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Abstract

Many common and chronic diseases are influenced at some level by genetic variation. Research
done in population genetics, specifically in the area of single nucleotide polymorphisms (SNPs) is
critical to understanding human genetic variation. A key element in assessing role of a given SNP is
determining if the variation is likely to result in change in function. The SNP Integration Tool
(SNPit) is a comprehensive tool that integrates diverse, existing predictors of SNP functionality,
providing the user with information for improved association study analysis. To evaluate the SNPit
system, we developed an alternative gold standard to measure accuracy using sensitivity and
specificity. The results of our evaluation demonstrated that our alternative gold standard produced

encouraging results.

Introduction

The mission of population health studies is to promote
the public’s health and prevent diseases. Nine of the top
ten leading causes of mortality in the US have significant
genetic components [1]. To illuminate the genetic elements
of common human disease, researchers must thus study
genetic variation.

Single nucleotide polymorphisms (SNPs) are a powerful
tool used in association studies looking at genetic
variation. Differences in the genome occur most frequently
through SNPs; it has been estimated that between 5 and
15 million common SNPs exist, depending on the
population studied [2]. Due to the fact that SNPs have a

lower mutation rate than microsatellites, are easier to
genotype in an automated fashion, and occur at much
greater density in the genome, SNP markers are being used
increasingly in association studies. Although millions of
SNPs exist, the vast majority of these polymorphisms are
not functional, so the identification of functional poly-
morphisms are one of the trickiest challenges faced by
population geneticists and molecular biologists; regardless
of the location of the SNP in question (coding vs. non-
coding, genic vs. non-genic), prediction of function is
difficult.

Creating a resource to integrate knowledge of polymorphic
positions in the genome with functional predictions will
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facilitate the identification of causal polymorphisms.
Current databases and prediction algorithms can provide
annotated information ranging from protein function to
transcription factor binding to evolutionary conservation.
However, none of these resources attempts to consolidate
information from diverse data sources, or attempts to use
inference rules to synthesize new knowledge from the
existing information. Our system, SNP Integration Tool
(SNPit), provides such a tool [3].

Related work

There are a limited number of resources out there that
integrate SNP resources, an even smaller number of which
have had evaluations of their performance. The UCSC
Genome Browser [4] is one of the primary resources used
to look at integrated information about SNPs. The under-
lying architecture is not a general purpose data integration
system. In fact, none of the other systems use a general
purpose data integration framework as their core. There are
only a few data integration tools that have been developed
to select SNPs based on functional properties. PupaSNP-
Finder and PromolLign take a gene-centric approach and
provide information on the transcriptional effects of
SNPs [5,6], with PupaSNPFinder looking at the validation
status of SNPs, but not its functional role. SNPer focuses on
data export tools, the application provides annotation
information, but a limitation is that it does not focus on
functional prediction, the resource compares itself with
other SNP databases as its evaluation technique [7].
SNPselector provides a web selection program that looks
at SNP properties, including the concept of linkage
disequilibrium and prioritization, it uses a case study
approach and and thus only looks at the results of seven
hundred SNPs [8] (among potentially millions).

In all these systems, only subsets of all possible SNP
predictors are examined and none of the systems
evaluate their performance regarding the functional
annotation of SNPs. In addition, all of these annotation
systems use a local data warehouse approach to storing
data, limiting both its extensibility and accuracy in terms
of up-to-date information. Finally, though there are
numerous databases available that catalogue specific
parameters of genetic variation data, there is no central
way to query a region for SNPs with strong functional
predictions based on data from multiple tools. Using a
generalized federated database system approach, SNPit
addresses these limitations making it easier to add new
sources and adapt to evolving sources. SNPit can thus
easily integrate diverse structural, evolutionary, and
expression data for SNPs, and can be extended to other
data types as they become available. Using SNPit,
population geneticists will be able to more efficiently
identify candidate causative genomic variations for
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human disease after an initial statistical association has
been found.

Methods

SNPit integration tool

SNPit is built on the BioMediator foundation [9].
BioMediator is a federated data integration system: mean-
ing that the owners of the data retain their ownership [10].
Federated data integration systems have an advantage over
traditional data warehousing techniques for a variety
of reasons including: the ability to retrieve up to date
information without having to refer back to the original
data sources, maintaining a manageable computing
environment since a cumbersome database is not necessary
for storage, and allowing for flexibility in querying of
databases, since users and developers are not bound by the
data format of the various sources. The user has the ability
to traverse over multiple databases, and query only the
information pertinent to the question being asked. The
user may also integrate private data sources, allowing for
integration of proprietary information in analysis.

Currently, the SNPit integration system has been imple-
mented across several biological domains, linking data
related to functional SNPs from sources accessible through
BioMediator. BioMediator has interfaces to over 15 public
databases (such as Entrez, Swissprot, and OMIM) as well as
many private databases of experimental results (including
phenotypic databases, genetic databases, imaging data-
bases, and expression array databases) [11].

The central element to BioMediator’s generalizability is the
source knowledge base (SKB). The SKB includes descrip-
tions of the data sources, mappings from the source to the
mediated schema, and the mediated schema itself. The
mediated schema is a general outline that incorporates all
the common objects and mappings for the data sources.
The SKB can be customized for the various end users.
The other three components to the system include: 1)
generalized wrappers that translate the data sources
syntactically; 2) a metawrapper that goes between the
data source and the user query and translates semantically;
and 3) the query processor which allows users to query
against the mediated schema (Figure 1).

Evaluation

The challenge of evaluating SNP annotation is that there is
no true gold standard, particularly for complex diseases
where the genomic component does not explain the
environmental influence, both of which are necessary for a
change in phenotype. To address this challenge, we focused
on monogenetic diseases for the evaluation component,
using HGMD which provides published evidence on
annotation of Mendelian genes. We examined three
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Figure |
Diagram of SNPit components.

different annotation categories: a) synonymous/non-synon-
ymous, b) splicing, and c) regulatory SNPs. Synonymous/
nonsynonymous SNPs occur in the coding region of the
genome and affect whether or not the amino acid is changed
(non-synonymous being a change in amino acid). Splicing
SNPs occur at the intron/exon boundary when proteins are
being made, a SNP at this location can affect how the intron
is spliced out. Regulatory SNPs occur in the promoter of the
sequence and are thought to affect gene expression.

For example, to evaluate the missense/nonsense category
of a particular gene, we retrieved the mutations from
HGMD, performed some manipulations so that were
properly formatted for SIFT analysis, and then found the
corresponding conditional probabilities that predict
whether the change in amino acid detrimentally affects
the protein. For the probabilities that are low, that would
suggest that a change in amino acid would be detrimental.
We then chose a threshold (0.2) to determine which SNPs
would be scored as a true positive. For the true positives
category, we found the unique sequences of those SNPs
that are in the same candidate gene as before, and found
the corresponding sequences for those rs numbers and
submitted them to SNPit's protein function prediction
section. The same threshold was selected for determining
which SNPs would be deleterious.

Using this alternative (“pseudo”) gold standard, we
measured accuracy initially using sensitivity and speci-
ficity of the SNPit system. We submitted the same
annotation category to both SNPit and HGMD and
measuring the difference between the two. We repeated
the process for five different genes (CFIR, BRCA1, tp53,
NF1, BRCA2). Each gene contained around 700-1,500
SNPs. Each SNP was submitted to both systems.

The alternative gold standard uses HGMD as its main
source of positive evidence for a functional SNP in one
of the three categories and dbSNP as its source for non-
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evidence (thus a SNP in dbSNP with no corresponding
HGMD entry is presumed to be lack of evidence for
function). We defined sensitivity as the ability to detect
the positive evidence for SNP functionality, and speci-
ficity as the ability to detect non-evidence for SNP
functionality. A true positive (TP) result would be when
the test is correctly classified as functionally relevant, a
true negative (TN) result would be when the SNP is
correctly classified as being non-functional; false positive
(FP) would be when the test is incorrectly classified as
being functional, and false negative (FN) would be when
the test incorrectly classifies the test as being nonfunc-
tional [12]. HGMD provided the information for the true
positives and false negatives. SNPs found in dbSNP but
not found in HGMD, provided the information for the
false positives and true negatives. Non-synonymous
SNPs were tested again SNPit’s SIFT category, regulatory
SNPs were tested against SNPit's TFSearch category, and
splice site SNPs were tested against SNPit's BDGP
category.

In addition, we calculated the sensitivity and specificity
of the entire federated system. Rather than separating the
SNPs being tested by category as done during the first
phase of the evaluation, we tested how the entire
federated system returns annotation information on
tested SNPs. Thus, in the second phase of the evaluation,
we examined whether or not any of the SNPs are flagged
by any of the categories as functionally promising. We
tested HGMD against all three categories: non-synon-
ymous, regulatory, and splicing, with true positives
defined as those that are flagged as interesting by at
least one of the three categories. Likewise, we ran those
SNPs that are in dbSNP but not in HGMD against all
three categories to establish the false negatives.

Results

We evaluated five candidate genes: CFTR, BRCA1, tp53,
NF1, BRCA2 using both evaluation techniques as
described in the Methods section. A portion of the
SNPs evaluated in cycle 1 for the splicing category is
presented in Figure 2. The sensitivity and specificity for
all the candidate genes in the annotation categories
synonymous/nonsynonymous and splicing fall around
80% (Figure 3). The sensitivity and specificity measures
for the regulatory category were lower, demonstrating
perhaps the difficulty in prediction of regulatory muta-
tions.

For the second cycle, in which we combined all the
categories together, the results improved (Figure 4). For
the tp53 gene, the sensitivity was 97.69% for the
missense/nonsense category and 90% for the splicing
category. For the BRCA1 gene, the sensitivity was 97.09%
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CYCLE 1 SPLICING
TP FN ™ FP
NF1 182 60 1492 254
tp53 24 6 520 110
BRCA1 200 52 968 122
BRCA2 62 16 1374 258
CFTR 190 74 1595 166
TOTALS 658 208 5949 910

Figure 2
Subset of results for cycle | splicing category.

100

N = 4

. el
y Xy
B

40

30

20

Syn/Non Splicing Regulatory
——CFTR ty ——CFTR Sp —&—BRCA1 —%—BRCA1 Sp y ——1p53 y
—e—1p53 Specificil —a—NF1 ——NF1 ——BRCA2 Sensitivity —— BRCA2 Specificity|
Figure 3

SNP evaluation for cycle |I.

for the missense/nonsense category and 70.07% for the
splicing category. For the CFTR gene, the sensitivity was
83.75% for the missense/nonsense category and 84.85%
for the splicing category.

The graph of sensitivity versus specificity for both cycles
demonstrated that when you group the categories
together, an increase in sensitivity is observed (Figure 5).
This increase is due to the combination of all three
categories in cycle 2. For example, those SNPs that were
originally in the regulatory category yielded a positive
prediction for the splicing category. Given an overall
false positive rate of around 1 in 7 for splice predictions
(910 out of 6,859 in Cycle 1, see Figure 2), this suggested
that a portion of regulatory SNPs were actually acting
through a splicing mechanism.

Discussion

Informatics has opened up the field of genomic research,
providing new computational approaches to gathering
and analyzing genetic data, both of which can provide
more powerful tools to determining genetic influences of
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Sensitivity versus specificity graph for both cycles.

diseases. The number of SNP annotation systems that are
currently available is limited, and noneof them to our
knowledge have had evaluated the functional annotation
accuracy of their system. We have built and tested a
system (SNPit) that addresses gaps in the existing
systems with regards to SNP functional annotation. In
addition, in order to evaluate the SNPit system we
created an alternative gold standard to measured
accuracy using sensitivity and specificity. The initial
results are encouraging, though improvements are
certainly still possible.

Our team continues to improve and expand upon SNPit
through the elicitation of user feedback. The SNPit
system is currently accessible over the Internet to both
population geneticists and molecular biologists.
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Addition of a logical inference engine (Jess) on top of
the BioMediator data integration platform has been
shown to successfully predict the functional annotation
of anonymous sequences [13].

Furthermore, recent work had demonstrated that sup-
port for probabilistic inference on top of the BioMedia-
tor data integration system can improve protein
functional annotation [14]. Thus, we are working to
create Jess inference rules and uncertainty measures to
build expert knowledge into the SNPit tool and
incorporate uncertainty measures into the system. Our
goal is to create a system that is easy to use and
thoroughly comprehensive for the purpose of functional
SNP annotation.

Conclusion

The future of both public health and translational
informatics lies in the concept of preventive, predictive,
and personalized medicine. The discoveries from genetic
variation studies can contribute to preventive, predictive,
and personalized medical discoveries through a variety of
methods including the discovery of new drug targets
andearlier identification of subsets of patients for surveil-
lance purposes.

Once a genome wide association study is completed,
researchers need to understand the biological mechan-
ism between the observed phenotype and the genetic
variation, identifying the annotation of the SNPs being
studied is an important component. Genetic researchers
faced with a long list of SNPs associated statistically with
a phenotype need to be able to narrow this list focusing
on those SNPs most likely to be causally related to the
phenotype. Our system, SNPit, provides such an
annotation tool. We define the users of our proposed
tool, SNPit, to be genetic epidemiologists, public health
geneticists, biological scientists, molecular biologists,
and any other scientists that work with genome wide
association studies and SNPs.

Availability and requirements
Project name: SNPit

SNPit homepage: http://www.snpit.org

Recommended internet browsers: Firefox or Internet
Explorer

Programming language: Java
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