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Abstract
Background: As biological networks often show complex topological features, mathematical
methods are required to extract meaningful information. Clustering methods are useful in this
setting, as they allow the summary of the network's topology into a small number of relevant
classes. Different strategies are possible for clustering, and in this article we focus on a model-based
strategy that aims at clustering nodes based on their connectivity profiles.

Results: We present MixNet, the first publicly available computer software that analyzes biological
networks using mixture models. We apply this method to various networks such as the E. coli
transcriptional regulatory network, the macaque cortex network, a foodweb network and the
Buchnera aphidicola metabolic network. This method is also compared with other approaches such
as module identification or hierarchical clustering.

Conclusion: We show how MixNet can be used to extract meaningful biological information, and
to give a summary of the networks topology that highlights important biological features. This
approach is powerful as MixNet is adaptive to the network under study, and finds structural
information without any a priori on the structure that is investigated. This makes MixNet a very
powerful tool to summarize and decipher the connectivity structure of biological networks.

Background
With the increasing power of high throughput technolo-
gies and storage capacities, it is now possible to explore
datasets which are in the form of complex networks. Many
scientific fields are concerned by these major advances,

such as physics, social sciences, and molecular biology
[1,2]. One characteristics of interest when studying com-
plex networks is their topology or the way particules, pro-
teins or social agents interact [1]. More generally, studying
the topology is crucial to understand the organization of
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networks, as structure often affects function. Since net-
works show complex structural patterns, one common
task is to find an appropriate way to summarize their
structure. Many indicators have been proposed for this
purpose: the degree distribution [3], the clustering coeffi-
cient [2,4], and the small world property [1] are among
the most popular. However since summarizing a topology
using those indicators gives a crude view of the networks
topology, another research direction has been to gather
nodes that behave similarly from the point of view of a
user defined criterion [5-7].

Clustering methods that have been proposed are mainly
focused on community detection, i.e. they aim at finding
groups of nodes that are highly intra-connected and
poorly inter-connected [8]. Hierarchical versions of these
methods are also available [5]. However, when perform-
ing exploratory data analysis, it may be difficult to search
for a particular structure. Real networks may not show
community structure for instance, or may be characterized
by various connectivity patterns among which commu-
nity is only one feature.

Model-based clustering is a powerful alternative to those
methods, as the model underlying the algorithm allows
the blind search of connectivity structure without any a
priori [7,9,10]. The basics of this strategy is to consider that
nodes are spread among an unknown number of connec-
tivity classes which are unknown themselves. Many
names have been proposed for this model, and in the fol-
lowing, it will be denoted by MixNet, which is equivalent
to the Block Clustering model [9].

When using MixNet one central question is the estimation
of the parameters, and the associated optimization
method. Bayesian strategies have been proposed, but they
are limited as they can handle networks with hundreds of
nodes only [9]. Heuristics have also been proposed for
this problem [10]. In this work, we present the MixNet
software program which is the first publicly available soft-
ware that fits mixture models on large networks using non
Bayesian maximum likelihood estimation. The statistical
developments associated with this software have been
published elsewhere [7], and our algorithm uses a varia-
tional approach that has been developed in the context of
graphical models [11]. Here we consider the application
of MixNet to different biological networks such as regula-
tory, cortex, foodweb and metabolic networks. We show
how flexible the method is, how it summarizes the con-
nectivity structure of a complex network, and how this
summary can be used to understand topology-based bio-
logical features.

Results
Brief recall of MixNet principles
In this first paragraph we briefly recall the principle of
mixture models when applied to random graphs.

This is a general setting that has been developed exten-
sively from the statistical point of view [7,9,10].

The network is modeled as a random graph with X repre-
senting its connectivity matrix, such that Xij = 1 if nodes i
and j are connected and 0 otherwise. In this article, we
consider directed networks, such that Xij may be different
from Xji. The idea of MixNet is to consider that nodes can
be spread into Q connectivity classes which are hidden,
with Q being unknown as well. Then we consider that
there exists a sequence of hidden label variables Z such
that Ziq = 1 if node i belongs to class q. The parameters of
this model are α, the proportion of each group, and π the
connectivity of the groups, such that πq� represents the
probability for a node of group q to be connected to a
node from group � (given in percentage in the sequel). To
this extend, π is a summary of the connectivity of the orig-
inal network, at the group level. MixNet results can be dis-
played in two ways. The first intuitive representation is to
map the MixNet classes on the nodes of the network as in
Figure 1. However, this view may not be informative when
too many nodes/colors are present. The second way is to
give a graphical representation of the connectivity matrix
π which provides a synthetic view of the intensity and
direction of connexions between and within MixNet
classes (Fig. 1, Table 1). Then the purpose is to interpret
such a summary, and our work aims at showing how bio-
logical information can be extracted from MixNet results.
A classical difficulty when using clustering techniques is to
determine how many clusters there are. The advantage of
model-based clustering is that it gives a framework for
deriving theoretical criteria for model selection. However,
our point is that since there is no "true" number of clus-
ters, it may be valuable to study the results given with dif-
ferent configurations. To this extend, we will use two
criteria in this article. The first one is called the Integrated
Classification Likelihood (ICL [7]), it is based on a penal-
ization of the likelihood of the model. The second one is
called the "adaptive strategy". Its principle is to study the
increase of the likelihood according to the dimension of
the model, and to select the number of clusters for which
this increase is less significant [12]. These criteria are
briefly described in the Method section.

A meta-regulation diagram in the TRN of E. Coli
Transcriptional regulatory networks (TRN) constitute one
important example of biological networks that are studied
from the structural point of view. Nodes of the network
correspond to operons which are linked if one operon
encodes a transcription factor that directly regulates
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another operon. Such networks have been shown to share
some important properties, such as a relative sparseness, a
very low number of feed back circuits, and a hierarchical
organization [13]. Thus grouping operons based on their
connectivity structure appears essential to understand the
wiring diagram of such complex networks. In this para-
graph, we consider the connex component of the the E.
Coli TRN [14].

Summarizing regulatory structure: the MixNet representation
The clustering results with 5 classes (given by the ICL cri-
terion) gives a rough picture of the network's structure.
The connectivity matrix π of the TRN is characterized by
(i) empty rows and (ii) small diagonal elements (Table 1):
(i) means that some groups are made of strictly regulated
operons (nodes that receive edges only), and (ii) that
there is no community structure, i.e. there is no group
which is heavily intra-connected and poorly inter-con-
nected. This result is coherent with the structure of regula-
tory circuits which form cascades of regulations without
feedback [13], meaning that nodes do not share modular-
ity patterns in this regulatory network. Figure 1 indicates
that the majority of operons are regulated by very few
nodes. At this resolution level, the network is summarized
into regulated operons (groups 1 and 4), which receive
edges only. These two groups are distinguished based on
their regulatory elements: operons of group 4 are regu-
lated by crp only (which makes its own group), whereas
operons of group 1 are regulated by many cross-talking
elements (group 2, 3, and 5).

Meta Motifs of regulation

It has been shown that some motifs like the popular Feed
Forward Loop constituted a core structure of the E. Coli
regulatory network [14]. When looking at Figure 1, it
appears that MixNet exhibits the same global structures at
the group level. Groups 5 and 4 form a Single Input Mod-
ule (SIM), i.e. one TF regulating other operons that do not

communicate . Similarly, groups 2-3-1 and 2-

5-1 form a "meta" Feed-Forward loop. In both cases the
effector group is group 1, and groups 2 and 3 can be
viewed as information relays.

Getting a more detailed picture
The adaptive strategy selects 12 groups which highlight
the hierarchical structure of the regulation wiring diagram
(Figure 2). The majority of nodes are strictly regulated
operons (groups 1, 3, 5, 8, 10), whereas regulators are
clustered into small groups that are distinguished based
on their connectivity patterns and on their targets. For
example yhdG_fis (group 2) regulates nodes of groups 1
and 8, operons of group 9 (fnr, narL) regulate operons of
group 8. MixNet can also be used to detect operons that
act as global TF from the connectivity point of view. For
instance, rpo operons are clustered in "regulatory" classes
(operon rpoE_rseABC forms group 7 on its own). This
result is not surprising though, as rpo operons are
involved in the σ unit of the RNA polymerase. More gen-
erally, beyond groups that are made of unique major reg-
ulatory elements, MixNet gather "regulatory-like"
elements together. For instance, group 4 is made of both
global TF and σ factors (Table 2).

( %),π 4 4 1<

Table 1: Connectivity matrix for E. Coli TRN with 5 classes. The 
probabilities of connexion are given in percentage, and 
probabilities lower than 1% are not displayed.

MixNet Classes
1 2 3 4 5

1 . . . . .
2 6.40 1.50 1.34 . .
3 1.21 . . . .
4 . . . . .
5 8.64 17.65 . 72.87 11.01

alpha 65.49 5.18 7.92 21.10 0.30

E. Coli TRN with 5 MixNet classes with proportionsFigure 1
E. Coli TRN with 5 MixNet classes with proportions. 

 = 65.49,  = 5.18,  = 7.92,  = 21.10,  = 0.30α̂1 α̂2 α̂3 α̂4 α̂5
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Meta motifs are also present in this representation: a Meta
Feed Forward Loop (5-6-7) and Single Input Modules (12-
10, 12-11, 12-8, 2-8 and 2-1). Their formation is due to
groups 12 and 2 which are made of one operon only (crp
and yhdG_fis respectively). Another meta motif is the
Dense Overlapping Regulon (DOR motif, groups 4-3). A
DOR motif is formed when a set of operons are each reg-
ulated by a combination of a set of input transcription fac-
tors.

Discovering Hub families in the macaque cortex network
The dataset consists in cortical regions connected by inter-
regional pathways in the Macaque Cortex [15]. As brain
function is based on inter-regional connexions, studying
the way cortical regions interact may offer new perspec-
tives in the comprehension of information flows within
the brain. It appears that particular brain regions may play

different roles: some regions can be at the "center" of a
particular part of the network, meaning that a lot of infor-
mation will pass through them, whereas other parts of the
network may be more "peripherical". Consequently, iden-
tifying central zones would be important, as their lesion
may compromise the integrity of the whole network.

From a topological view, finding those "hubs" as focused
much attention, with a popular definition based on
degree. However, there exists many ways for a node to be
a hub, and degree is only one criteria. As there is no formal
definition of what a hub is, there are many different hubs
(provincial and central). This is why multi-criteria strate-
gies were developed to find nodes that can be called
"hubs" [15]. From a methodological point of view, this
approach seems to be limited as the resuting hubs will be
criteria-dependent. The gain of MixNet is that the model

Table 2: Repartition of the E. Coli TRN in MixNet classes.

Operon class id out degree in degree

yhdG_fis 2 26 0

arcA† 4 20 1
argR 4 6 0
cytR 4 7 0
fadR 4 5 0
FruR 4 7 0

himA†,‡ 4 21 0
hns† 4 7 1
lrp† 4 14 0

marRAB 4 5 1
metJ 4 4 0

nlpD_rpoS* 4 14 0
ompR_envZ† 4 6 1

oxyR† 4 4 0
purR† 4 16 0
rob† 4 12 0

rpoN* 4 13 0
soxS† 4 6 1

cpxAR† 6 9 1
flhDC 6 7 3

fliAZY* 6 12 2
fur† 6 9 1

rpoH* 6 10 4

rpoE _rseABC* 7 24 0
fnr† 9 22 0

narL† 9 13 0

crp† 12 72 0

List of operons which correspond to regulatory operons in the Coli 
regulation network with Q = 12 groups. † Global TF from [35]. Note 
that flhDC is a master compound regulator for motility and 
chemostatis, and has not yet been reported to regulate other TFs 
[36]. ‡himA is the a-subunit of the Integration Host Factor. * for σ-
factors.

E. Coli TRN with MixNet 12 classes with proportionsFigure 2
E. Coli TRN with MixNet 12 classes with proportions. 

 = 6.66,  = 0.30,  = 37.10,  = 5.35,  = 16.61, 

 = 1.52,  = 0.30,  = 8.59,  = 0.61,  = 16.84, 

 = 5.81,  = 0.30

α̂1 α̂2 α̂3 α̂4 α̂5

α̂6 α̂7 α̂8 α̂9 α̂10

α̂11 α̂12
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can be used to find those hubs. Indeed, using the underly-
ing missing data framework, MixNet will find nodes that
connect heavily to other nodes in the network, and that
share this connectivity pattern (a class of hubs for
instance).

Interpretation of MixNet results

The dorsal visual stream area is a very densely connected
zone in the brain, and has been viewed as homogeneous
in a previous study [15]. On the contrary, MixNet empha-
sizes different connectivity behaviors (Figure 3). This zone
is split into 3 classes (1-2-3) and MixNet still catches the
strong inter-class connexion pattern

. This split is explained by the inten-

sity of connexions with other zones, and by the differ-
ences in flows direction (balanced flow for class 2,
unbalanced for class 1). MixNet identifies hubs like V4, a
provincial hub that constitutes a group on its own (group
3), but also sets of hubs like the Frontal Eye Field (FEF)
and node 7a, that are known to receive and send many
long range pathways and to connects visual and sensimo-
tor zones respectively. Those hubs form class 4 which is
also responsible of the split of the dorsal visual stream
area, since inter-classes connectivity probability are very
different:

Despite different functions, FEF and 7a form a class of
connector hubs that allows the communication between
zones that do not connect directly (classes 3-7, 3-6, 6-2, 6-
1, and 1-7). This pattern is also present for class 7 that
connects classes 6 and 8, with node Ig not declared as a
hub based on different criteria (just below the limit [15]),
whereas MixNet emphasises that its connectivity pattern is
a "hub" pattern. From a histological perspective, V4 medi-
ates information flow between two groups of areas, one
belonging predominantly to the dorsal visual stream
(groups 1 and 2) and the other belonging to the ventral
visual (group 5, without MP and MIP). Consequently, the
partition given by MixNet can also be related to geo-
graphic areas in the cortex. This can be explained by the
geographic organization of the connexions within the
brain. Similarly, a majority of zones of groups 6 7 and 8
belong to the parietal frontal lobe which corresponds to
somatosensory and motor areas.

Comparison with a module identification method
Since the network of brain cortical regions is highly con-
nected (47 nodes, 505 interactions) most cortical regions
are inter-connected with different intensities. Conse-
quently, it may be of interest to identify modules in this
network. We use the detection algorithm based on simu-
lated annealing, which aims at maximizing the modular-
ity of a partition, and which finds the number of modules
automatically [8]. This method identifies 3 modules, and
we compare the partitions with a 3-class MixNet partition

( %), ,π π1 3 3 1 100= =

submatrix ˆ

. . . .

. . . .
( : ) ( : )π 1 4 1 4

75 0 58 9 100 0 43 7

44 7 76 1 71 4 85 7

1× =
000 0 42 9 45 7 50 0

6 2 92 8 50 0 100 0

. . . .
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Macaque Cortex Network with 8 MixNet classes, with pro-portionsFigure 3
Macaque Cortex Network with 8 MixNet classes, 
with proportions.  = 17.0,  = 14.9,  = 2.1,  = 

4.3,  = 19.2,  = 14.9,  = 10.6,  = 17.0

α̂1 α̂2 α̂3 α̂4

α̂5 α̂6 α̂7 α̂8
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(Figure 4). One module is identified by both methods and
corresponds to the set of cortical regions that constitute
the visual stream region. The remaining 2 modules are dif-
ferent: while MixNet identifies a class of connector hubs
(class 2 which mediates the connexions between 1 and 3),
the modularity-based method identifies 2 highly intra-
connected modules which belong to the ventral visual
and the parietofrontal lobes. In this example, MixNet
results may be more relevant from the information flow
point of view, whereas the modules maybe more interest-
ing from the histological point of view. This makes both
approaches very complementary.

Summarizing trophic relationships in food-web networks
Food webs are networks that describe the trophic links
among diverse species. They provide a complex picture of
species interactions and ecosystem structure. Deciphering
rules that govern their formation and evolution has
received much attention [16], and the study of their struc-
ture is also an active research field [5,17]. The food web
under study is made of chalcid wasps from the Tetramesa
species feeding on different grass species [18,19]. Among
these wasps, some are true herbivores, many are parasi-
toids, and some are parasitic at early larval stages and her-
bivorous in later stages. The term parasitoid is used to
describe the strategy in which during its development, the
parasite lives in or on the body of a host. Therefore, the
food web shows 5 levels of organization: plants, herbiv-

ores, parasitoids, hyperparasitoids and hyper-hyperpara-
sitoids. Then a trophic link is considered between two
insects when one insect is observed within one host, since
development of parasitoid insects takes place within or on
the host species. The original article points out that there
is a dissymmetry among the specificity of the different
trophic levels: while the lower two trophic levels (herbiv-
ores and primary parasitoids) are characterized by
extreme host specificity, the top two trophic levels (hyper-
parasitoids and hyperhyperparasitoids) comprise more
generalized omnivores.

This example has recently been used to illustrate a cluster-
ing method based on hierarchical agglomeration [17].
The provided results have the advantage of showing differ-
ent degrees of precision, with the highest degree reflecting
specific herbivore-parasite communities [17]. However,
the hierarchy may not be present at every scale, as the net-
work is not a tree. This is a classical criticism that can be
made to hierarchical clustering in general: it will find hier-
archy even if the data are not structured hierarchically.
Furthermore, the hierarchical framework hampers the use
of edge orientation, seeing the network as a non-directed
network, whereas it is directed by definition, the orienta-
tion of the links giving the trophic relationship between
organisms.

Summarizing trophic relationships in the wasps network
The adaptive strategy gives 7 classes among which
Macroneura vesicularis and Mesopolobus graminum consti-
tute hubs that have different targets (Figure 5, Table 3).
Then herbivores are connected to the class of grass species,
and are infected by those hubs. MixNet exhibits the low
specificity of hyperparasitoids, as the hub Macroneura
vesicularis is connected to parasites as well as herbivores.
This is also illustrated by the connexions of Mesopolobus
graminum (Class 7) to herbivores (Class 1) but also to
class 4 which has no specific pattern in terms of trophic
levels. Actually Mesopolobus graminum creates a partition-
ing of the network, since cluster 4 is formed by nodes that
connects together or with the hub, but not with other
parts of the network. More than hub identification,
MixNet can also identify local hierarchies. For instance
class 5 is made of a community centered around the her-
bivore Tetramesa petiolata. This illustrates a case of narrow
host range which is typical of communities centered on
herbaceous plants [18].

Summarizing Reaction interplay in metabolic networks
Metabolic networks constitute a major instance of biolog-
ical networks, whose comprehension appears crucial in
the understanding of the functionning of the cell. In this
example, we consider the metabolic network of the
gamma-proteobacterium Buchnera aphidicola. This bacte-
rium is an endosymbiont which lives inside some special-

Macaque Cortex Network Method comparisonFigure 4
Macaque Cortex Network Method comparison. Left 
Guimera method, Right: MixNet.
Page 6 of 11
(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 6):S17 http://www.biomedcentral.com/1471-2105/10/S6/S17
ised cells of the aphids. An intimate association exists
between these two organisms since one can not live with-
out the other [20]. The symbiosis is nutritional: each
organism provides metabolites that the other can not syn-
thesize. Nutritional analyses showed that the essential
role of B. aphidicola in the symbiosis is to supply essential
amino acids that the aphid can not produce. The very long
association between these two organisms (over 150 mil-
lions years) and the strictly vertical transmission of the
endosymbiont induced a drastic reduction of its genome,
affecting its metabolic capacities but preserving especially
the symbiotic functions [21].

In this example, the data is a directed network with reac-
tions as nodes which are connected if one reaction pro-
duces the substrate of the other. One reaction has been
declared as being irreversible if it appears always in the
same direction in MetaCyc [22], whatever the metabolic
pathway. This strategy requires an additional filtering step
that accounts for some compounds which would create
numerous connections that might not be biologically
meaningful. Indeed, some metabolites as ATP and NADP
often act as co-factors in reactions but do not transfer mat-
ter to the main substrates. Not dealing with these metab-
olites induces false topologies in the metabolic networks
and thus wrong biological deductions [23]. Since MixNet
aims at finding structure, this kind of non informative
structure hampers the discovery of smaller-scale structures
(data not shown). In order to avoid artefactual structures
due to cofactors partipations, we used a filter to remove
substrat-products couples corresponding to cofactors
[24]. Subproducts such as phosphate from the tandem
ATP-ADP, and H2O have also been removed.

The first result of MixNet is that 45% of the reactions of
the metabolic network of B. aphidicola are "chain-like"
reactions that are not sufficiently structured from the con-
nectivity point of view to be split into more subsets of
reactions. Indeed, Class 3 has a mean degree close to 2
which indicates chains of reactions with only few branch
lines (Table 4). It seems to be consistent with the fact that
most of the redundant metabolic pathways disappeared
from the metabolic network of B. aphidicola [21]. The
twelve remaining classes form 2 meta components whose
links are very loose (they are not represented on the sum-
mary plot of Figure 6, but these components are con-
nected through reactions of class 3).

Deciphering elements that structure the network
MixNet reveals two key characteristics that structure the
network: compounds (phosphate, CO2, protons, sugars,
glutamate, Isoleucine, Leucine and Valine) and the revers-
ibility of reactions. Producer reactions are distinguished
from consumers. For instance, diphosphate is produced
irreversibly by reactions of class 12 and is used as a sub-

Table 3: Repartition of trophic levels among MixNet Classes for the foodweb network.

MixNet Classes Mean Degree
1 2 3 4 5 6 7 In Out

grass 0 0 6 2 0 0 0 2.00 0.00
herbivore 10 0 0 4 1 0 0 4.53 1.06
parasitoid 0 30 0 7 2 0 0 0.64 1.05

hyperparasitoid 0 4 0 4 2 1 0 0.36 3.82
hyperhyperparasitoid 0 0 0 0 1 0 1 0.00 7.00

Mean In degree 4.90 0.41 2.33 1.59 1.50 0 0
Mean Out degree 1.10 1.29 0 1.17 1.66 17 11

Foodweb network with 7 MixNet classes, with proportionsFigure 5
Foodweb network with 7 MixNet classes, with pro-
portions.  = 14.0,  = 44.4,  = 8.6,  = 22.3,  

= 8.0,  = 1.3,  = 1.3

α̂1 α̂2 α̂3 α̂4 α̂5

α̂6 α̂7
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strate to produce phosphate by class 1, which is also pro-
duced by all reactions of class 11. The distinction between
producers and consumers can also be seen with the aver-
age in/out degree of each class (Table 4). It is important to
note that the presence of phosphate here is not the sub-
product of the transformation of ATP in ADP or other
cofactor transformation. Interestingly in B. aphidicola, the
use of phosphate as substrate occur in degradation of
purines whose the products may lead to the synthesis of
several other important metabolites as the chorismate,
key compound in the synthesis of amino acids. A similar
pattern can be found with CO2 that is used by reactions
used by reactions of class 13, and with reactions that use/
produce protons (Table 5). If we go to further details, sug-
ars also structure the network (class 9), with reactions are
span among the pentose phosphate pathway and the gly-
colysis.

In component 2, we observe a very strong structure which
is due to the use of glutamate, with irreversible reactions
that produce glutamate from glutamine (class 8), and
reactions that use glutamate (classes 5 and 4). Interest-
ingly these consumer reactions are split because of their
different reversibility despite their strong probability of

connexion . Reactions of class 4 are all

reversible and are involved in the metabolism of 3 Amino
Acids (Isoleucine, Leucine and Valine) with a common EC
number (2.6.1.42), whereas reactions of class 5 are strictly
irreversible (83% of which being with EC numbers 2.6.1
and 6.3.2). The glutamate is a key compound in the syn-
thesis of amino acids and thus plays a very important role
in the symbiotic function of B. aphidicola. Consequently,
MixNet enables to emphasize the the central role of the
glutamate in the network.

Discussion and conclusion
In this work we show how MixNet can be used to study
biological network by providing an accurate summary of
the main topological features that structure the network.
We explored networks that show very diverse structures:
the transcription and the foodweb networks are sparse
and globablly structured by hubs, whereas the cortex and
the metabolic network are dense with some hubs and
some strongly connected components. Interestingly
MixNet is adaptive to each structure, and catches very
diverse features like hubs, hub families, connecting
classes, cliques, and local hierarchies. This makes this tool
very flexible, and very powerful to detect many features
within the same network, whereas oriented clustering
techniques like module identification will search for spe-
cific features only, even if these features are not in the net-
work. Overall, the graphical representation of a network is

( %),π 4 5 100=

Metabolic network with 13 MixNet classes with proportionsFigure 6
Metabolic network with 13 MixNet classes with pro-
portions.  = 1.4,  = 4.1,  = 45.4,  = 1.8,  = 

6.0,  = 6.3,  = 4.6,  = 2.8,  = 6.4,  = 2.8, 

 = 7.4,  = 10.1,  = 0.9.

α̂1 α̂2 α̂3 α̂4 α̂5

α̂6 α̂7 α̂8 α̂9 α̂10

α̂11 α̂12 α̂13

Table 4: Average degree for the metabolic network with 13 
MixNet classes.

Mixnet Class alpha Ave. In Deg Ave. Out Deg

1 1.4 24.33 7
2 4.1 24.88 8.88
3 45.4 1.52 1.40
4 1.8 16 17.67
5 6.0 10.33 2.58
6 6.3 2.78 3.14
7 4.6 6.80 1.40
8 2.8 1.16 19.67
9 6.4 5.14 6.29
10 2.8 2.66 12.33
11 7.4 1.81 10.56
12 10.1 1.54 4
13 0.9 18.50 3.50
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a challenging task, and MixNet provides a global view of
the network and emphasizes the key elements that make
the topology. Summarizing nodes into a small number of
meta-nodes linked by meta-edges gives a representation
that constitutes a clear synthesis of the network topology.

Here we presented how MixNet parameters can reveal
interesting features from the biological point of view. This
emphasizes that MixNet is not only a computer software,
but also a powerful model that can be used to simulate
networks, or as a reference model under which theoretical
statistics can be derived. This approach has already been
demonstrated in network motifs analysis [25].

Note that the topology of a network is only one structural
information that can be used to understand networks
functions. It is worth being noted that the incorporation
of edge direction improves the interpretability of the
results, as the topology itself only constitutes a crude
information. Moreover, many networks also have infor-
mations on edges: transcription regulatory networks have
labeled edges (Activator/Repressor), and metabolic net-
work have stœchiometry which reflects compounds flow
in the network. A future research direction will be to use
this additional information [26].

Methods
Data description
The transcription regulatory network has been down-
loaded from U. Alon web page [27]. We use only the con-
nex component of the 1.1 version of the network, which

is made of 328 nodes with 456 interactions. The food web
network has been provided by A. Clauset, and is made of
86 nodes and 113 edges. The cortex network is made of 47
nodes and 505 interactions. It is available in the supple-
mentary material of [15]. The metabolic network was
build by the pathway-tools software [28] from the
genomic annotations provided by the MAGE annotation
platform [29]. The genome of B. aphidicola is quite well
annotated since it can be considered as a subset of the
intensively curated genome of Escherichia coli. Conse-
quently, the construction of the B. aphidicola metabolic
network is supposed to be meaningful from the biological
point of view. Overall the network is made of one connex
component with 946 edges and 218 nodes.

Model Selection
In this paragraph we explain briefly the model selection
procedure employed to select the number of clusters. The
first criterion ICL is a particular penalized likelihood crite-
rion: it is used to make a trade-off between a reasonable
number of parameters and a good quality of fit of the
data. In addition to the traditional BIC, ICL also considers
the quality of the partition, meaning that it will select a
number of clusters for which the classes are well separated
(with low entropy). Consequently, ICL is based on the
penalization of the complete-data log likelihood of the
model, that accounts for the observed X and the missing
data Z. The number of classes is selected such that:

ˆ arg max{log ( , ) ( )},Q Q
Q

= −L X Z pen

Table 5: Reactions of the Buchnera metabolic network that involve protons.

MixNet class 7
substrate(s) product(s)

proton+cpd-602 → cpd-1086
proton+super-oxide → hydrogen-peroxide+oxygen-molecule
proton+hydroxy-methyl-butenyl-dip → delta(3)-isopentenyl-pp
proton+hydroxy-methyl-butenyl-dip → cpd-4211
proton+3-dehydro-shikimate → shikimate
proton+2,3-dihydrodipicolinate → delta1-piperideine-2-6-dicarboxylate
proton+2-amino-3-oxo-4-phosphonooxybutyrate → 1-amino-propan-2-one-3-phosphate+carbon-dioxide
proton+2-aceto-lactate → dioh-isovalerate
proton+methylene-thf → 5-methyl-thf
proton+l-aspartate-semialdehyde → homo-ser

MixNet class 10
substrate(s) product(s)

erythrose-4p → proton+erythronate-4p
2-d-threo-hydroxy-3-carboxy-isocaproate → proton+cpd-7100
cpd-296 ↔ proton+lipoic-acid
proton+oxygen-molecule ↔ proton
sirohydrochlorin+fe+2 → proton+siroheme
glc-6-p → proton+d-6-p-glucono-delta-lactone
Page 9 of 11
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with pen(Q) a penalty that depends on the number of
nodes in the network, as well as on the number of param-
eters in the model [7].

The second method we employ is based on the geometri-
cal behavior of the incomplete-data likelihood when the
number of classes increases. It is an adaptive method that
has been successfully employed in diverse contexts
[12,30,31]. The principle of this method is to calculate the
second derivative of the likelihood, and to select the
number of classes for which this derivative exceeds a
threshold, which is set to 0.5 in practice. This method is
close to the L-curve method [12].

The MixNet software
All the presented algorithms are implemented into the
MixNet software package which is written in ANSI C++
and includes Fortran 77 subroutines from the ARPACK
[32] library. Optionnal post-treatment programs written
in Perl are also included in the package. Compilation and
installation are compliant with the GNU standard proce-
dure. The library is freely available on the MixNet web-
page [33]. Online documentation and man pages are also
available. MixNet is licensed under the GNU [34] General
Public License.

The complexity of the algorithm is proportional to the
number of edges of the network (sparse storage format),

and (n2Q2) in time (where n stands for the number of
nodes and Q for the number of clusters). If MixNet is run
for 1 to Q clusters, the overall complexity is then

(n2Q3). We present the speeds of execution of MixNet
on the webpage [33]. Our experience is that on the studied
networks, the execution speeds were similar to the simu-
lated annealing method.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
FP wrote the manuscript and conducted the analysis, VM
developed the MixNet software program, LC created and
did the analysis of the metabolic network, JJD and SR
supervised the study.

Fundings
L. Cottret was sponsored by the ANR REGLIS Project
NT05-3_45205.

Acknowledgements
The authors would like to thank A. Clauset for having provided the food-
web dataset, O. Sporns for providing references, R. Guimera for providing 
the software of module identification, and D. Kahn and E. Desouhant for 
helpful discussions and comments.

This article has been published as part of BMC Bioinformatics Volume 10 Sup-
plement 6, 2009: European Molecular Biology Network (EMBnet) Confer-
ence 2008: 20th Anniversary Celebration. Leading applications and 
technologies in bioinformatics. The full contents of the supplement are 
available online at http://www.biomedcentral.com/1471-2105/10?issue=S6.

References
1. Strogatz S: Exploring complex networks.  Nature 2001,

410:268-276.
2. Newman M, Watts D, Strogatz S: Random graph models of social

networks.  PNAS 2002, 99:2566-2572.
3. Barabási A, Albert R: Emergence of scaling in random net-

works.  Science 1999, 286:509-512.
4. Albert R, Barabási A: Statistical mechanics of complex net-

works.  R Modern Physics 2002, 74:47-97.
5. Girvan M, Newman M: Community structure in social and bio-

logical networks.  PNAS 2002, 99(12):7821-7826.
6. Radicchi F, Castellano C, Cecconi D, Loreto V, Parisi D: Defining

and identifying communities in networks.  PNAS 2004,
101(9):2658-2663.

7. Daudin J, Picard F, Robin S: A mixture model for random graphs.
Stat and Computing 2008, 18:173-183.

8. Guimera R, Amaral LN: Functional cartography of complex
metabolic networks.  Nature 2005, 433:895-900.

9. Nowicki K, Snijders T: Estimation and prediction for stochastic
blockstructures.  JASA 2001, 96(455):1077-1087.

10. Newman M, Leicht E: Mixture models and exploratory analysis
in networks.  PNAS 2007, 104(23):9564-9569.

11. Jordan M, Ghahramani Z, Jaakkola T, Saul L: An Introduction to
Variational Methods for Graphical Models.  Mach Learn 1999,
37(2):183-233.

12. Lavielle M: Using penalized contrasts for the change-point
problem.  Signal Processing 2005, 85(8):1501-1510.

13. Balazsi G, Barabasi AL, Oltvai Z: Topological units of environ-
mental signal processign in the transcriptional network of
Escherichia Coli.  PNAS 2005, 102(22):7841-7846.

14. Shen-Orr S, Milo R, Mangan S, Alon U: Network motifs in the
transcriptional regulation network of Escherichia coli.  Nature
genetics 2002, 31:64-68.

15. Sporns O, Honey C, Kotter R: Identification and classification of
hubs in brain networks.  PLoS ONE 2007, 2:e1049.

16. Dunne J, Williams R, Martinez N: Food-web structure and net-
work theory: the role of connectance and size.  PNAS 2002,
99(20):12917-12922.

17. Clauset A, Moore C, Newman M: Hierarchical structrure and
the prediction of missing links in networks.  Nature 2008,
453:98-101.

18. Dawah H, Hawkins B, Claridge M: Structure of the parasitoid
communities of grass-feeding chalcid wasps.  Journal of animal
ecology 1995, 64:708-720.

19. Martinez N, Hawkins B, Dawah H, Feifarek B: Effects of sampling
effort on characterization of food-web structure.  Ecology
1999, 80(3):1044-1055.

20. Buchner P: Endosymbiosis of animals with plant microorganisms John
Wiley & Sons, Inc., New York, NY; 1965. 

21. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H: Genome
sequence of the endocellular bacterial symbiont of aphids
Buchnera sp. APS.  Nature 2000, 407(6800):81-6.

22. Caspi R, Foerster H, Fulcher C, Kaipa P, Krummenacker M, Laten-
dresse M, Paley S, Rhee S, Shearer A, Tissier C, Walk T, Zhang P, Karp
P: The MetaCyc Database of metabolic pathways and
enzymes and the BioCyc collection of Pathway/Genome
Databases.  Nucleic Acids Res 2008, 36:D623-D631.

23. Arita M: The metabolic world of Escherichia coli is not small.
Proc Natl Acad Sci USA 2004, 101(6):1543-1547.

24. Handorf T, Christian N, Ebenhoh O, Kahn D: An environmental
perspective on metabolism.  J Theor Biol 2008, 252(3):530-537.

25. Picard F, Daudin JJ, Koskas M, Schbath S, Robin S: Assessing the
exceptionality of network motifs.  J Comput Biol 2008, 15:1-20.

26. Mariadassou M, Robin S: Uncovering latent structure in valued
graphs: a variational approach.  In Tech Rep 10 SSB; 2007. 

27. U. Alon webpage   [http://www.weizmann.ac.il/mcb/UriAlon/
Network_motifs_in_coli/ColiNet-1.1/]

28. Karp PD, Paley S, Romero P: The Pathway Tools software.  Bioin-
formatics 2002, 18(Suppl 1):S225-S232.

O

O

Page 10 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10?issue=S6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11258382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11875211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11875211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12060727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12060727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14981240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14981240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15729348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15729348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17525150
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17525150
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15908506
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15908506
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15908506
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11967538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11967538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17940613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17940613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12235364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12235364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18451861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18451861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10993077
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10993077
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10993077
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17965431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17965431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17965431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14757824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18086477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18086477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18257674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18257674
http://www.weizmann.ac.il/mcb/UriAlon/Network_motifs_in_coli/ColiNet-1.1/
http://www.weizmann.ac.il/mcb/UriAlon/Network_motifs_in_coli/ColiNet-1.1/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169551


BMC Bioinformatics 2009, 10(Suppl 6):S17 http://www.biomedcentral.com/1471-2105/10/S6/S17
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

29. Vallenet D, et al.: MaGe: a microbial genome annotation sys-
tem supported by synteny results.  Nucleic Acids Res 2006,
34:53-65.

30. Antoniadis A, Bigot J, von Sachs R: A multiscale approach for sta-
tistical characterization of functional images.  Journal of Compu-
tational and Graphical Statistics 2008 in press.

31. Picard F, Robin S, Lavielle M, Vaisse C, Daudin JJ: A statistical
approach for CGH microarray data analysis.  BMC Bioinformat-
ics 2005, 6:27.

32. ARPACK   [http://www.caam.rice.edu/software/ARPACK/]
33. MixNet webpage   [http://pbil.univ-lyon1.fr/software/mixnet]
34. GNU   [http://www.gnu.org/licenses/]
35. Martinez-Antonio A, Collado-Vides J: Identifying global regula-

tors in transcriptional regulatory networks in bacteria.  Curr
Opin Microbiol 2003, 6(5):482-489.

36. Martinez-Antonio A, Jangra S, Thieffry D: Functional organization
of Escherichia Coli transcriptional regulatory network.  J Mol
Biol 2008, 381:238-247.
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16407324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16407324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15705208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15705208
http://www.caam.rice.edu/software/ARPACK/
http://pbil.univ-lyon1.fr/software/mixnet
http://www.gnu.org/licenses/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14572541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14572541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18599074
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18599074
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Brief recall of MixNet principles
	A meta-regulation diagram in the TRN of E. Coli
	Summarizing regulatory structure: the MixNet representation
	Meta Motifs of regulation
	Getting a more detailed picture

	Discovering Hub families in the macaque cortex network
	Interpretation of MixNet results
	Comparison with a module identification method

	Summarizing trophic relationships in food-web networks
	Summarizing trophic relationships in the wasps network

	Summarizing Reaction interplay in metabolic networks
	Deciphering elements that structure the network


	Discussion and conclusion
	Methods
	Data description
	Model Selection
	The MixNet software

	Competing interests
	Authors' contributions
	Fundings
	Acknowledgements
	References

