correlation Coefficient (MCC) ranges
between -1 and +1, and favors correct predictions of dis-
ordered residues. MCC is defined as

TPXTN—FPXFN
J(TP+FP )x(TP+EN )x(TN+FP )x(TN+FN )’

e S, is a measurement that assigns class weights that are
reversely related to class distribution. As a result, S,
rewards models for correctly predicting a disordered resi-
due. S,, was used in assessing the prediction of disordered
residues in CASP6 and CASP7. S, is defined as

Waisorder <XTP—Worder XFP+Worder <IN =W gisorder XFIN
Wiisorder<P+Worder <N

where Wdisorder and Worder

order respectively. W, ..-and W_ ;..

are the weights for disorder and
should be set to be
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inversely proportional to the disorder and order content
in the data under consideration. For evaluation on
DisProt3.6, Wy;.pier = 85 and W, = 15. For evaluation on
on CASP7, Wyprger= 94 and W, ;. = 6.

The random forest package we use provides the out-of-bag
test to estimate prediction error rate using data randomly
withheld from each iteration of tree development. How-
ever this approach significantly overestimates the per-
formance when a window technique is used.

The performance of both DRaai-L and DRaai-S are evalu-
ated on DisProt3.6 using 10-fold cross validation. The
performance of DRaai-S is further evaluated by blind test
on CASP7 targets.

DRaai-L and DRaai-S are compared with algorithms based
on the Random Forest model but constructed using the
amino acid composition (AAC) and reduced AAC (RAAC)
[42] information of the primary sequences. They are also
compared with other existing disorder prediction
algorithms.

Results

The results of evaluating DRaai-L and DRaai-S using 10-
fold cross validation tests on DisProt3.6 and blind test on
CASP7 are presented separately.

The performance of DRaai-L

The performances of DRaai-L under different number of
trees for the random forest model and different d values
for the Moreau-Broto autocorrelation coefficients are pre-
sented using ROC curves shown in Figure 1. The area
under the ROC for the model trained with 50 trees and the
auto-correlation coefficients generated from d = 1, 2,, 30
aa is 85.1%. Even for the model trained with 10 trees and
the auto-correlation coefficients generated from d = 1,
2,...,15 aa, the area under the ROC can reach 82.7%. This
result is better than that trained with AAC (78.6%, under
50 trees and d = 1, 2,...,30) or RAAC (74.1%, under 10
treesand d = 1, 2,...,15). This result is also better than that
of most other available algorithms, as indicated by the
separate points in Figure 1.

Table 2 describes the performance of DRaai-L in compar-
ison with other published algorithms. The performance is
measured in terms of Sensitivity, Precision, Specificity,
Sproaucy MCC and S, DRaai-L is with a setting of 50 trees
and d = 1, 2,...,30. With these six methods of evaluation,
the performance of DRaai-L is just below [UPred, but bet-
ter than most other predictors.

The performance of DRaai-S
Figure 2 shows the ROC curves for DRaai-S under 10 fold
cross validation and on CASP7 targets. The area under
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ROC of DRaai-S in 10 fold cross validation is 81.2%,
while it dropped to 72.2% when used to predict the
CASP7 targets. Table 3 describes the performance of
DRaai-S on CASP7 in comparison with other predictors.
DRaai-S is with a setting of 10 trees and a smoothing win-
dow of 17 aa. The results in both Figure 2 and Table 3
demonstrate that DRaai-S can achieve comparable or even
more accurate prediction than some published
algorithms.

In summary, by using the simple AA-index information,
both DRaai-L and DRaai-S have shown better perform-
ance than many well developed published algorithms.
DRaai-L and DRaai-S have the potential to be further
improved by adjusting the sets of AA-indices, the number
of residues to be smoothed, and the number of residues
considered in the auto-correlation function.

Discussion

The good performance of DRaai-L compared with the
other published algorithms shown in Figure 1 and Table
2 indicates that the continuous correlations among the
nearby residues along a primary sequence implies
ordered/disordered structural information. It is well
known that the residues involved in ordered structures are
always close to other residues in space. In other words,
they are constrained by backbone or side chain interac-
tions from other residues, and hence they have higher
density in the contact map [27]. Indeed the auto-correla-
tion functions used in DRaai-L reflect such contact infor-
mation. If the residues in a fragment of more than 30 aa
do not show any kind of correlation between each other,

1.0
0.8 =
@ — = ,’; Foldindex Dis=MBL-C oill
‘@ & PONDR-VL3-BA s e
7 oy @PONDR-VLXT
ﬂ; 0.8 Ko FPONDR-VL1_XT
=
w
[~ .
(=1 0.4 4 ¢ DisEMBL-Hotloaps
a G A PONDR-CAN_XT
2 DisEMBL-Rem485
=
—y— 50wees, 451, 2,30
0.2 —-&— 50trees, 0=1,2,...15
—@— 10 trees, d=1,2,..,30
——r—-~ 10 trees, d=1,2,...,158
0.0 O T T
0.0 0.2 0.4 0.6 0.8 1.0
False positive rate
Figure |

Performance of DRaai-L. The ROC curves of DRaai-L in
10-fold cross validation test. All independent points in the fig-
ure are results obtained from the respective online predic-
tors with their default settings.
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Table 2: The performance DRaai-L on DisProt3.6. The performance of DRaai-L in the independent test on 10% of DisProt3.6 targets

under various measures in comparison with other predictors.

Algorithm Sensitivity Precision Specificity Sproduct MCC Sw
DisEMBL(Coil) 0.71 0.33 0.43 0.31 0.13 0.24
DisEMBL(Rem465) 0.36 0.67 0.93 0.33 0.36 0.29
DisEMBL(Hot Loop) 0.42 0.41 0.77 0.32 0.18 0.19
FoldIndex 0.72 0.46 0.68 0.49 0.36 0.40
IUPred 0.65 0.59 0.82 0.53 0.46 0.47
PONDR(CANXT) 0.41 0.41 0.77 0.32 0.18 0.18
PONDR(VL) 0.55 0.55 0.77 0.42 0.32 0.29
PONDR(VLXT) 0.63 0.45 0.70 0.44 0.30 0.33
PONDR(XL) 0.59 0.37 0.61 0.36 0.18 0.20
VSL2 0.76 0.79 0.79 0.60 0.55 0.55
DRaai-L 0.78 0.80 0.80 0.62 0.58 0.57
it is very unlikely that these residues are constrained by = Conclusion

each other or form stable contacts, they therefore have
high propensity to be disordered.

The prediction results of DRaai-S on DisProt3.6 and
CASP7 shown in Figure 2 and Table 3 indicate that the
position specific profiles of the physiochemical properties
of residues determine whether they are involved in short
disordered regions. The poor performance of DRaai-S
compared with DRaai-L indicates that accurately predict-
ing short disordered regions is significantly more chal-
lenging than predicting long disordered regions. This is
partially due to the difficulty of extracting local sequence
information, but more importantly due to the lack of suf-
ficient robust short disordered regions in the training
dataset. Therefore, a short DR predictor trained from very
limited number of short disordered regions can produce a
high false positive rate or fluctuated prediction accuracy.

CASP targets are a typical set of highly ordered globular
proteins that are suitable for protein structural determina-
tion by either NMR or X-crystallography. As such the dis-
tribution of disorder in CASP targets is not a typical
representation of disorder in all proteomes. Indeed the
distribution of short DRs in DisProt3.6 is significantly dif-
ferent. Among the limited number of disordered regions
in CASP targets, the majority are either very short or dis-
tributed in the terminal regions. However protein
sequence-structural relationship in the terminal regions
has not been well established [43]. As a result the disor-
dered regions in CASP targets are extremely difficult to
predict. To improve the prediction accuracy on CASP tar-
gets, many existing prediction algorithms use various fea-
tures including predicted secondary structure and
position specific scoring matrix, which typically requires
lengthy PSI-BLAST search. DRaai-S uses the simple and
uniform AA-index information and can efficiently predict
disordered regions in CASP targets, with a reasonable
accuracy that has a great promise to be further improved.

Protein disorder studies are becoming increasingly impor-
tant because IUPs are common and functionally impor-
tant. Experimental studies of IUPs are expensive and time
consuming. In this paper we have presented two algo-
rithms DRaai-L and DRaai-S for predicting disordered
regions in proteins, using the profiles of AA-indices and
the Random Forest machine learning model. By using
Moreau-Broto auto-correlation functions and profiles of
AA-indices and Savitzky-Golay filter, long disordered
regions and short disordered regions can be accurately
predicted with DRaai-L and DRaai-S respectively.

With the simple and uniform AA-index information, both
DRaai-L. and DRaai-S outperform some well developed

1.0 pu—
s
0.8 4
O
= DisEMBL-Coils
Lo
@ 0.6 4
2 y
] f ¢
a f
o %471 /ff , “pisEMBL-Hotioops
2 | Foldindex
L f
|&/ lUPregOPONDR-CAN_XT
021/
| DisEMBL-Rem465
( —A— DRaai-S, 10 rees, GASPT
—— DRaal-5, 10 trees, 10 fold croas validation
0.0 - -
0.0 0.2 0.4 0.6 0.8 1.0
False positive rate
Figure 2

Performance of DRaai-S. The ROC curves of DRaai-S in
10-fold cross validation test and blind test on CASP7. All
independent points in the figure are results on CASP7 targets
obtained from the respective online predictors with their
default settings.
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Table 3: The performance DRaai-S on CASP7. The performance of DRaai-S of independent test on CASP7 targets under various

measures in comparison with other predictors.

Algorithm Sensitivity Precision Specificity Sproduct MCC Sw

DisEMBL(Coil) 0.65 0.08 0.50 0.33 0.07 0.15
DisEMBL(Rem465) 0.19 0.47 0.99 0.19 0.27 0.18
DisEMBL(Hot Loop) 0.41 0.12 0.81 0.33 0.12 0.21

FoldIndex 0.36 0.14 0.86 0.31 0.14 0.22
IUPred 0.22 0.28 0.96 0.21 0.21 0.19
PONDR(CANXT) 0.23 0.07 0.82 0.18 0.03 0.05
PONDR(VL) 0.33 0.24 0.93 0.30 0.23 0.26
PONDR(VLXT) 0.46 0.12 0.79 0.36 0.14 0.25
PONDR(XL) 0.30 0.06 0.72 0.22 0.01 0.02
VSL2 0.73 0.21 0.85 0.6l 0.33 0.58
DRaai-S 0.55 0.14 0.79 0.43 0.19 0.34

algorithms, with high computing efficiency. This makes
them competitive tools to be used in large-scale structural
analyses and in comparative proteome studies.

List of abbreviations used

aa: amino acid; AAC: amino acid composition; AA-index:
amino acid index; DR: disordered region; IDP: intrinsi-
cally disordered protein; IUP: intrinsically unstructured
protein; RAAC: reduced amino acid composition; ROC:
receiver operating characteristic.
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