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Abstract

Background: Next-generation sequencing techniques enable several novel transcriptome
profiling approaches. Recent studies indicated that digital gene expression profiling based on
short sequence tags has superior performance as compared to other transcriptome analysis
platforms including microarrays. However, the transcriptomic analysis with tag-based methods
often depends on available genome sequence. The use of tag-based methods in species without
genome sequence should be complemented by other methods such as cDNA library sequencing.
The combination of different next generation sequencing techniques like 454 pyrosequencing and
Illumina Genome Analyzer (Solexa) will enable high-throughput and accurate global gene
expression profiling in species with limited genome information. The combination of transcriptome
data acquisition methods requires cross-platform transcriptome data analysis platforms, including a
new software package for data processing.

Results: Here we presented a software package, CPTRA: Cross-Platform TRanscriptome
Analysis, to analyze transcriptome profiling data from separate methods. The software package is
available at http://people.tamu.edu/~syuan/cptra/cptra.html. It was applied to the case study of non-
target site glyphosate resistance in horseweed; and the data was mined to discover resistance target
gene(s). For the software, the input data included a long-read sequence dataset with proper
annotation, and a short-read sequence tag dataset for the quantification of transcripts. By
combining the two datasets, the software carries out the unique sequence tag identification, tag
counting for transcript quantification, and cross-platform sequence matching functions, whereby
the short sequence tags can be annotated with a function, level of expression, and Gene Ontology
(GO) classification. Multiple sequence search algorithms were implemented and compared. The
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analysis highlighted the importance of transport genes in glyphosate resistance and identified
several candidate genes for down-stream analysis.

Conclusion: CPTRA is a powerful software package for next generation sequencing-based
transcriptome profiling in species with limited genome information. According to our case study,
the strategy can greatly broaden the application of the next generation sequencing for
transcriptome analysis in species without reference genome sequence.

Introduction
The recent development of next generation sequencing
techniques has revolutionized biological and biomedical
research and has provided many enabling platforms for
systems biology [1,2]. However, maximizing the poten-
tial for next generation sequencing heavily depends on
available data analysis tools [1]. Some features of next
generation sequencing data are different from those of
traditional Sanger sequencing. For example, the Illumina
Genome Analyzer can generate up to 20 gigabases of
short read sequences per run [3]. These short read
sequences can be 18 bases, 36 bases or 76 bases in read
length. They can also be generated from either single end
or paired end runs [4]. The different sequence formats,
diverse applications, and the large amount of data
generated all require new strategies for sequence analysis
[1]. Various sequence analysis tools have been developed
to address the needs for different applications of next
generation sequencing including de novo sequencing,
whole genome re-sequencing, metagenome sequencing,
transcriptome profiling, microRNA profiling, CHIP-seq,
and others [3,5-14]. In this paper, we will focus on a
software package providing the enabling tools for cross-
platform transcriptome analysis.

Next generation sequencing techniques have enabled
several novel approaches for transcriptome profiling
[1,4,15]. Depending on the read length, different next
generation sequencing techniques can be optimized for
different types of transcriptome profiling [16,17]. The
454 pyrosequencing platform provides a longer read
lengths of 200 to 400 bases and relatively less sequen-
cing yield at around 200 to 400 megabases per run [18].
Considering the read length, 454 sequencing has some
advantages for transcriptome analysis, since the longer
reads allow for better assembly of the sequences, which
is particularly important for species without reference
genome information. As compared to the 454 sequen-
cing, the shorter read length and higher sequencing
throughput for SOLiD and Solexa have enabled better
transcript quantification, where the deep sequence
coverage allows better digital quantification of gene
expression levels [16]. Even though not considered as
part of next generation sequencing techniques, MPSS
(Massively Parallel Signature Sequencing) and iGentifier

can also be employed for the semi-quantitative tran-
scriptome profiling with data output similar to the
digital gene expression (DGE) profiling [2,3,19]. The so-
called digital gene expression profiling technique
employs a similar strategy as serial analysis of gene
expression (SAGE), in which sequence tags around a
four-base restriction enzyme are sequenced and quanti-
fied across different samples [20-22]. The SOLiD and
Solexa-based methods provide much deeper sequence
coverage of the tags and thus provide more accurate
quantification. In fact, a recent study has indicated that
digital gene expression profiling is more accurate than
any microarray platform [21].

Despite the significant advantages of short sequence tag-
based gene expression profiling methods, all these
platforms, including MPSS, DGE, iGentifier and SAGE
are heavily dependent on the availability of reference
genome sequence, which limited the application of these
techniques to sequenced or well-characterized species
only [4,19,23]. However, one of the advantages and
tasks for next generation sequencing is to expand the
usage of sequence-based transcriptome and genome
analysis to a variety of species with limited or no
genome information [1]. Novel experimental
approaches accompanied by useable software are needed
for such analysis.

We hereby describe a new approach for cross platform
transcriptome analysis and apply it to a case study. The
case study analyzes the molecular mechanisms of
herbicide resistance in horseweed, Conyza canadenisis, a
major weed in US. No genome information is available
for horseweed. The project serves as a perfect case study
because it uses a strategy to combine different sequen-
cing platforms including 454 sequencing, cDNA sequen-
cing and iGentifier for a comprehensive transcriptome
profiling of horseweed’s response to glyphosate treat-
ments [24]. The goal of the study was to discover novel
genes involved in herbicide detoxification in non-target
site resistance, in which multiple pathways including
P450, GST and ABC transporters could be involved
[24,25]. Limited genome information greatly hinders the
application of sequence-based transcriptomic profiling
in this and other weedy species [25].
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In order to analyze the aforementioned cross-platform
transcriptome analysis dataset, a software package was
developed to combine the data from different sequen-
cing techniques to derive the gene expression level,
function and ontology annotation. As shown in Figure 1,
the data analysis package takes two types of sequencing
data including the annotated long-read sequence such as
454 data, and short read sequence tags such as DGE,
SAGE, MPSS, and iGentifier. The short sequence tags
were parsed to derive a unique set of sequence tags,
which could be used for quantification, functional and
ontology annotation. The output includes the sequence
tag, relative abundance, and the optional GO functional
categorization. Considering that the iGentifier data
format is similar to that of DGE, we employed the
platform to analyze the different datasets from the
horseweed study and identified several important
candidate genes that might be involved in herbicide
resistance.

Herein we present a software package CPTRA for
analyzing the transcriptome profiling data from different
sequencing platforms. We present software design, data
input, and output. The software package is available free
at the website: http://people.tamu.edu/~syuan/cptra/
cptra.html. We also evaluated the performance of the
package and compared the CPU time for different
algorithms. In a follow up case study, the software
package was employed to analyze our cDNA library-, 454
sequencing-, and iGentifier-data to dissect the

mechanisms of non-target herbicide resistance in horse-
weed. The analysis revealed the effectiveness of the
approach for cross platform transcriptome profiling
and the potential for the software package to be broadly
applied for transcriptome analysis in essentially any
species.

Results
The software package for cross-platform
transcriptome profiling
Figure 1 outlines the schema of the cross-platform
transcriptome experimental design and data analysis
flow. As shown in the figure, two types of input data are
analyzed together. Our previous analysis indicated that
the direct annotation of sequences less than 40 bases is
not feasible [24]. We therefore developed the CPTRA
package with Python for transcriptome analysis based on
two or three types of sequencing data. The input of the
package is results of sequence tags from different
sequencing platforms including DGE and iGentifier,
and annotated cDNA sequences of the same species. For
the first step of the analysis, the sequence tags are
grouped to form a set of unique tags with a count
number for each tag. The tags are then aligned to the
cDNA sequences under certain limits of allowed mis-
match numbers. CPTRA uses the alignment results to
compute normalized expression counts for each cDNA
sequence.

The data input and output formats are as shown in
Figure 2. Currently, CPTRA package accepts two types of
sequence tag data: Solexa sequencing result in fastq
format, and iGentifier sequencing results. The iGentifier
technology renders multiple sequence tags of 17 bases,
and the Solexa digital gene expression profiling produces
multiple sequence tags of around 25 to 35 bases. Both
platforms involve sequencing of tags near four base
restriction enzyme sites with a similar strategy as SAGE
[26]. The platform can thus be expanded for analyzing a
variety of different tag-based transcriptome analysis
including MPSS and SAGE. The data analysis process is
described in the Materials and Methods section with
alignment of tag sequence to cDNA reference sequence,
and generating expression counts for tags.

The output files produced by CPTRA operation are as
shown in Figures 2 and 3, which include tag alignment
result files and GO categorization results (Figure 3). The
tag mapping results are composed by three individual
files giving detailed conditions on tag mapping output.
The output includes the tag information, gene annota-
tion and quantification. The output can be modified to
fit into different analysis needs. Besides the sequence tag
related output, the GO categorization result will only be

Figure 1
The schema for the cross-platform transcriptome
analysis. The figure shows how cross-platform
transcriptome analysis is carried out. The box within the
dashed lines highlights the steps carried out by the CPTRA
software package. Basically, the long read sequences are first
annotated with blast-based method and then serves as the
input for the software. The tag-based sequencing data is
another type of input data. The output includes the
annotated tags with quantification indicating the level of gene
expression and the ontology information.
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produced if the user specifies -G option (See Supple-
mentary_File_2.pdf). The GO categorization result is an
HTML file, which can be viewed in a web browser as
shown in Figure 3. The maps of cDNA entries to GO
terms are displayed as a browsable text tree according to
GO vocabulary. Each row is a GO term with its children
terms in indented format. The number of cDNA entries is
shown to provide a functional overview of the EST/
cDNA data. Combined with the tag mapping function,
each sequence tag can also be mapped to a certain GO.
The CPTRA package will run on any platform with
Python interpreter installed (version 2.2 or higher), with
no other module or library dependency. No installation
is required too. The package can be ran as a standalone
program on command line to process the tag data, or
used as a programming module to be incorporated into
other programs (see online documentation for

instructions at http://people.tamu.edu/~syuan/cptra/
cptra.html). CPTRA will call Megablast program in
NCBI-BLAST package to perform the tag alignment
function for Solexa data, therefore, as a prerequisite,
the cDNA fasta file has to be formated using formatdb
program [27].

CPU time and performance evaluation
The major speed-limiting step for the CPTRA package lies
in the cross-platform sequence matching function. We
compared different algorithms including NCBI-BLAST
programs (megablast, blastn) and regular pattern search.
The regular pattern search basically identifies a string in a
sequence file using one of the direct pattern search
algorithms implemented with Python. Megablast renders
best performance, whilst the regular pattern search is

Figure 2
The input and output data format. The input format includes both annotated long read sequence and short sequence
tags. The output includes the level of expression and the gene function and ontology annotation.
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significantly slower than Megablast. The use of regular
pattern search is essentially impossible for the large scale
of next generation sequencing data, but it allows
ambiguity nucleotide code, which is abundant in
iGentifier sequencing results. We estimated that proces-
sing a dataset with 1000 iGentifier tags and 2500 cDNA
sequences will take about 2 hours by the regular
sequence search. The NCBI-BLAST programs will take
only seconds for such task, but it cannot consider
ambiguity nucleotide in alignment. Megablast is thus
preferred if the data quality is high and does not have
ambiguity nucleotide code.

Analysis of glyphosate resistant mechanisms in horseweed
with the CPTRA package and cross-platform
transcriptome profiling
We employed the CPTRA package to analyze the latest
sequence-based transcriptome analysis data for our
horseweed project [24]. The purpose of the study is to
evaluate the effectiveness of the package and the impact
of different sequence coverage on the analysis output.

The detailed information about the study can be found
in our previous work [24]. For this study, there are three
types of the input data for the analysis, including the
Unigene sequence and iGentifier data as previously
presented along with the recent sequenced ESTs with
454 pyrosequencing (Peng, unpublished data) [24]. The
iGentifier data is similar to the DGE data and provides
short sequence tags for quantification. The 454 EST
sequence read length averaged 140 bases and totaled up
to 50 megabases for the study (Peng, unpublished data).

In order to evaluate the effects of the sequence coverage,
we first compared the analysis performance based on the
different input data when using CPTRA as the analysis
platform. The annotated Unigene set was first used as the
input and the CPTRA was used to annotate the sequence
tags from iGentifier. The analysis lead to the annotation
of 296 sequence tags with 221 single hits and 75
multiple hits as shown in Figure 4. We then assembled
the EST and 454 sequence data together and used the
combined annotated dataset as the input. The outcome
yielded more than 600 annotated genes, which doubled

Figure 3
A snapshot of the GO map as the data output.
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the number of annotated sequence tags when using only
Unigene as the input. In addition, we have observed
more multiple hits as shown in Figure 4. The results
highlighted that the number of the sequence tags being
annotated will heavily depend on the sequence coverage
of the EST or 454 sequencing.

Our case study also revealed that the CPTRA package
provided the enabling platform for gene discovery
through cross platform transcriptome analysis. In order
to further our understanding of the molecular and
genomic mechanisms of horseweed resistance to gly-
phosate, we clustered the single hit annotated sequence
tags as shown in Figure 5. The samples include both
several biotypes from different regions of US and the F1
progeny of some of these biotypes. The F1 progenies
were also categorized into resistant and sensitive
biotypes based on their resistance toward horseweed.
For each cross, multiple replicates of resistant and
sensitive biotypes were analyzed by iGentifier. As we
can see, the replicates cluster well with one another,
indicating the high reproducibility of the data. If the ten
biotypes collected from different regions of US were
examined, the cluster analysis revealed that the resistant
biotypes tend to cluster together and the sensitive
biotypes tend to cluster together with the two CA
biotypes as the exception. The pattern generally corro-
borates our previous study [24]. For the F1 progenies, the
sensitive and resistant also tends to group.

The CPTRA analysis allows us to examine the detailed
gene expression and function. Basically, the output of
expression levels and sequence tag annotation allows us
to examine the gene expression pattern of individual
genes. The detailed expression patterns for several genes
over-expressed in some resistant biotypes were shown in
Figure 6. The Y-axis indicated the level of gene expression

represented by the count of iGentifier signals. The X-axis
showed the different biotypes, indicated by the resistant
and sensitive. Several important transporter genes
including ABC transporters and tonoplast intrinsic
proteins (TIPs) were up-regulated in some resistant
horseweed lines, which is consistent with the expectation
that cellular transport and sequestration might be
important for non-target resistance of horseweed to
glyphosate [28-32]. We previously found a TIP gene to
be up regulated in some resistant horseweed biotypes. In
this study, we identified another TIP gene that was up-
regulated in the resistant biotypes [25]. These genes
can be candidate genes for down-stream study.
Overall, CPTRA provides an effective platform to
combine the data from different sequencing techniques
to discover novel genes in species without enough
genome information.

Figure 4
The performance comparison when different input
data are used. The numbers of the annotated sequence tags
were shown for different types input long read sequences.
The single hit indicated that each sequence tag only matches
one EST. The multiple hit indicated that each sequence tag
matches multiple ESTs. The results highlighted that adding
454 EST data greatly improved the performance for
cross-platform analysis.

Figure 5
The cluster analysis of the sequence tags with unique
hit and annotation. The color schema indicates the level of
expression. A higher gene expression level is shown with the
red color. The samples marked with S at the end are
sensitive biotypes and the samples marked with R at the end
are resistant biotypes. The short labels indicate the biotypes
from different locations in the US, and the long labels indicate
the F1 progenies of two different biotypes. For example,
DE1XCA1 indicates the plants are from the F1 population of
DE1 and CA1 crosses.
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Discussion
Cross-platform transcriptome analysis as a powerful
strategy for transcriptome analysis
We have introduced CPTRA as a software package for the
cross-platform transcriptome analysis and presented a
performance evaluation for CPTRA. The cross-platform
transcriptome analysis often involves a short read tag-
based platform for transcript quantification and a longer
read length platform for annotation. The combination of

the two platforms allows us to exploit the advantages for
both platforms to reach an accurate quantification and
the functional and ontology annotation of the tran-
scripts. Tag-based methods such as DGE, SAGE and
iGentifier have been, and will continue to be, broadly
applied in global gene expression profiling to provide
digital quantification with high confidence [21]. The
application of tag-based methods is obviously limited in
species without a reference genome or large scale EST

Figure 6
The expression pattern for several genes significantly up-regulated in some resistant biotypes. The Y-axis shows
the number of the tags, which indicates the expression level. The X-axis shows the different samples, where the samples
marked with S at the end are sensitive biotypes and the samples marked with R at the end are resistant biotypes.
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data, because the 17 to 50 base sequence tags normally
cannot be accurately annotated [16,17]. This limitation
requires new complimentary strategies. The recent
development of 454 sequencing enables the high-
throughput sequence of ESTs with read length up to
400 bases, which can be readily assembled and
annotated [16,17]. The combination of long and short
read sequencing platforms will allow us to explore the
gene expression in a board spectrum of species regardless
the available genome information and to quantify the
gene expression with the most accurate transcriptome
analysis platforms like DGE or SAGE [21,26].

CPTRA as an enabling tool for cross-platform
transcriptome analysis
The software package directly addresses the needs for
cross-platform sequence-based transcriptome analysis
and provides enablement for next-generation sequen-
cing-based transcriptome analysis. Despite the diverse
tools developed for the next generation sequencing
analysis, few software packages directly handle cross-
platform transcriptome analysis data [1-3,22,33]. The
current version of the package allows us to take Solexa
and SOLiD short sequence tags along with the iGentifier
data as the input for sequence quantification, and to take
the annotated 454 or other cDNA sequence data as the
source of annotation, thus making the best utilization of
short-and long-read sequence data. We will expand the
application to MPSS and SAGE in the future. As
described in the result part, the software thus provides
a comprehensive solution for combined analysis of
sequence tags and annotated EST or cDNAs. In order to
implement a sequence matching function with a reason-
able speed, we also compared different algorithms and
determined that the MegaBlast serves as the best option
for handling the large dataset generated by the next
generation sequencing.

Comparison of different transcriptome analysis platforms
Global gene expression profiling is a crucial component
of functional genomics and the transcriptome analysis
tools have been under consistent development [2,22].
Traditional transcriptome analysis platforms include
microarray, SAGE, and real-time PCR [21,26,27,34].
The development of next generation sequencing has
enabled many novel transcriptome tools, among which
sequence tag-based DGE has the promises to become the
most accurate option for transcriptome analysis [20,21].
The recent available RNAseq and other methods can also
be very powerful in transriptome analysis in species with
adequate sequence information [15,17]. However, the
performance of RNAseq as compared to the microarray
technology has not been well studied as compared to
DGE. More importantly, the application of the RNAseq

in species with no genome sequence might be difficult
because of the complicated assembly of short sequence
tags [17]. Even though several new assemblers for short
read sequence have been developed, these new assem-
blers are mostly applied in microbe genome studies
currently [1,5,13,35]. The cross-platform global gene
expression profiling thus represents a viable choice for
transcriptome analysis in species without reference
genome because it combines the high accuracy of the
DGE and the sequence information from 454 or ESTs.
CPTRA provides an enabling software for such analysis.

Applying cross-platform transcriptome analysis
The case study for the glyphosate resistance data revealed
several important considerations for applying CPTRA
and cross platform strategies. First, the input sequence
coverage is important. As shown in Figure 3, the addition
of 454 sequencing data greatly increased the number of
annotated tags. Essentially, increasing transcriptome
coverage for the input long read sequences serves to
provide more tags for annotation. Second, the quality for
the sequence assembly is important. Figure 4 shows a
significant number of multiple hit annotations. A
detailed analysis of these multiple hit annotations
indicated that many of these are 454 ESTs have the
same functional annotation and these ESTs actually can
overlap with one another but failed to meet the assembly
criteria. The unassembled 454 singletons can lead to the
annotation of the same sequence multiple times. There-
fore, both sequence coverage and proper assembly are
important for deriving the correct annotation of the
sequence tags. Overall, our study showed that CPTRA
and cross-platform sequence analysis are powerful
solutions for transcriptome analysis in species with
limited genome sequence information. The further
deep sequencing of the samples with Solexa and more
454 sequencing will allow us to better understand the
molecular and genomic mechanisms for the glyphosate
resistance in horseweed. The strategy can be used to
study a variety of biological questions in many species
without reference genome.

Materials and methods
Plant growth, RNA extraction, and RNA profiling
All of the plant growth, RNA extraction, sequencing and
other bench work were as previously described [24]. The
dataset was collected from the published data for further
analysis with the CPTRA platform [24]. The sequence
assembly was performed using TGICL software http://
compbio.dfci.harvard.edu/tgi/software/ with the default
settings. The contig sequences were compared with
UniProtKB TrEMBL database using blastx program
(ncbi-blast package). The annotations including
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functional description and GO annotation were parsed
from the top hit of each contig with an E-value cutoff of
1e-10.

Software implementation
The software package is implemented in Python.
Internally, a major component of the CPTRA package is
a class providing universal data handling functionalities,
i.e., grouping tags and producing output. The function-
alities specific to sequencing platforms were implemen-
ted by subclassing. Currently the functions implemented
by sub-classing included parsing files with different
formats and aligning short read data to cDNA sequences.
CPTRA package calls Megablast to align the reads to the
reference.

The functional categorization of cDNAs for the anno-
tated ESTs or sequence tags can be obtained based on
GO. GO terms should have been assigned to cDNA
sequences via previous annotation. Then the software
will track each GO term used in annotation to the root
term, and meanwhile count how many cDNAs are
annotated by each term. According to “true-path-rule”,
this number would include both the cDNAs directly
annotated to the term, and all cDNAs that are annotated
by its children terms. Such result is presented in the form
of HTML markup language and can be viewed in a web
browser that supports JavaScript.

Horseweed trancriptome analysis
Three types of input data from the glyphosate resistance
study have been used. First, a previously published
Unigene set was used to perform the cross-platform
transcriptome analysis with the iGentifier dataset [24].
Second, the Unigene dataset was assembled together
with an unpublished 454 dataset (Peng, unpublished
data) and further annotated. The combined dataset was
then analyzed together with iGentifer dataset for the
cross-platform transcriptome analysis. The single hit tags
were then clustered based on the iGentifier expression
level. The cluster analysis was carried out with MEV4.0
(Multiple Experiment Viewer), which allowed the output
of the cluster results and individual gene expression
patterns [36].
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