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Abstract
Background: Accurate estimation of statistical significance of a pairwise alignment is an important
problem in sequence comparison. Recently, a comparative study of pairwise statistical significance
with database statistical significance was conducted. In this paper, we extend the earlier work on
pairwise statistical significance by incorporating with it the use of multiple parameter sets.

Results: Results for a knowledge discovery application of homology detection reveal that using
multiple parameter sets for pairwise statistical significance estimates gives better coverage than
using a single parameter set, at least at some error levels. Further, the results of pairwise statistical
significance using multiple parameter sets are shown to be significantly better than database
statistical significance estimates reported by BLAST and PSI-BLAST, and comparable and at times
significantly better than SSEARCH. Using non-zero parameter set change penalty values give better
performance than zero penalty.

Conclusion: The fact that the homology detection performance does not degrade when using
multiple parameter sets is a strong evidence for the validity of the assumption that the alignment
score distribution follows an extreme value distribution even when using multiple parameter sets.
Parameter set change penalty is a useful parameter for alignment using multiple parameter sets.
Pairwise statistical significance using multiple parameter sets can be effectively used to determine
the relatedness of a (or a few) pair(s) of sequences without performing a time-consuming database
search.

Background
Local sequence alignment plays a major role in the analy-
sis of DNA and protein sequences [1-3]. It is the basic step
of many other applications like detecting homology, find-

ing protein structure and function, deciphering evolution-
ary relationships, etc. There exist several local sequence
alignment programs that use well-known algorithms [4,5]
or their heuristic versions [3,6,7]. Database search is a spe-
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cial case of pairwise local sequence alignment where the
second sequence is a database in itself consisting of many
sequences. Recently, there have been many enhancements
in alignment program features [8,9] using difference
blocks and multiple scoring matrices, in an attempt to
incorporate more biological features in the alignment
algorithm.

Why statistical significance?
The local sequence alignment programs report alignment
scores for the alignments constructed, and related
(homologous) sequences will have higher alignment
scores. But the definition of high depends strongly on the
alignment score distribution, which gives importance to
the concept of statistical significance. An alignment score
is considered statistically significant if it has a low proba-
bility of occurring by chance. Since the alignment score
distribution depends on various factors like alignment
program, scoring scheme, sequence lengths, sequence
compositions [10], it implies that it is possible to have
two alignments of different sequence pairs with scores x
and y with x <y, but x more significant than y. Therefore,
instead of using the alignment score for detecting homol-
ogy, the statistical significance of an alignment score is
more widely accepted as a metric to comment on the relat-
edness of the two sequences being aligned. Of course, it is
important to emphasize here that although statistical sig-
nificance is a good preliminary indicator of biological sig-
nificance, it does not necessarily imply biological
significance [10,11].

Accurate statistical theory for the ungapped alignment
score distribution is available [12]. However, no precise
statistical theory currently exists for the gapped alignment
score distribution and for score distributions from align-
ment programs using additional features. Accurate esti-
mation of statistical significance of gapped sequence
alignment scores has attracted a lot of attention in the
recent years [13-21].

Although there exists some understanding of the statistics
of gapped alignment score distributions for simple scor-
ing schemes [22,23], but a complete mathematical
description of the optimal score distribution remains far
from reach [23]. There exist some excellent reviews on sta-
tistical significance in sequence comparison in the litera-
ture [10,24-26].

Database statistical significance versus pairwise statistical 
significance
Recently, a study of pairwise statistical significance and its
comparison with database statistical significance [27] was
conducted. In summary, the database statistical signifi-
cance reported by most database search programs like
SSEARCH, FASTA, PSI-BLAST is database-dependent, and

hence, the same alignment of two sequences with the
same alignment score can be evaluated as having different
significance values in database searches with different
databases, and even with the same database at different
times, as the database size can be variable. On the other
hand, pairwise statistical significance is specific to the
sequence pair being aligned, and is database-independ-
ent. In [27], various approaches to estimate pairwise sta-
tistical significance were compared to find that maximum
likelihood fitting with censoring left of peak is the most
accurate method for estimating pairwise statistical signifi-
cance. Further, this method was compared with database
statistical significance in a homology detection experi-
ment to find that pairwise statistical significance performs
comparably to and sometimes significantly better than
database statistical significance.

Accurate statistical significance estimates for pairwise
alignments can be very useful to comment on the related-
ness of a pair of sequences aligned by an alignment pro-
gram independent of any database. And thus, it can also
be used to compare different combination of alignment
parameters – like the alignment program itself, substitu-
tion matrices, gap costs. A comparison of different gap
opening penalties for four commonly used BLOSUM
matrices using pairwise statistical significance was pre-
sented in [28]. In addition to the standard local alignment
algorithms [4,5], some recent algorithms have been devel-
oped [8,9] that take into account other desirable biologi-
cal features in addition to gaps – like difference blocks or
the use of multiple parameter sets (substitution matrices,
gap penalties). These features of the alignment programs
enhance the sequence alignment of real sequences by bet-
ter suiting to different conservation rates at different spa-
tial locations of the sequences. As pointed out earlier,
accurate statistical theory for alignment score distribution
is available only for ungapped alignment, and not even
for its simplest extension, i.e., alignment with gaps. Accu-
rate statistics of the alignment score distribution from
newer and more sophisticated alignment programs there-
fore is not expected to be straightforward. For comparing
the performance of newer alignment programs, accurate
estimates of pairwise statistical significance can be very
useful. Further, quick and accurate estimates of pairwise
statistical significance can also be helpful for applications
like multiple sequence alignment and phylogenetic tree
construction which are based on pairwise sequence align-
ment to select most related pairs of sequences, for exam-
ple, in a progressive multiple sequence alignment.

The extreme value distribution for ungapped and gapped 
alignments
Just as the distribution of the sum of a large number of
independent identically distributed (i.i.d.) random varia-
bles tends to a normal distribution (central limit theo-
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rem), the distribution of the maximum of a large number
of i.i.d. random variables tends to an extreme value distri-
bution (EVD) [29]. This is an important and useful fact,
because in principle it allows us to fit an EVD to the score
distribution from any local alignment program and use it
for estimating statistical significance of scores from that
program. The distribution of Smith-Waterman local align-
ment score between random, unrelated sequences is
approximately a Gumbel-type EVD [12]. In the limit of
sufficiently large sequence lengths m and n, the statistics
of HSP (High-scoring Segment Pairs which correspond to
ungapped local alignments) scores are characterized by
two parameters, K and λ. The probability (P-value) that
the optimal local alignment score S exceeds x is estimated
by:

Pr(S > x) ~1 - e-E,

where E is the E-value and is given by

E = Kmne-λx.

For E-values less than 0.01, both E-value and P-values are
very close to each other. The above formulae are valid for
ungapped alignments [12], and the parameters K and λ
can be computed analytically from the substitution scores
and sequence compositions. For gapped alignments, no
perfect statistical theory has yet been developed, although
there exist some good starting points for the problem as
mentioned before [22,23]. Recently, researchers have also
looked closely at the low probability tail distribution, and
the work in [30] applied a rare-event sampling technique
earlier used in [31] and suggested a Gaussian correction to
the Gumbel distribution to better describe the rare event
tail, resulting in a considerable change in the reported sig-
nificance values. However, for most practical purposes,
the original Gumbel distribution has been widely used to
describe gapped alignment score distribution [9,13-
15,17,27,32,33]. From an empirically generated score dis-
tribution, we can directly observe the E-value E for a par-
ticular score x, by counting the number of times a score x
or higher was attained. Since this number would be differ-
ent for different number of random shuffles N (or number
of sequences in the database in case of database search), a
normalized E-value is defined as

In theory, this normalized E-value is same as the P-value
(for large N).

Contributions
In this paper, we extend the existing work on pairwise sta-
tistical significance [27] to incorporate in it the use of

multiple parameter sets, and evaluate it on an important
knowledge discovery application-homology detection.
We conducted similar experiments as reported in [34],
and later in [27] on a subset of the CATH 2.3 database to
compare pairwise statistical significance with single and
multiple parameter sets. This benchmark database was
earlier created in [34] to evaluate seven protein structure
comparison methods and two sequence comparison pro-
grams: SSEARCH and PSI-BLAST. SSEARCH uses the orig-
inal Smith-Waterman algorithm [4], and is considered the
most sensitive algorithm in terms of retrieval accuracy,
better than the heuristic versions like BLAST and FASTA
[35,36]. PSI-BLAST is a modification to the BLAST pro-
gram, where position specific scoring matrices are con-
structed over multiple iterations of BLAST algorithm.
Comparison of pairwise statistical significance results
using multiple parameter sets with pairwise statistical sig-
nificance using a single parameter set shows that at least
for some error levels, using multiple parameter sets is sig-
nificantly better than using a single parameter set. This is
because sequences can have different conservation rates at
different spatial locations, which can be better aligned
using multiple parameter sets (substitution matrices, gap
penalties, etc.). Comparison with database statistical sig-
nificance results show that pairwise statistical significance
with multiple parameter sets gives significantly better per-
formance than the statistical significance estimates
reported by BLAST and PSI-BLAST, and comparable and at
times significantly better performance than the SSEARCH
program. Further, the results also give concrete evidence
that for the practical application of homology detection,
the score distribution from alignment program using mul-
tiple parameter sets can also be assumed to follow an
extreme value distribution. This is an important and use-
ful finding since it is in general difficult to accurately
determine statistics of alignment scores from enhanced
alignment programs. Finally, experiments with different
values of parameter set change penalties indicate that it is
indeed important to use a non-zero parameter set change
penalty while performing alignment using multiple
parameter sets.

Methods
Pairwise statistical significance estimation
Consider the pairwise statistical significance described in
[27] to be obtainable by the following function: Pairwise-
StatSig(Seq1, Seq2, SC, N) where Seq1 is the first sequence,
Seq2 is the second sequence, SC is the scoring scheme
(substitution matrix, gap penalties), and N is the number
of shuffles. The function PairwiseStatSig, therefore gener-
ates a score distribution by aligning Seq1 with N shuffled
versions of Seq2, fits the distribution to an extreme value
distribution using censored maximum likelihood fitting
to obtain the statistical parameters K and λ, and returns
the pairwise statistical significance estimate of the pair-

E
E
Nnormalized =
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wise alignment score between Seq1 and Seq2 using the
parameters K and λ in the P-value formula. More details
on pairwise statistical significance can be found in [27]. In
this paper, we dynamically use multiple parameter sets
instead of a single scoring scheme SC for estimation of
pairwise statistical significance.

Dynamic use of multiple parameter sets in sequence 
alignment
Usually, pairwise sequence alignment is done with a sin-
gle parameter set (substitution matrix, gap penalties). But
to suit the different levels of conservation between
sequences, there exists an algorithm [9] which can dynam-
ically use multiple parameter sets and generate a single
optimal alignment with possibly different parameter sets
used in different regions of the alignment. The algorithm
is implemented in a program named GAP4. The algo-
rithm uses a dynamic programming approach as
explained in [9]. Consider alignment of two sequences A
= a1, a2,..., am and B = b1, b2,... bn using p parameter sets P1,
P2,..., Pp. Let Ai and Bj be the subsequences a1, a2,... ai and
b1, b2,..., bj respectively. For each alignment position (i, j)
and each parameter set Pk, the algorithm keeps track of the
optimal alignment score of the subsequences Ai and Bj
where the last component (substitution, gap, or difference
block) is scored using Pk. Dynamic programming is used
to get optimal alignment for progressive alignment posi-
tions, until i becomes m and j becomes n. Appropriate
modification of the algorithm also allows it to calculate
the optimal local alignment. More details about using
multiple parameter sets for pairwise sequence alignment
can be found in [9].

Evaluation methodology
To evaluate the performance of pairwise statistical signifi-
cance using multiple parameter sets, we used a non-
redundant subset of the CATH 2.3 database (Class, Archi-
tecture, Topology, and Hierarchy, [37]) provided by [34]
and available at ftp://ftp.ebi.ac.uk/pub/software/unix/
fasta/prot_sci_04/. This database was selected in [34] to
evaluate seven structure comparison programs and two
sequence comparison programs. As described in [34], this
dataset consists of 2771 domain sequences and includes
86 selected test query sequences. This domain set is con-
sidered as a valid benchmark for testing protein compari-
son algorithms [38].

We used this database and query set for experimenting
with pairwise statistical significance using multiple
parameter sets. For each of the 86 × 2771 comparisons, we
used the maximum likelihood method with censoring left
of peak with 1000 shuffles to fit the score distribution
from the GAP4 program with substitution matrices
BLOSUM45, BLOSUM50, BLOSUM62, BLOSUM80, and
their all possible combinations (24 - 1 = 15 in number).

All matrices were used in 1/3 bit scale. The gap opening
penalties for each of these matrices was set to the values
empirically determined to be the best for this database in
[28]. These are listed in Table 1. The gap extension penal-
ties were set to 2 for all the four matrices. Following
[27,34], Error per Query (EPQ) versus Coverage plots
were used to present the results. To create these plots, the
list of pairwise comparisons was sorted based on decreas-
ing statistical significance (increasing P-values). Going
down the list, the coverage count is increased by one if the
two sequences of the pair are homologs, and the error
count is increased by one if they are not. At a given point
in the list, Errors Per Query (EPQ) is the total number of
errors incurred so far, divided by the number of queries;
and coverage is the fraction of total homolog pairs so far
detected. In the ideal case, the curve would go from 0% to
100% coverage, without incurring any errors, which
would correspond to a straight line on the x-axis. There-
fore, the more the curve is towards the right, the better the
curve is.

Just as gap opening and gap extension penalties are
dynamically charged during the alignment process when-
ever a gap is inserted and extended respectively, the GAP4
[9] program allows the use of a parameter set change pen-
alty, which is dynamically charged whenever the parame-
ter set mapping is changed during the alignment process.
To see the effect of parameter set change penalty on the
coverage performance, we conducted a series of homology
detection experiments with one of the substitution matrix
combinations (BLOSUM45 and BLOSUM62) with differ-
ent parameter set change penalties. Coverage vs. parame-
ter set change penalty curves were plotted at different error
levels to find the usefulness of the parameter set change
penalty, as reported in the next section.

Results
Comparison with pairwise statistical significance using 
single parameter set
Out of the 15 substitution matrix combinations, 4 are
using single parameter sets, 6 are using two parameter
sets, 4 are using three parameter sets, and 1 is using all
four parameter sets. The EPQ vs. Coverage curves using
pairwise statistical significance with two, three, and four
parameter sets are presented in Figures 1, 2, and 3 respec-

Table 1: Effective gap opening penalties for commonly used 
BLOSUM matrices determined for the benchmark database 
used

BLOSUM matrix Gap opening penalty

BLOSUM45 7
BLOSUM50 9
BLOSUM62 11
BLOSUM80 13
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tively. For comparison purposes, the EPQ vs. Coverage
curves using corresponding single parameter sets are also
presented in the same figures. The y-axis (error-axis) in all
these graphs is in log-scale, and hence there is more infor-
mation in the upper part of the graphs. These figures sug-
gest that pairwise statistical significance using multiple
parameter sets performs comparably to and sometimes
significantly better than pairwise statistical significance
using a single parameter set for most instances of using a
single parameter set, and at most error levels.

Comparison with database statistical significance
Since the EPQ vs. Coverage curves on the complete dataset
can be distorted due to poor performance by one or two
queries (if those queries produce many errors at low cov-
erage levels) [34], to compare the performance of pairwise
statistical significance using multiple parameter sets with
database statistical significance, we examined the per-
formance of the methods with individual queries, follow-
ing the work in [34]. The coverage of each of the 86

queries at the 1st, 3rd, 10th, 30th, and 100th error was
recorded, and the median coverage for each error level
across the 86 queries was plotted to obtain EPQ vs. Cov-
erage curves for the sequence comparison method to be
evaluated. Figure 4 shows the median coverage level at the
1st, 3rd, 10th, 30th, and 100th false positive for homologs
(i.e. 43 of the queries have worse coverage, and 43 have
better coverage). The curve for SSEARCH in Figure 4 is
derived from the figure 2A in [34]. The curves for BLAST
and PSI-BLAST were obtained by experimentation. It is
clear that the proposed pairwise statistical significance
using multiple parameter sets performs significantly bet-
ter than BLAST and PSI-BLAST at all error levels, compara-
ble to SSEARCH at low error levels, and significantly
better than SSEARCH at higher error levels.

Empirical justification of parameter set change penalty
The coverage vs. parameter set change penalty plot for the
substitution matrix combination of BLOSUM45 and
BLOSUM62 is illustrated in Figure 5. The curve shows a

Pairwise statistical significance using two parameter setsFigure 1
Pairwise statistical significance using two parameter sets. Errors per Query vs. Coverage plot for pairwise statistical 
significance using two parameter sets, along with the curves using corresponding single parameter sets. (a) BLOSUM45, 
BLOSUM50; (b) BLOSUM45, BLOSUM62; (c) BLOSUM45, BLOSUM80; (d) BLOSUM50, BLOSUM62; (e) BLOSUM50, 
BLOSUM80; (f) BLOSUM62, BLOSUM80. In 5 panels (b) through (f) out of 6, using two parameter sets leads to better cover-
age than using a single parameter set at most error levels.
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poor coverage performance for the case when the param-
eter set change penalty is not charged, i.e., when the align-
ment algorithm is freely allowed to change the parameter
set during alignment without charging any penalty. This
can be explained by the fact that the algorithm would try
to mathematically maximize the alignment score by
changing the parameter set as frequently as possible,
which may produce more biologically irrelevant align-
ments. A similar phenomenon is also observed when very
low gap penalty is used [28]. The coverage performance
clearly improves for non-zero values of parameter set
change penalty, which provides its empirical justification.

Discussion
As pointed out earlier, SSEARCH employs the original
Smith-Waterman algorithm for alignment, and is consid-
ered more sensitive than its heuristic implementations
like BLAST and FASTA. PSI-BLAST uses an iterative
approach with query-specific substitution matrices, and
its performance mainly depends on the quality of posi-
tion-specific scoring matrices (PSSMs) constructed itera-
tively. The results show that PSI-BLAST gave poorer
performance than pairwise statistical significance using
multiple parameter sets, even with PSSMs constructed
against the benchmark CATH database used in our exper-
iments. However, using PSSMs derived against BLAST
non-redundant protein database has been shown to give
better results [34] as it uses much more information than

Pairwise statistical significance using three parameter setsFigure 2
Pairwise statistical significance using three parameter sets. Errors per Query vs. Coverage plot for pairwise statistical 
significance using three parameter sets, along with the curves using corresponding single parameter sets. (a) BLOSUM45, 
BLOSUM50, BLOSUM62; (b) BLOSUM45, BLOSUM50, BLOSUM80; (c) BLOSUM45, BLOSUM62, BLOSUM80; (d) 
BLOSUM50, BLOSUM62, BLOSUM80. In all 4 panels, using three parameter sets leads to better coverage than using a single 
parameter set at most error levels for at least two instances of using a single parameter set.

BLOSUM45,
BLOSUM50,
BLOSUM62

0.01

0.1

1

10

0.22 0.24 0.26 0.28 0.3 0.32

Coverage

E
rr

o
rs

 p
er

 Q
u

er
y

BL45
BL50
BL62
BL45,BL50,BL62

BLOSUM45,
BLOSUM50,
BLOSUM80

0.01

0.1

1

10

0.22 0.24 0.26 0.28 0.3 0.32

Coverage

E
rr

o
rs

 p
er

 Q
u

er
y

BL45
BL50
BL80
BL45,BL50,BL80

BLOSUM45,
BLOSUM62,
BLOSUM80

0.01

0.1

1

10

0.22 0.24 0.26 0.28 0.3 0.32

Coverage

E
rr

o
rs

 p
er

 Q
u

er
y

BL45
BL62
BL80
BL45,BL62,BL80

BLOSUM50,
BLOSUM62,
BLOSUM80

0.01

0.1

1

10

0.22 0.24 0.26 0.28 0.3 0.32

Coverage

E
rr

o
rs

 p
er

 Q
u

er
y

BL50
BL62
BL80
BL50,BL62,BL80

(a) (b)

(c) (d)
Page 6 of 9
(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 3):S1 http://www.biomedcentral.com/1471-2105/10/S3/S1
just a pair of sequences. Comparable and at times signifi-
cantly better results than SSEARCH using pairwise statisti-
cal significance with multiple parameter sets implies that
statistical significance estimates at least as good as data-
base statistical significance can be obtained by pairwise

statistical significance using multiple parameter sets with-
out having to do a time-consuming database search. This
can be very useful to estimate accurate pairwise statistical
significance of two (or a few) sequences, which is a com-
mon scenario in many pairwise alignment based applica-
tions like phylogenetic tree construction, progressive
multiple sequence alignment.

It is important to note that the proposed method is not a
database search method but statistical significance estima-
tion method for pairwise local alignment, and the com-
parison with database search programs like BLAST,
SSEARCH, and PSI-BLAST is of their statistical significance
estimation strategies. The proposed method, as of now is
not scalable to a database search, but can be used to refine
the results from a fast database search program like
BLAST.

Since pairwise alignment using multiple parameter sets
takes more computational time than using a single
parameter set, pairwise statistical significance estimation
using multiple parameter sets also takes more time than
pairwise statistical significance estimation using a single
parameter set. In general, using k parameter sets increases
the computation time by a factor little more than k. There-
fore, faster methods for significance estimation can be
very helpful.

Conclusion
This paper extends the work on pairwise statistical signifi-
cance by incorporating in it the use of multiple parameter

Empirical justification of parameter set change penaltyFigure 5
Empirical justification of parameter set change pen-
alty. Coverage vs. Parameter Set Change Penalty plots at dif-
ferent errors per query for the substitution matrix 
combination of BLOSUM45 and BLOSUM62. Poor coverage 
is obtained if the parameter set change penalty is zero. The 
coverage is better and steady for non-zero values of parame-
ter set change penalty.
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sets (substitution matrices, gap penalties, etc.), and com-
pares it with database statistical significance for the
knowledge discovery application of homology detection.
The results show that pairwise statistical significance using
multiple parameter sets performs better than pairwise sta-
tistical significance using a single parameter set. It also
performs significantly better than database statistical sig-
nificance using BLAST and PSI-BLAST, and comparable
and at times significantly better than database statistical
significance using SSEARCH. Further, an empirical justifi-
cation of the use of parameter set change penalty is pro-
vided.

Since PSI-BLAST results can be improved by using better
quality PSSMs derived from larger protein databases, we
believe that the performance of pairwise statistical signifi-
cance can also be improved using sequence-specific/posi-
tion-specific substitution matrices, which is a significant
part of our future work. Another important contribution
can be to estimate the pairwise statistical significance
accurately in less time, since using multiple parameter sets
increases the significance estimation time. Faster methods
for determining pairwise statistical significance would be
very useful.
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