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Abstract
Background: Identifying the genetic components of common diseases has long been an important
area of research. Recently, genotyping technology has reached the level where it is cost effective
to genotype single nucleotide polymorphism (SNP) markers covering the entire genome, in
thousands of individuals, and analyse such data for markers associated with a diseases. The
statistical power to detect association, however, is limited when markers are analysed one at a
time. This can be alleviated by considering multiple markers simultaneously. The Haplotype Pattern
Mining (HPM) method is a machine learning approach to do exactly this.

Results: We present a new, faster algorithm for the HPM method. The new approach use patterns
of haplotype diversity in the genome: locally in the genome, the number of observed haplotypes is
much smaller than the total number of possible haplotypes. We show that the new approach
speeds up the HPM method with a factor of 2 on a genome-wide dataset with 5009 individuals
typed in 491208 markers using default parameters and more if the pattern length is increased.

Conclusion: The new algorithm speeds up the HPM method and we show that it is feasible to
apply HPM to whole genome association mapping with thousands of individuals and hundreds of
thousands of markers.

Background
Identifying the genetic causes of common diseases has
long been an important research area in genetics. Where
early studies were limited to studying few genes at a time,
due to economical and technological constraints, devel-
opment in genotyping technology has revolutionised the
field. It is now cost effective to obtain hundreds of thou-
sands of genotype markers in thousands of individuals for
a single study. This makes it possible to scan the entire
genome for disease associated markers in a single analysis

and such genome-wide association studies have recently
lead to a virtual flood of newly discovered disease genes
[1-7].

Most studies search for disease association through a
marker-by-marker approach where each marker in turn is
tested for association to the disease phenotype, e.g. using
a simple Fisher's exact test or a χ2-test. However, a marker
by marker approach is limited in statistical power due to
the indirect testing for association, where so called "tag
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SNPs" are used as proxies for unobserved markers, but by
using multiple markers, this problem can be alleviated
[8,9]. A tradeoff must be made between method sophisti-
cation and computation efficiency when developing
multi-marker approaches, however.

The Haplotype Pattern Mining method is a multi-marker
approach introduced in 2000 by Toivonen et al. [10,11].
It is based on the idea of extracting local haplotype simi-
larities and locating areas where haplotypes are correlated
with the disease phenotype. Compared to methods based
on statistical sampling [12-17] HPM is computationally
much more efficient, similar to other heuristic approaches
[18-20] capable of analysing genome-wide datasets. In
this paper, we develop a faster version of HPM and show
that it scales to genome-wide association studies.

Methods
The goal of association mapping is to find disease-predis-
posing regions of the genome. This can be done by look-
ing for differences in the frequency of genetic variants
between cases and controls. Since genome sequencing is
expensive the whole genomes of the case and control indi-
viduals in a case-control study are usually not sequenced.
Instead only single base pairs that are known to frequently
differ between humans, called SNP markers, are
sequenced.

The association mapping problem
If k SNP markers are typed then we can represent a chro-
mosome by a haplotype vector H of length k, where H =
(h1,..., hk) and hi ∈ alleles(i) for all i, 1 ≤ i ≤ k; alleles(i) is
the domain of the ith marker. The input to an association
mapping method then consists of a set A = {A1,..., Ap} of
disease-associated haplotypes and a set C = {C1 ... Cq} of
control haplotypes.

Haplotype pattern
A haplotype pattern P over k markers is a vector (p1 ... pk),
where pi ∈ alleles(i) ∪ {*} for all i, 1 ≤ i ≤ k, where * is the
"dont't care" symbol. The haplotype pattern occurs in a
given haplotype vector (chromosome) H = (h1,... hk) if
either pi = hi or pi = * for all i, 1 ≤ i ≤ k. The length of a pat-
tern is defined as the maximum distance between two
non-"*" characters in the pattern. Gaps are subsequences
of "don't care" symbols in a pattern that are surrounded
by non-"*" characters on both sides. Since long patterns
are not likely to exist we only want look at a subset of the
possible patterns. We call the patterns that we want to
consider for legal patterns. A pattern is legal if the pattern
length is less than the parameter l, it contains fewer than g
gaps, and no gaps are longer than s.

Strongly associated pattern
The signed χ2 measure ± χ2(P) of a haplotype pattern P is
the standard χ2 measure where the sign is positive if the
relative frequency of P is higher in cases than in controls,
and negative otherwise. Given a positive association
threshold x, we say that P is strongly associated with the
disease if ± χ2(P) ≥ x.

The HPM problem
Given a set of case haplotypes A = {A1,..., Ap} and control
haplotypes C = {C1 ... Cq} the goal of the HPM algorithm
is to find all strongly associated patterns that are legal.

Localizing disease genes using HPM
Haplotype patterns close to a susceptibility locus are likely
to be more associated with the disease than patterns fur-
ther away. If we have found all strongly associated pat-
terns we can score each marker by counting the number of
times that it is contained in a strongly associated pattern.
The HPM point prediction is then the marker that is most
frequently contained in the strongly associated patterns.
Fig. 1 shows an example of the localization of a validated
susceptibility allele in the Crohn's disease data set from

Example of localizationFigure 1
Example of localization. Example of localization of sus-
ceptibility alleles using HPM. The plots show the number of 
strongly associated patterns each marker was included in for 
two different values of x. The rest of the parameters were 
fixed at their default values (l = 7, g = 2, s = 2). The two ver-
tical lines show the location of the two SNPs in the region 
that has been validated through replication.
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Original HPM algorithmFigure 2
Original HPM algorithm. Pseudo code for the original HPM algorithm with some improvements.
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the Wellcome Trust Case-Control Consortium (WTCCC)
[4].

Old algorithm
The algorithm presented in [11] recursively generates hap-
lotype patterns using a depth-first-search strategy. To

avoid looking at all possible patterns the algorithm
prunes away parts of the search tree based on a lower
bound on the number of disease-associated chromo-
somes that match a pattern.

New HPM algorithmFigure 3
New HPM algorithm. Pseudocode for the new HPM algorithm.
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Some simple improvements can be made to this algo-
rithm. As presented in the paper counting the number of
affected and unaffected individuals that match the pattern
in each call to depthFirst will take time O(n·l) where n is
the number of individuals and l is the length of the pat-
tern. If we remember which individuals match the pattern
at a given time then we only need to look through these
when a new non-"*" symbol is inserted in the pattern.
Pseudo code for the algorithm with this improvement is
shown in fig. 2. The improvement greatly speeds up the
algorithm.

New algorithm
The idea of the new algorithm is to exploit that LD struc-
ture means that you usually only see a handful of the 2n

possible haplotypes if you look at n neighboring SNPs.
Instead of looking at all different haplotype patterns span-
ning a region we look at all combinations of haplotypes
over the region. We search these haplotype sets in a depth-
first-search but stop examining a branch if there is no legal
haplotype pattern that could occur in all of the haplotypes
in the current set.

Induced pattern
Given a set of haplotypes h1 ... hk the induced pattern of
the set is the haplotype pattern that occurs in all of the
haplotypes and contains fewest possible "*"("don't care")
symbols.

An induced pattern over a set of haplotypes that is not
legal can sometimes be made legal by inserting extra "*"
symbols if s > 2. This happens if a pattern is illegal because
it contains too many gaps but would become legal if two
gaps were joined into one. If for example l = 5, g = 1 and s
= 3 then "0 * 1 * 0" is an illegal pattern because it contains
more than g gaps. The pattern can however be made legal
by substituting the "1" for a "*" yielding the pattern "0 *
* * 0".

Valid pattern
An induced pattern over a set S of haplotypes is said to be
valid with regard to S, if the pattern occurs in all of the
haplotypes in S but not in any of the other haplotypes
found in the input data.

Equivalent pattern
A haplotype pattern will split the set of individuals into
those that match the patterns and those that do not. We
say that two patterns are equivalent if they result in the
same bipartitions of the set of individuals.

The algorithm
The new algorithm (Fig. 3) looks at sets of haplotypes. It
traverses all possible combinations of haplotypes by grad-
ually expanding a set one haplotype at the time. If at any

point the induced pattern of the current set of haplotypes
cannot be made into a legal pattern by adding extra "*"-
characters the current set is not expanded further. If a pat-
tern is valid and strongly associated it is added to the out-
put set along with all its equivalent patterns.

Results and discussion
We have implemented both the old and the new algo-
rithm in Python using the SNPfile library [21] to read and
store the input data. To evaluate the algorithms, we have
used the Crohn's disease data set from the Wellcome Trust
Case-Control Consortium (WTCCC) [4]. This data set
contains 491208 markers in 2005 disease affected indi-
viduals and 3004 unaffected control individuals. We used
the Beagle [22] program to phase the haplotypes and infer
missing genotypes.

Time vs. number of individuals
First we tested the running time as a function of the
number of individuals. From the WTCCC data we created
test data by picking subsets of individuals, keeping the
affected/unaffected ratio constant, and we then ran both
algorithms on chromosome 22. Figure 4 shows the "wall
time" of both algorithms for varying data sizes. Both algo-
rithms show a linear increase but with the original algo-
rithm having the highest increment.

Time vs. number of individualsFigure 4
Time vs. number of individuals. The time consumption 
of the two algorithms as a function of the number of individ-
uals in the data sets. The parameters were the default param-
eters specified in [10] (l = 7, g = 2, s = 2, x = 9).
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Time vs. pattern length
An important parameter for the running time is the maxi-
mal allowed pattern length, l. Figure 5 show the running
time of the two algorithms as a function l, when analysing
the full chromosome 22 from the WTCCC data set. The
running time of both algorithms clearly grows super-lin-
ear, but with the time for the new algorithm clearly grow-
ing slower.

Time vs. haplotype diversity
Since the time usage of the new algorithm depends on the
number of different haplotypes over a region we expect it
to use less time in regions with few distinct haplotypes
and more time in regions with many distinct haplotypes.
Figure 6 shows the running time (with pattern length l =
11) and the number of haplotypes along chromosome 22
of the WTCCC data: The plot on the left shows both the
running time per marker (the time to test all patterns
beginning in a given marker) together with the number of
distinct haplotypes starting in a given marker. Figure 7
shows the running time for scoring a marker as a function
of the number of unique haplotypes overlapping the
marker.

The same dependency on haplotype diversity is not seen
for the old algorithm (results not shown), nor is it
expected to be as the old algorithm does not depend on

the number of distinct haplotypes seen in the data.
Instead, the running time could depend on the maximal
score we see when scoring a marker, since this is the
threshold used in the branch and bounds heuristic. From
the data, however, we do not see a significant effect here.

Genome-wide analysis
As the final comparison of the old and the new HPM algo-
rithm, we compare the running time on the full Crohn's
disease data set. Table 1 shows the time consumption of
the two algorithms on each chromosome.

Conclusion
We have developed a new algorithm for the haplotype
pattern mining method and shown that it outperforms
the original algorithm on genome wide association data.
As a function of the number of individuals or the maximal
pattern length, both the new and old algorithm appears to
have the same asymptotic running time, with the new
algorithm having a significantly smaller time overhead.

The new algorithm is very sensitive to the haplotype diver-
sity. The same is not the case for the old algorithm, but
here the mean running time per marker is 8.8 ± 0.57 sec  

onds (with pattern length l = 11) where for the new algo-
rithm the mean running time per marker is 2.5 ± 9.6 sec-

Running time and number of unique haplotypes per markerFigure 6
Running time and number of unique haplotypes per 
marker. The time usage per marker on chromosome 22 of 
the WTCCCC Crohn's disease data (top) and the number of 
unique haplotypes overlapping each marker (bottom).
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Time vs. maximal allowed pattern lengthFigure 5
Time vs. maximal allowed pattern length. The time 
consumption of the two algorithms as a function of the max-
imal allowed pattern length (l). The rest of the parameters 
were fixed at the default settings (g = 2, s = 2, x = 9).
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onds. It might therefore be worthwhile to use a hybrid

algorithm where the new algorithm is used in areas with
lower haplotype diversity and the old algorithm is used in
areas with high haplotype diversity. If this would reduce
the time usage on markers now taking more than 4 sec-
onds to only 3, the hybrid algorithm would spend 1.4 ±
0.63 seconds per marker.
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