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Abstract

Background: Automatic identification of structure fingerprints from a group of diverse protein
structures is challenging, especially for proteins whose divergent amino acid sequences may fall into
the "twilight-" or "midnight-" zones where pair-wise sequence identities to known sequences fall
below 25% and sequence-based functional annotations often fail.

Results: Here we report a novel graph database mining method and demonstrate its application
to protein structure pattern identification and structure classification. The biologic motivation of
our study is to recognize common structure patterns in "immunoevasins", proteins mediating virus
evasion of host immune defense. Our experimental study, using both viral and non-viral proteins,
demonstrates the efficiency and efficacy of the proposed method.

Conclusion: We present a theoretic framework, offer a practical software implementation for
incorporating prior domain knowledge, such as substitution matrices as studied here, and devise
an efficient algorithm to identify approximate matched frequent subgraphs. By doing so, we
significantly expanded the analytical power of sophisticated data mining algorithms in dealing with
large volume of complicated and noisy protein structure data. And without loss of generality,
choice of appropriate compatibility matrices allows our method to be easily employed in domains
where subgraph labels have some uncertainty.

Background cessfully grow and disseminate despite a

Genomics efforts continue to yield a myriad of new pro-
tein sequences. Among the most valuable are those
expressed by mammalian pathogens, organisms that suc-

hostile host

immunologic environment. A subset of pathogen-
encoded proteins, "immunoevasins", facilitate this suc-
cess by mediating cellular adhesion and entry, and by dis-
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torting the interactions of host receptors and cell-surface
ligands [1]. Study of immunoevasins gives insight into
host-defense mechanisms, insight that can help guide
development of therapies and vaccines against refractory
organisms [2].

Though immunoevasins frequently possess protein-recog-
nition domain (PRD) folds common to mammalian pro-
teins of immunologic importance, their divergent amino
acid sequences may fall into the "twilight-" or "midnight-
" zones where pair-wise sequence identities to known
sequences fall below 25% and purely sequence-based
attempts at annotations often fail [3,4].

To better annotate these, and any other highly divergent
sequences, more generally, some means of explicitly
incorporating three-dimensional structural information
into the sequence evaluation is required. Inclusion of
even rudimentary structural considerations enhances the
performance of sequence scoring heuristics such as local
alignment tools [5] and hidden Markov models (HMM)
[6]. Indeed an HMM constrained with crystallographically
determined secondary structure data allowed discovery of
a previously unsuspected MHC class I-like immunoevasin
in the genomes of orthopoxviruses [7]. A vast literature
covers various schemes for structural data incorporation
and fold classification. Nevertheless, much progress
remains to be made [8].

We are pursuing an approach whereby structural patterns
common to a protein fold are collected, assessed for their
classification value, and mapped onto statistical models
of protein sequences (e.g. HMMSs, support vector
machines (SVMs), and conditional random fields). As a
first step, a comprehensive and objective means is
required of identifying and assessing the above common
structure patterns, or structure fingerprints.

Automatic identification of structure fingerprints from a
group of diverse protein structures is challenging for a
number of reasons. First, we have only limited knowledge
about the possible location, composition, and geometric
shape of these structure patterns. Second, protein struc-
tures are large geometric objects that typically contain
hundreds of amino acids with thousands of atoms and
chemical bonds. Third, due to accumulated mutations in
evolution the same structure pattern may appear slightly
different in different proteins. If we use terms from com-
puter algorithm design, we say that the problem of auto-
matic structure pattern identification is challenging since
(1) the problem has a large combinatory search space
(meaning patterns may occur in any part of a protein and
in any subset of a group of proteins) and (2) we should
use approximate matching rather than exact matching in
retrieving such patterns (meaning that we should tolerate
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certain level of geometric distortion and amino acid mis-
match in search for common structure patterns).

In this paper we demonstrate a novel data mining tech-
nique that efficiently extracts and scores structure pattern
from diverse proteins. Specifically in our method, we
encode a protein structure as a geometric graph where a
node represents an amino acid residue and an edge repre-
sents a physical or a chemical interaction between a pair
of residues. We encode structural motifs as subgraphs of a
geometric graph and we identify conserved structure fin-
gerprints by searching for frequently occurring approxi-
mately subgraphs in a group of graph represented
proteins.

Our contributions in designing a new graph data mining
method are to develop a solid theoretic framework, to
offer a practical software implementation for incorporat-
ing prior domain knowledge, such as substitution matri-
ces as studied here, and to devise an efficient algorithm to
identify approximate matched frequent subgraphs. By
doing so, we expanded the analytical power of data min-
ing algorithms in dealing with large volume of compli-
cated and noisy protein structure data. As evaluated in our
driving biological application of recognizing common
structure patterns in immunoevasins, our proposed
method identifies many structure patterns and affords
better structure classification accuracy compared to exist-
ing graph mining algorithms.

The rest of the paper is organized in the following way. In
the Related Work section, we give an overview of related
work on subgraph mining and protein structure pattern
identification. In the Methods section, we introduce the
technique about how to translate protein structures into
graphs, provide our model for approximate subgraph
mining, and present the details of our algorithm. In the
Results section, we show an empirical study of the pro-
posed algorithm using protein structure data sets. In the
Discussion section, we discuss the biological significance of
the structural motifs mined by our method. Finally in the
Conclusions section, we conclude with a short discussion
of our approach.

Related work

There is an extensive body of literature on comparing and
classifying proteins using multiple sequence or structure
alignment, such as VAST [9] and DALI [10]. Here we focus
on the recent algorithmic techniques for discovering struc-
ture motifs from protein structures. The methods can be
classified into the following five types:

e Depth-first search, starting from simple geometric pat-
terns such as triangles, progressively finding larger pat-
terns [11-13].
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e Geometric hashing, originally developed in computer
vision, applied pairwise between protein structures to
identify structure motifs [14-16].

e String pattern matching methods that encode the local
structure and sequence information of a protein as a
string, and apply string search algorithms to derive motifs
[17-19].

e Delaunay Tessellation (DT) [20-22] partitioning the
structure into an aggregate of non-overlapping, irregular
tetrahedra thus identifying all unique nearest neighbor
residue quadruplets for any protein [22].

e Graph matching methods comparing protein structures
modeled as graphs and discovering structure motifs by
finding recurring subgraphs [23-29].

Graph database mining is an active research field in data
mining research. The goal of graph database mining is to
locate useful and interpretable patterns in a large volume
of graph data. Recent exact matching graph mining algo-
rithms can be roughly divided into three categories. The
first category uses the level-wise search strategy, which
includes AGM [30] and FSG [31]. And the second category
takes the depth-first search strategy, which includes gSpan
[32] and FFSM [33]. The third category works by mining
frequent trees, for which SPIN [34] and GASTON [35] are
the representative. There are many other existing graph
mining algorithms, and we refer to [36] for a recent sur-
vey.

Frequent subgraph mining with approximate matching
capability has also been investigated. The current approx-
imate subgraph mining algorithms can be divided into
four categories: (1) proximity measures between graphs
[37-39], (2) given a proximity measurement, compute
representative frequent subgraphs [40], (3) pattern dis-
covery in a single large graph [41], and (4) pattern discov-
ery from a group of graphs. The last category is what we
concentrate on. For algorithms in (4), SUBDUE [42] does
not claim completeness. Monkey [43] handles only edge
missing and edge label mismatch. Partially Labeled
Graphs [44] uses a wild card method to handle node label
mismatches. The algorithm may be viewed as a special
case of our algorithm.

Different from the existing work, to our best knowledge,
we are the first group that incorporates a probability
matrix in a graph mining method. We also developed a
general framework to fully utilize a probability matrix for
approximate match, which we can apply to a number of
different applications. In addition, we have developed
two ways to demonstrate the statistical significance of the
patterns mined from a graph database. Statistical signifi-
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cance is an important but often overlooked issue in eval-
uating the quality of identified pattern in frequent pattern
mining. Finally we offered a practical implementation
and evaluated its performance using the synthetic sets.

Methods

In this section, we first briefly describe the technique that
translates protein structures into graphs. Then we demon-
strate our method called APGM(APproximate Graph Min-
ing) with two steps: introducing the theoretic model, and
showing our algorithm in detail.

Almost-Delaunay graph

Since the protein backbone trace defines the overall pro-
tein conformation, we choose the C,atoms as the nodes
of protein graphs. Based on this simplified protein model,
we compute edges using Almost-Delaunay Tesselation
[45]. The Almost-Delaunay edges are a superset of the
Delaunay edges. All nearest neighbor residues connected
by Delaunay edges are defined using Delaunay Tessella-
tion [46]. This tessellation is defined for a finite set of
points by an empty sphere property: A pair of points is
joined by an edge iff one can find an empty sphere whose
boundary contains those two points. The definition of the
Delaunay Tessellation depends on the precise coordinate
values given to its points, but these coordinate values are
not exact in the case of proteins due to measurement
imprecision and atomic motions. In order to address this
problem, Almost-Delaunay Edges are defined by relaxing
the empty sphere property to say that a pair of points p
and 4 is joined by an Almost-Delaunay edge with param-
eter ¢ or AD(¢), if by perturbing all points by at most &, p
and ¢ can be made to lie on an empty sphere. In Figure 1,
we show one segment of the 3D structure and the corre-
sponding AD graph of 1FP5A Immunoglobulin C1-type
protein as an example. More detailed information is avail-
able in [45] and [47].

Theoretic framework

Definition |

A labeled graph G is a 5-tuple G = {V, E, Z,, X5, 1) where V
is the set of vertices of G and E < V x V is the set of undirected
edges of G. 2, and X, are (disjoint) sets of labels. And labeling
function A: V. — X, U E — X, maps vertices and edges in G to
their labels. A graph database D is a set of graphs.

We also use V[G] to denote the node set of a graph G and
E[G] to denote the edge set of G. We also use Xy, to
denote the node labels, X ¢ to denote edge labels, and 4
to denote the labeling function for a graph G. Before we
introduce approximate matching, we define compatibility
matrix, which offers a probability framework for approxi-
mate subgraph mining.
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Figure |

3D structure and corresponding graph of one sample
protein. Upper: One segment of the 3D structure of the

[ FP5A Immunoglobulin Cl-type protein (the paired Fce 3
and 4 domains of IgE). Lower: The corresponding graph.
Vertices are C_,atoms. Covalent edges are represented in
heavy magenta while non-covalent edges defined by Almost
Delaunay Tesselation(g = 0.1) appear in thin blue.

Definition 2

A compatibility matrix M = (m;;) is an n x n matrix indexed
by symbols from a label set ¥ (n = |Z|). An entry m;;(0 < m;;
<1, E;m;;= 1) in M is the probability that the label i is replaced
by the label j.

A compatibility matrix M is stable if the diagonal entry is
the largest one in the row (i.e. M;;> M, for all j = i). A
compatibility matrix being stable means that any label i is
more likely to be replaced by itself rather than by any
other symbol. For our biological application, we consider
substitution matrices as being, in essence, stable matrices
since most or all rows fit the criterion. For example, in the
BLOSUMSG2 substitution matrix, there is only one viola-
tion of the criterion - the row for methionine(MET).
Hence for the rest of the discussion, we will treat substitu-
tion matrices as stable compatibility matrices.

Example 1. We show a graph database D with three labeled
graphs P, Q, R on the left side of Figure 2. In this database, the
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node label set is {a, b, c} and the edge label set is {x, y}. On
the right part of Figure 2, we show a compatibility matrix M,
which is a 2D matrix indexed by the set of node labels in D.
The probability that the vertex label a is substituted by b is m,,
=0.3. In M, we use probability O to simplify the matrix. In real-
ity these probabilities are never 0.

Definition 3
A labeled graph G = {V, E, X, £, 1} is approximately sub-
graph isomorphic to another graph G'= {V', E', &}, , £}, '}

if there exists an injection f : V. — V' such that

® [1cvM ), 2wy 2 © and

* H(MH M ), 2 (Fu) f() 2T

The injection f is an approximate subgraph isomorphism
between G and G'. M is a compatibility matrix for node
label sets T, U X}, . M'is a compatibility matrix for edge

label sets ;U ¥ . In an edge compatibility matrix, we
assume ¥ and ¥}; both contain a special label called

empty edge. In this way, we handle both topology distor-
tion (missing edges) and edge label mismatches in the

same unified way through an edge compatibility matrix. 7
(0 <7<1) is the threshold for node mismatch and 7'(0 <7'
< 1) is the threshold for edge mismatch.

For simplicity in the following discussion, we assume that
we only need to handle node label mismatches (i.e. corre-
sponding edge relations and corresponding edge labels
should exactly match each other in matching two graphs).
In principle, edge label mismatch (including missing
edges) can be handled in a similar way as node label mis-
match. Hence our assumption does not reduce the com-
plexity of algorithm design, but the assumption
significantly simplifies our demonstration and makes our
algorithm easy of access.

P qy 0 a b C

y a [0.503]02
X Py X CENES I3 b

01110

@ , .

P2 Y 9 ! ! ‘ clO[O]1

(P) Q) (R) M
Figure 2

Graph database and compatibility matrix. Example of a
graph database D and a compatibility matrix M.
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With the assumption, the new definition of approximate
subgraph isomorphism is:

Definition 4

A graph G is approximate subgraph isomorphic to another
graph G', denoted by G —, G' if there exists a 1-1 injection f
V[G] to V|G|, such that

* [Licv My g 2 @

eVuveV, (uv) e Es (flu),f(v)) e E, and
*V (uv) € E, Au, v) = A(f(u), f(v))

Given a node injection f from graph G to G', the co-
domain of f is an embedding of G in G'. M is a compatibil-

ity matrix for node label sets X, U X', . The approximate
subgraph isomorphism score of f, denoted by S{G, G'), is the

product of normalized probabilities:

S¢(G, G)= H W . For the case of exception in
mutation matrix, we use MAX(M,,) -) as the normalizing
factor instead of M, ;). For a pair of graphs, there may
be many different ways of mapping nodes from one graph
to another and hence may have different approximate iso-
morphism scores. The approximate matching score (score
for simplicity) between two graphs, denoted by S(G, G'),
is the largest approximate subgraph isomorphism score,
or

S(G,G) = max{s (G, )}
Similarly, we define exact subgraph isomorphism below.

Definition 5

A graph G is subgraph isomorphic to another graph G
denoted by G  G' if there exists a 1-1 injection f from the node
set V of a graph G to V' of a graph G', such that

eYueV, Mu)=2(fu)
eVuveV, (uv)eE<s(f(u)fv) e E,and

* V (uv) € E, Au, v) = Af(u), f(v))

Example 2. In Figure 2, we show a graph database D = {P,
Q, R} and a compatibility matrix M. We set isomorphism
threshold v = 0.4 and with this threshold, graph P is approxi-
mate subgraph isomorphic to graph Q with the approximate
subgraph isomorphic score equaling 0.6. To see this, there are a
total of 6 different ways to map nodes of P to those of Q. The
only two that satisfy edge label constraints are f, = p; — ¢, p,
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— q, p3 > gz and f, = py = G, p, = qy p3 —> g3. The approxi-
mate subgraph isomorphism score of f, equals that of f,.

Definition 6

Given a graph database D, an isomorphism threshold z, a sup-
port threshold o (0 <o < 1), the support value of a graph G,
denoted by sup, is the average score of the graph to graphs in
the database:

supG = Z S(G,.G)/|D| )

GeD,Gc, G

G is a frequent approximate subgraph if its support value is
at least o. With this definition, we only use those graphs
that a subgraph G is approximate subgraph isomorphic to
(controlled by the parameter 7) to compute the support
value of G. We do this to filter out low quality (but poten-
tially many) graph matchings in counting the support
value of a subgraph. For a moderate sized graph database
(100 1000), according our experience, the number of fre-
quent subgraphs identified is usually not sensitive to the
isomorphism threshold, which makes sense since low
quality graph matching has low "weight" in the support
computation nevertheless.

Problem statement

Given a graph database D, an isomorphism threshold 7 a
compatibility matrix M, and a support threshold o, the
approximate subgraph mining problem is to find all the
frequent approximate subgraphs in D. In Figure 3, we
show all the frequent approximate subgraphs in the graph
database D shown in Figure 2. By comparison with the fre-
quent subgraphs acquired by the exact graph mining, the
approximate mining method identifies meaningful pat-
terns that cannot be identified by exact graph mining

@ 00 @20
) (A) (A) (As)
®@ @0
(Ep) (E,) y
X ;
(Ay)
Figure 3

Example of frequent subgraphs and approximate fre-
quent subgraphs. Given the graph database D in Figure 2
and the support threshold o = 2/3,the left side shows the fre-
quent subgraphs mined by the general exact graph mining.
Given the compatibility matrix M in Figure 2, isomorphism
threshold 7= 0:4, and support threshold o = 2/3. The right
side presents the frequent approximate subgraphs in D.
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methods. Since the support value of approximate sub-
graph mining and that of frequent subgraph mining have
different meaning, it is generally hard to do a comparison
of approximate subgraph mining and that of frequent
subgraph mining. Fortunately with the assumption of sta-
ble compatibility matrix, we can see frequent subgraph
mining as a special case of approximate subgraph mining.

Example 3. Given a graph database D, a compatibility matrix
M in Figure 2, the support threshold o = 2/3 and isomorphism
threshold © = 0:4, we show how to calculate the isomorphism
score and support value for the approximate frequent patterns
in Figure 3.

S(A, P)=1,5(A,, Q) =1, S(A,, R) = 1, Sup(A,) = 3/3;
S(A, P) = 1, S(A,, Q) = 1, S(A,, R) = 1, Sup(A,) = 3/3;
S(As, P) = 1, S(A3, Q) = 0.6, S(As, R) = 0.4, Sup(A;) = 2/3;
S(A, P) =1, S(A,, Q) = 0.6, S(A,, R) = 0.4, Sup(A,) = 2/3.

Algorithm design

Here we demonstrate a new algorithm APGM for approx-
imate subgraph mining. APGM starts with frequent single
node subgraphs. At a subsequent step, it adds a node to an
existing pattern to create new subgraph patterns and iden-
tify their support value. If none of the resulting subgraphs
are frequent, APGM backtracks. APGM stops when no
more patterns need to be searched. Before we proceed to
the algorithmic details, we introduce the following defini-
tions to facilitate the demonstration of the APGM algo-
rithm.

Definition 7
Given a graph T, one of the embeddings e = vy, v,U,v,0f T, a
node v is a neighbor of e if 7u e, (u, v) € E[G].

In other words, a neighbor node of a embedding e is any
node that connects to at least one node in e. The neighbor
set of an embedding e, denoted by N(e), is the set of e's
neighbors.

Definition 8

Given a graph T, one of the embeddings e = vy, v,,U,v, of T in
a graph G, a node v € N(e), and a node label |, the approxi-
mate subgraph, denoted by G|y, is a graph (V', E', ¥,
'y, A') such that

o V'={v,v,,U} v

¢E'=V'x V' N E[G]

http://www.biomedcentral.com/1471-2105/10/S1/S46

« 3 =3,

evVuee: A'(u)=Au)

o A(v) =1

oV uvee: A((uv)) = Ac((u v)

Example 4. In Figure 4, we show a pattern T and one of its
embeddings e = (s,, $,) in a graph Q. Node s; is a neighbor
node of e since it connects to at least one node of e (in fact
both). Given a node label | ="a", we obtain an approximate
subgraph G' = Q|r,,,10f Q shown in the same figure. The G'
has an embedding e' = (s,, 55, $3) in Q and the score of the
M(a,a) M(a,a) M(a,b) _ M(a,b)
M(a,a) M(a,a) M(a,a) = M(a,a)
the score of an embedding is the multiplication of the probabil-
ity of observed node label replacement, normalized by the prob-
ability of node label self-replacement.)

embedding is =0.6. (Recall

With the two definitions, we present the pseudo code of
APGM below. follows.

Algorithm 1. APGM_MAIN(D, M, 7, o)
1: Begin

2: C « {frequent single node}

3:F«C

4: for each T € C do

5:  APGM_SEARCH(T, 7, o, F)

f 81 g

alblc
L e gf} a [05]03]02
@ @y @&y blof1]o
i E £ clofo]
(T) Q) (G”) M
Figure 4

Approximate subgraph. A pattern T, a graph Q and
approximate subgraph G' of Q.
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6: end for

7: return F

8: End

Algorithm 2. APGM_SEARCH(T, 7, o, F)
1: Begin

2:C« ¢

3: for each (e, v), e is an embedding of Tin G, v € N(e) do
4: CL « approximateLabelSet(T, G, e, v)
5: foreachl e CL do

G: X< Gl

7 C«Cu {X}

8: HX)=HX) v (ev)

9:  end for

10: end for

11: remove infrequent T from C
12:F«<FuC

13:for each T € C do

14:  APGM_SEARCH(T, 1, o, F)

15: end for

16: End

H 1is a hash function to store candidate subgraphs and
their embeddings. The hash key of the function in our
implementation is a canonical code of the subgraph X,

Table I: Characteristics of domain sequence sets

http://www.biomedcentral.com/1471-2105/10/S1/S46

which is a unique string presentation of a graph. We use
the Canonical Adjacency matrix (CAM) and the Canoni-
cal Adjacency Matrix code, developed in [48], to compute
the canonical code of a graph.

Algorithm 3. approximateLabelSet(T, G, e, v)
1: Begin

2:R« U

3:ly« Ag(v)

4: for each | € Xy do

Mo 1) T then

50 if S(e )X gy ) 2

6: R«RuUlI
7: endif

8: end for

9: return R

10: End

Example 5. Applying APGM to the graph database shown in
Figure 2with the support threshold o = 2/3 and the isomor-
phism threshold © = 0.4, we identify one frequent single-node
pattern a (shown as A, in Figure 3). Adding one node to the
pattern A,, there are two candidate single-edge patterns and
both of them are frequent. These two are shown as A, and A,
in the same figure. From pattern A,, we enumerate one addi-
tional pattern A,. We stop here since there is no more candidate
patterns to explore.

Results

Experimental setup

We performed all the experiments on a cluster with 256
Intel Xeon 3.2 Ghz EM64T processors with 4 GB memory
each. The approximate graph mining algorithm was

Immunoglobulin C1 Set

Immunoglobulin V Set

Number of Proteins 1786 371
Average Length 210 194
Maximum Length 457 444
Minimum Length 98 99
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Table 2: Immunoevasins protein lists for research

http://www.biomedcentral.com/1471-2105/10/S1/S46

PDB ID of proteins in Immunoglobulin CI set

Proteins for Feature Extraction(10):

Ifp5a lonqga logad |pqza 1t7va lléxa lje6a Imjul luvgb 1dn0Ob

Proteins for Leave-one-out Testing(l|):

Infda luvga 1q0xI Imjuh |aéza |k5na Ihdma 3frua |ogae |hdmb 1k5nb

PDB ID of proteins in Immunoglobulin V set

Proteins for Feature Extraction(10):

Proteins for Leave-one-out Testing(9):

Ipkoa logad Inpua lcdca Ijmaa 1foOb Inkoa Imjuh Infdb |gfoa

lzcza 197a legja Imjul Icida Ineua lcdya lhkfa |nezg

implemented in the C++ language and compiled by using
the g++ compiler in Linux environment with -O3 optimi-
zation.

We downloaded all protein structures from Protein Data
Bank (PDB). We followed [45] to use the same software as
[47] to calculate Almost-Delaunay(AD) for graph repre-
sentation of protein geometry. We took BLOSUMG62 as the
compatibility matrix and back-calculated the conditional
probability matrix by following the procedure described
in [49]. We normalized the matrix according to
Definition4.

Data set

We investigated two immunologically relevant protein
domain families: the Immunoglobulin V set and the
Immunoglobulin C1 set. Immunoglobulin domains are
among those used by immunoevasins [50,51]. We col-
lected proteins from SCOP release 1.69. For each family
we created a culled set of proteins with maximal pairwise
sequence identity percentage below some threshold by
using PISCES server [52](Immunoglobulin C1 set below
40%, and Immunoglobulin V set below 30%). The char-
acteristics of the complete domain sequence sets are
shown in Table 1. And the PDB IDs of individual proteins
for the two culled sets are shown in Table 2.

Experimental protocol

We randomly divided proteins from each family into two
groups: 10 proteins to serve as sources for feature extrac-
tion, and the remainder(positive sample) for training and
testing in "leave-one-out" cross validation. A negative
sample set of the the same size as the positive sample set
was randomly chosen from PDB. The negative sample was
used along with the positive sample in testing. The com-
plete flowchart of our experiment procedure is shown in
Figure 5. During this experimental research, we mined fre-
quent clique subgraphs [53] in order to enforce biological
constraints on the patterns. We compared APGM with the
exact graph mining methods MGM [53]. We chose MGM
as the counterpart for the comparison because it is an

available clique pattern mining algorithm. (Any exact
match method with clique constraint should provide the
same number of patterns from a graph database.)

Number of patterns identified

We identified frequent approximate subgraph patterns
from 10 positive proteins in each family. There are two
parameters that may have significant influence on the set
of mined patterns. The first is the support threshold(o)
and the second is the isomorphism threshold( 7). For sim-
plicity, in following experiments in this section we use the
new support threshold ¢’ = o x |D|, | D] is the size of graph
database, and the same change applied in support value.
In Figure 6, we run APGM with different combinations of
rand oand collect the total number of identified patterns.
Our results show that the total number of patterns is not
sensitive to the isomorphism threshold, and rather
depends on the support threshold heavily. Such fact eases
the worry that the parameter 7 may be too strong for
deciding the number of patterns.

For the purpose of comparison, the number of patterns
mined by two mining methods are shown in Table 3 and
4, and the number of patterns acquired by APGM from
Immunoglobulin C1 proteins are also shown in Figure 6.
In our experiment, we treat a pattern set with the number
more than 10000 as a meaningless one because our sam-
ple space is comparatively small and the isomorphism
check is computationally expensive. From Table 4, we see
that exact match fails to provide useful patterns on the
Immunoglobulin V proteins, which is the typical data set
with very noisy background. In comparison, APGM does
find some pattern set with a reasonable size in such situa-
tion. (We only use rough parameter combination grids to
do the pattern search. If we increase the precision of rand
o, more patterns will be found.) In order to evaluate the
quality of these patterns, we use the identified frequent
subgraphs in classification tests as discussed below.
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Figure 5
The procedure of experimental research.

Classification performance

In this experimental section, we used libsvm SVM package
[54] for protein structure classification. We treat each
mined pattern as a feature and a protein is represented as
a feature vector V = (v;) where i <i <n and n is the total
number of identified features. v; is 1, if the related feature
occurs in the protein and otherwise v;is 0. We used the lin-
ear kernel and default parameters for SVM leave-one-out
cross validation. The classification results are summarized
in Table 5 and 6. For some parameter combinations, there
are no accuracies - an event which happens under two cir-
cumstances. First, there are no patterns found. Second, the
pattern set is too big to be useful. From the tables we see
that the classifications with APGM-based feature highly
outperform those based on exact match. For Immu-
noglobulin C1 set, the classification based on feature
identified by MGM only can reach 73%, while APGM is

between 69%~91%. For Immunoglobulin V set, since the
exact match method cannot mine any meaningful pat-
terns, it fails in classification, while by using APGM, we
have the accuracy around 78%. This shows that our APGM
has more capability to mine useful structure information
from very noisy background than general exact match
graph mining algorithms.

Statistical significance of patterns

In order to further demonstrate the quality of the patterns
mined by using APGM, we chose the parameter combina-
tion with the best accuracy for the Immunoglobulin C1
proteins and the Immunoglobulin V proteins to check the
distribution and significance of patterns. Figure 7 shows
the number of the patterns that the 11 Immunoglobulin
C1 proteins contain and the significance scores. Figure 8
shows those for the 9 Immunoglobulin V proteins. Pro-
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Number of patterns for Immunoglobulin CI set acquired by APGM. Example of a graph database D and a compatibil-

ity matrix M.

teins in Figure 7 and 8 are numbered according to their
appearance order in in Table 2. For example protein "10"
in Figure 7 is protein 1nfa (chain A). The proteins in Fig-
ure 7 and 8 are sorted according to the number of patterns
contained in the proteins. The significance score P is
defined as follows.

Table 3: Number of patterns by APGM(7 = 0.35) and MGM on
Immunoglobulin CI

+ ot
P=log L /N iff20 fr 20 )
N
There are three special cases of P's value. If f- = 0 and f+ #
0,wesetP =10;iff-=0and f+ #0, we set P = -10; and if
f-=0and f+=0, weset P =0.

Although the patterns do not distribute uniformly among
Immunoglobulin C1 proteins, they cover all the positive
proteins. The significance score of these patterns shows

Table 4: Number of patterns by APGM(7= 0.75) and MGM on
Immunoglobulin V

Support Threshold(o) Support Threshold(o)

6 5.5 5 4.5 4 6 55 5 45 4
APGM(7 = 0.35) 17 24 141 202 841 APGM(7 = 0.75) 0 o0 0 160 14686
MGM 16 16 126 126 660 MGM 0 0 0 0 13911
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Table 5: Classification accuracy of APGM (7= 0.35) and MGM on
Immunoglobulin Cl Set

Support Threshold(o)
6 55 5 4.5 4
APGM 68.18% 77.27% 86.36% 90.91% 81.82%
MGM 72.73% 72.73% 72.73% 72.73% 72.73%

strong bias toward the Immunoglobulin C1 proteins, and
among 202 only 30 noise features(P = -10) exist. For
Immunoglobulin V proteins, the features miss two posi-
tive proteins, but these features are highly correlated with
positive samples with all P equalling 10.

Computational performance

Since the support value of approximate subgraph mining
and that of frequent subgraph mining have different
meaning, it is generally hard to compare the computa-
tional performance of approximate subgraph mining and
that of frequent subgraph mining. If 7z is less than 1,
approximate subgraph mining may obtain more patterns
than that of general frequent subgraph mining by taking
more running time. Because of this reason, we use the pat-
tern discovery rate ("rate" for simplicity), which is com-
puted as the number of discovered patterns N divided by
the running time t. We use rate rather than running time
as the criteria to compare computational efficiencies of
different algorithms. We evaluated the computational
efficiency of APGM with synthetic data sets.

We generated the synthetic data set by the same synthetic
graph generator as [56]. The synthetic graph generator
takes the following set of parameters: D is the total
number of graphs; T is the average size of graph; I is the
average size of potentially frequent subgraphs; L is the
number of potentially frequent subgraphs; V is the
number of vertex labels; E is the number of edge labels.

Table 6: Classification accuracy of APGM 7= 0.75) and MGM on
Immunoglobulin V set

Support Threshold (o)

6 5.5 5 4.5

APGM - - - 77.78%

MGM - - - -

TP, true positive; FP, false positive; TN, true negative; FN, false
negative.

Accuracy = (TN+TP)/(TN+TP+FN+FP).

- means accuracies are unavailable.
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Figure 7

Distribution and significance of features among
Immunoglobulin Cl Proteins. Upper: Distribution of
frequent subgraph features among Immunoglobulin C| pro-
teins. Lower: Significance of frequent subgraph features
among Immunoglobulin C| proteins. Both figures are con-
structed for the set for classification. There are 202 patterns
that are mined with the support threshold o= 4.5 and the
isomorphism threshold 7= 0.35.

The default parameter values that we use are D = 10000, T
=30,1=11,L =200, E=20,V=20.

We compare the performance rate between MGM and
APGM using different isomorphism threshold values (and
hence introduce different level of approximate matching).
We use the support threshold (o) defined in Definition6 in
this experiment. From Figure 9, we see that with the
change of isomorphism threshold, performance of APGM
differs narrowly. Even if APGM takes approximate match-
ing, its performance is very similar with MGM. Indeed,
with some values of support threshold, APGM with low
isomorphism threshold (7 = 0.6) even has much higher
rates.
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Figure 8
Distribution and significance of features among
Immunoglobulin V proteins. Upper: Distribution of fre-
quent subgraph features among Immunoglobulin V proteins.
Lower: Significance of frequent subgraph features among
Immunoglobulin V proteins. Both figures are constructed for
the set for classification. There are 160 patterns that are
mined with the support threshold o = 4.5 and the isomor-
phism threshold 7= 0.75.

Discussion

Finding features (corresponding to packing motifs) that
discriminate one protein family from random selected
proteins motivated us to further investigate the possibility
of examining these motifs as characteristic signatures of a
protein family. We investigated the spatial distribution of
the residues covered by our mined structure motifs in
individual proteins. We found the residues of structure
motifs are highly centralized on a limited number of posi-
tions for each protein. We picked up the protein 1mju
(chain 1) in Immunoglobulin C1 set as one example. 202
patterns, which we obtained, maps to 21 amino acids
among the total of 219 residues in 1mju. Through litera-
ture search, we found residues identified by APGM are

http://www.biomedcentral.com/1471-2105/10/S1/S46
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Computational performance comparison. We com-
pared the computational performance between APGM and
MGM using synthetic data sets. APGM used isomorphism
threshold 7= 1.0, 0.8, 0.7, 0.6. Given the patterns' number N
and running time t (s), rate = N/t.

related to the known functional sites in the protein. For
example, position 200 and 202 are residues in contact
with ligand GOL1406 as studied in [55]. Both positions
are not discovered by the exact pattern mining method.
This result suggests that APGM is more sensitive in recog-
nizing functional related residues, as compared to exact
pattern mining methods. However, we admit that com-
prehensive experimental study, involving multiple pro-
tein families, is needed before we could draw the
conclusion convincingly.

Conclusion

In this paper we present a novel data mining algorithm,
APGM(APproximate Graph Mining), to perform structure
comparison and structure motif identification in diverse
proteins. In our method we encode structural motifs as
subgraphs of geometric graph of proteins. Instead of using
a general graph mining method to extract frequent sub-
graph motifs, we have developed the approximate graph
mining algorithm and taken advantage of known substi-
tution matrices in protein structure motif identification.
Compared with general graph mining algorithms, APGM
not only offers more qualified patterns that achieve higher
classification accuracy, but also shows a reasonable com-
putational performance. By applying this method to other
protein families, "structure fingerprints" can be collected
and used in domain classification schemes where struc-
tural information is desired. Furthermore, without loss of
generality, choice of appropriate compatibility matrices
allows our method to be employed in any domain where
subgraph labels have some uncertainty. For example, net-
works of personal contacts "mutate" as people die or
change employment. Compatibility matrices assigning
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probabilities of 'label substitution' within families or
organizations may allow the essential natures of personal
contact subgraphs to be preserved nevertheless.
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