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Abstract

Background: Scoring functions, such as molecular mechanic forcefields and statistical potentials are fundamentally
important tools in protein structure modeling and quality assessment.

Results: The performances of a number of publicly available scoring functions are compared with a statistical rigor,
with an emphasis on knowledge-based potentials. We explored the effect on accuracy of alternative choices for
representing interaction center types and other features of scoring functions, such as using information on solvent
accessibility, on torsion angles, accounting for secondary structure preferences and side chain orientation. Partially
based on the observations made, we present a novel residue based statistical potential, which employs a shuffled
reference state definition and takes into account the mutual orientation of residue side chains. Atom- and residue-
level statistical potentials and Linux executables to calculate the energy of a given protein proposed in this work
can be downloaded from http://www fiserlab.org/potentials.

Conclusions: Among the most influential terms we observed a critical role of a proper reference state definition
and the benefits of including information about the microenvironment of interaction centers. Molecular
mechanical potentials were also tested and found to be over-sensitive to small local imperfections in a structure,

requiring unfeasible long energy relaxation before energy scores started to correlate with model quality.

Background

Statistical potentials are widely used tools for protein
structure analysis, modeling and quality assessment.
Many different aspects and properties of these potentials
have been explored during the last few decades includ-
ing the different theoretical foundations to derive them,
the representation of interaction centers and types of
interactions, and the various models for defining the
reference state. Combinations of various types and fla-
vors of potentials are often used together in order to
boost their performance. Initially, statistical potentials
were based on statistical mechanics [1-3], however
knowledge-based potentials now employ many other
ideas, including the use of conditional probabilities to
observe particular atom or residue distributions in speci-
fic conditions [4], linear programming techniques [5,6],
linear and quadratic programming on various decoy sets
[7], or information theory [8].
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Despite the seemingly similar formalism to derive sta-
tistical potentials in general, the alternative definitions
may result in very different performances. The majority
of statistical potentials are pairwise potentials. In addi-
tion, single body potentials, like the ones accounting for
solvent accessibility [9], were reported, as well as multi-
body potentials [10-12]. Although pairwise potentials are
frequently used in combination with other types of
potentials to improve their performance, multibody
potentials are much less used, apparently due to the
high computational cost to apply them. In the present
work we focus on pairwise potentials.

The majority of statistical potentials employ the Boltz-
mann law to convert the observed frequencies of inter-
actions into potentials. These potentials are obtained as
the ratio of observed and expected frequencies, where
the expected frequencies are derived from a hypothetical
reference state when no interactions occur. While the
observed interactions can be counted in experimentally
solved structures, hypothetical protein models without
interactions, which serve as reference states, are solely
imaginary. Therefore depending on their actual design
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they are potential sources of great variability in the per-
formance of statistical potentials.

Quasi-chemical approximation, a popular model for
defining the reference state [2,13-16], uses molar frac-
tions of the corresponding interacting centers to calcu-
late the expected frequency of their pairs in the system
without interactions and otherwise does not provide any
other assumptions regarding their spatial distribution.
This approach implies a homogeneous, infinite system,
which of course is not true for proteins. An interesting
attempt to account for the finite size of proteins was to
substitute the corresponding dissipation of the atom
density with a reduced effective dimensionality of the
space [17,18]. “Isotropic” reference state, which is based
on the occurrence of interacting pairs of any type at the
given condition (distance, angle, etc.), appears natural
and was also widely used [4,19,20]. However, it also
approximates the system as infinite and homogeneous.
A reference state that is free of these limitations was
recently developed on a basis of shuffled systems [21]
and a similar approach was suggested in the DOPE [22]
potential. The reference state in the DOPE potential was
defined as a homogeneous ensemble of non-interacting
atoms in a sphere with the radius equal to the radius of
gyration of a sample native structure, whereas our
Shuffled Reference State model preserved spatial posi-
tions of the interacting centers in proteins, while their
identities were shuffled. Further improvements to DOPE
potential have been reported later [23]. Some other defi-
nitions of reference state, such as the use of decoys [5],
were also suggested.

Different representations of interaction centers were
explored in statistical potentials. Two major classes of
explored representations are residue level or atomic.
The residue level representations use C,, Cg atoms or
side chain centroids and are usually based on the 20
naturally occurring amino acids [2,15,24,25], although
both reduced [7,26,27] and extended [28,29] amino acid
alphabets were explored, where the extended alphabet
further classifies each residue according to the possible
secondary structure types. Another representation of
interaction centers utilizes profile-based representation
of amino acids residues [30]. For each protein a PSI-
BLAST [31] generated alignment is used to create a
position specific scoring matrix, which is converted into
a set of evolutionary allowed amino acid residues for
each position in the protein. Then these sets are used to
derive potentials in a similar way to methods published
by Melo [20] and Sippl [19]. Side-chain-to-backbone
and side-chain to side-chain residue level potentials
were also described [32]. All-heavy-atom representations
based on reduced [20] and detailed all-atom protein
representations were suggested [4]. More elaborate
modifications of atomic alphabets consist of reduced set
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of atom types grouped by their chemical types and sub-
stitution states [33]. Micro-environments of atoms were
distinguished by their chemical nature and by the
counts of surrounding atoms. A potential function
based on two interaction centers per residue [34] was
also reported (all above examples employ one interac-
tion center per residue). These two centers were C,
atoms and the side chain center of masses (C, atom in
the case of Glycine).

Various models of interactions were explored during
the developments of statistical potentials. The most
widely used ones are the distant-dependent potentials,
which either treat all contacts uniformly within a cutoff
distance [2,15,24,25], or account for their radial distribu-
tion [9,19-21,35-37]. Similar to the distance-dependent
potentials are the contact area [38] and packing density
potentials proposed by Li and Liang, (unpublished but
available for download from http://gila.bioengr.uic.edu/
resources/geometric.html). Another frequently used
interaction model is based on angular dependence. Dis-
tributions of backbone ¢, y torsion angles [3,32] as well
as virtual x, o angles [34,36] were explored. Promising
combination of these degrees of freedom depends on
both distance and orientation, which became more
widely used recently [39-42].

Comparative analysis of contact potentials demon-
strated that majority of them can be approximated by
simple sum of amino acid hydrophobicities, while the
rest depends on the hydrophobicities as well as on elec-
trostatic properties [43].

In addition to the variety of ways to derive potentials,
some additional techniques to improve their accuracy
have been proposed. A trivial source of errors in statisti-
cal potentials is sparse statistics. Two major work-
arounds were developed: the use of pseudo-counts [4]
and a weighting scheme suggested by Sippl [19].
Pseudo-counts simply add a unity to every count to
avoid a division by zero when calculating fractions and
do not try to normalize potential values in the case of
empty counts, which could result in arbitrarily high
positive values in certain cases. The weighting scheme
assigns the average of all interaction types to the poten-
tial in the case of an empty count.

Composite potentials combine various terms, which
may include solvation, residue-level pairwise, atomic
level pairwise, hydrogen bonding, steric, torsion or sec-
ondary structure packing. One such example is the
Rosetta scoring function [44,45]. Another, more recent
example for a composite scoring function is QMEAN
[28,46], which consists of six different terms: a torsion
angle potential, secondary structure-specific, distance-
dependent residue and all-atom pairwise potentials, a
solvation potential as well as terms accounting for
agreement of predicted and calculated secondary
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structure and solvent accessibility. A combination of
mean force potentials, which account for distributions
of pseudo-bonds, pseudo-angles, pseudo-dihedrals and
distances between centers of interactions was studied
[34]. Another composite potential, utilizing both resi-
due-level (C,-based) [41] and its all-atom version [47]
combines energy terms for distance-dependent pairwise
interactions with orientation preference, hydrogen bond-
ing, short-range interactions, packing, tri-peptide pack-
ing, three-body interactions, and solvation terms. Zhang
and colleagues proposed a composite residue-level
potential that consists of contact and local energy terms
and employs a reduced alphabet of amino acids and a
mapping of protein structures into a discrete state
model [48]. The potential was generated by optimizing
its components in order to guarantee a minimum energy
gap between the native and decoy structures in a train-
ing set.

In the present work we perform a systematic compari-
son of many of the above listed scoring functions using
a large and diverse decoy set that is based on models
collected during various CASP experiments [49]. We
analyze the differences in their performances of ranking
protein models as a function of various flavors of scor-
ing functions. Partially based on these results, we devel-
oped a novel residue level statistical potential that takes
advantage of our earlier developed shuffled reference
state definition [21] but utilizes orientation-dependent
accounting for residue interactions. We demonstrate
that this novel potential is highly competitive with other
scoring functions.

Results and Discussion

Benchmarking potential functions

Evaluating the performance of various statistical poten-
tials using protein-like decoys is not a trivial problem.
Decoys must present a balanced range of difficulty or be
specific for a particular task or property [50]. Some
scoring functions identify the native structure easily
among a set of decoys but perform very poorly when it
comes to identifying the most accurate model from the
rest of the decoys in the absence of the native structure.
This can happen because of overtraining on native
structures or because of significant structural differences
between the decoys and the native structure. As a con-
sequence, benchmarks that include the native structure
in the decoy set may not be informative or challenging
enough for most scoring functions. On the other hand,
a decoy set without a native structure has its own lim-
itations because it is not guaranteed that a decoy with
the highest geometrical similarity to the native structure
(e.g. lowest root mean square deviation) is also the one
with the lowest energy. The model that is most similar
to the native structure might have a higher energy due
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to some locally unfavorable features. Nevertheless, this
approach seems more practical because scoring func-
tions are typically used in scenarios when the native
structure is not known and only a variety of possible
alternative models are available.

Another problem arises when only one method or a
limited number of methods is used to generate decoys,
which is often the case for other available decoy sets
[51-53]. In these cases a scoring function might be speci-
fic to implicit features of the decoy generation procedure
but perform significantly worse if used to score decoys of
different origin. These potential problems can be avoided
with the use of a large number of targets in a decoy set
and by a careful selection of decoy properties, such as
using standardized similarity to the native structure and
using a diversity of methods to generate decoy models.

In the present work, we tested scoring functions on
decoys with and without the native structure, emphasiz-
ing on the latter set. “Global distance test - total score”
(GDT_TS, which is (GDT_P1 + GDT_P2 + GDT_P4 +
GDT_P8)/4, where GDT_Pn denotes percent of residues
under distance cutoff < nA) values [54,55] were used to
assess structural similarity of decoy models to the corre-
sponding experimental solution structure of the target.
Scores were binned in 2.5 GDT_TS units (i.e. models
that are less than 2.5 GDT_TS units different from each
other were considered indistinguishable), and bin num-
bers were used as rank values starting from the highest
GDT_TS value. This scheme makes sets of decoys of
different quality comparable to one another. Although
the choice of 2.5 GDT_TS units for binning is subjec-
tive, any other value would be subjective to the same
extent. Meanwhile this value provides enough granular-
ity for a statistical survey, while groups together essen-
tially indistinguishable models. However, when native
structure is included in a decoy set, this approach may
over-penalize mispredictions. The GDT_TS score of a
native structure is 100 by definition and, according to
the selection process, the closest model can be as low as
65 (see Methods for details). Therefore, if the native
structure is included in the test set, it may be separated
from the most accurate decoy model by a significant
accuracy gap, up to 14 bins. Consequently, misrecogni-
tion of the native model, when it is included in the set,
is heavily penalized. To overcome this effect, we always
assign the rank of 2 to the first non-native structure, if
the native one is present, regardless of the number of
empty bins separating them.

Impact of different protein representations on
performance

According the representation of interaction centers used
scoring functions evaluated in this study can be classified
in three major groups: (i) atom-based, i.e. all-heavy-atom
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or reduced set of atom types, namely “QMEAN-all_atom”
[46], “OPUS_PSP” [47], “DOPE” [22], “dFIRE” [17],
“Shortle2006” [35], VSCORE-pair [38], ANOLEA-like
("Melo-ANOLEA”, “Melo-NL”) [56], our “RF_HA”,
“RF_HA_SRS” [21], and “Liang-geometric” potentials, (ii)
residue-based: “QMEAN-pairwise”, “QMEAN-SSE_agree”,
“QMEAN-ACC_agree”, “QMEAN-torsion”, “QMEAN-
solvation” [28], “Floudas-Ca” [5], “Floudas-CM” [6],
“Dong-pair” [30] potentials, as well as potentials proposed
in this work, “RF_CB_SRS_OD”, “RF_CB_OD?”,
“RF_CB_SRS”, “RF_CB”, and (iii) composite potentials:
“PROSA-pair”, “PROSA-combined” [57], “Rosetta” [44],
“Shortle2005” [32], “QMEANS6” [28,46], “OPUS_CA” [41],
“VSCORE-combined” [38], and “PC2CA” [34]. Composite
potential functions most often are defined as a linear
combination of residue-based long-range potentials with
different kinds of local potentials, which are in most
cases residue-based as well. In addition to the knowledge
based scoring functions, a molecular mechanics potential,
CHARMM [58], as implemented in the NAMD [59]
package, was also evaluated. In terms of protein represen-
tation CHARMM can be categorized as a composite all-
atom potential. Models were evaluated after subjecting
them to one or 1000 relaxation steps, indicated as
“NAMD 1” and “NAMD 10007, respectively.

The results of the benchmarking survey of the scoring
functions are shown in Table 1. Data are sorted by the
average rank of the lowest energy decoy structure in the
absence of the native structure. It is noticeable that the
performance of different potentials varies significantly
depending on the presence or absence of the native
structure. In the presence of a native structure all-atom
potentials are usually more sensitive (i.e., the
RF_HA_SRS and the Shortle2006 potentials are the top
two). Meanwhile, no interaction type preference is
observed if the native structure is absent from the test
set: residue or atom based or composite potentials all
perform competitively. In addition, potentials with good
performances in the presence of the native structure
often exhibit rather mediocre performance if the native
structure is removed from the decoy set. For instance
RF_HA_SRS, our all-atom potential with shuffled refer-
ence state definition [21], is the best performing poten-
tial recognizing the native structure correctly in 137 out
of 143 decoy sets but ranks only as the 6™ best when
tested on a set without the native structure (Table 1).
Similarly the Shortle2006 potential, which is the second
best recognizing the native structure among decoys
ranks only 23" among potentials when the native struc-
ture is removed. This may indicate that atomistic poten-
tials are often over-trained to recognize native
structures or, alternatively, it may indicate that side-
chain placement by current modeling methods is not
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Table 1 Performance of various statistical potentials on
models of CASP5-8 experiments.

Scoring models only native included
function
Average® Ranked Average® Raw Ranked

1° average® 1¢
QMEAN6 2.87 85 1.71 3.26 113
QMEAN- 3.59 74 1.71 29 119
all_atom
QMEAN- 3.74 62 3.72 9.62 39
SSE_agree
QMEAN- 4.04 40 3.78 883 48
ACC_agree
RF_CB_SRS_OD 4.16 61 2.08 36 110
RF_CB_OD 4.62 62 2.00 365 111
RF_HA_SRS 4.65 49 1.38 1.66 137
RF_CB_SRS 4.72 56 2.18 346 114
OPUS_CA 472 79 513 993 55
VSCORE- 4.79 53 2.20 3.79 17
combined
QMEAN-pairwise 4.80 54 315 5.86 85
Rosetta 501 57 4.09 8.03 68
Dong-pair 501 58 6.32 14.41 4
RF_CB 5.06 52 246 431 106
VSCORE-pair 5.08 54 1.85 2.81 128
PROSA- 511 57 338 627 87
combined
OPUS_PSP 5.39 54 299 411 118
RF_HA 544 62 2.78 437 112
DOPE 5.77 54 3.27 597 95
dFIRE 6.03 50 569 11.8 33
PROSA-pair 6.03 56 354 6.02 95
QMEAN-torsion 6.71 45 324 4.66 114
Shortle2006 6.85 35 1.79 254 129
Liang_geometric 6.88 44 248 394 114
QMEAN- 7.32 33 6.27 10.87 54
solvation
Shortle2005 773 42 339 5.19 109
Floudas-CM 7.75 38 7.05 12.77 42
Floudas-Ca 7.79 33 836 16.01 10
NAMD 1000 8.06 24 496 8.56 78
Melo-ANOLEA 9.62 19 5.19 837 86
PC2CA 9.75 19 506 835 85
Melo-NL 9.99 14 585 945 80
NAMD 1 11.91 5 10.98 18.04 24
Random? 9.72 139 10.1 10.1 83

? The average rank (over 143 decoy sets) in the absence of native structures.
® The number of sets when the best model was ranked as first, in the
absence of native structures.

€ The average rank when native structures are present.

9 The average rank when native structures are present, calculated without
compensation for the gap in ranking between experimental structure and first
model (see text).

€ The number of sets when the best model was ranked as first when native
structures are present.

TExpected random values were generated by picking a wining model from
the decoy sets randomly. Average values over 1000 random trials are shown.
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accurate enough. Indirect support for the former
hypothesis is the observation that reduction in number
of atom types by joining chemically equivalent but dis-
tinct by PDB nomenclature types like Phe-CD1 and
Phe-CD2 atoms into one Phe-CD type results in the
loss of potential performance (data not shown).
Influence of different properties of scoring functions
in test cases where the native structures are absent from
the set of decoys is not as straightforward as it is in the
case when the native structures are present. There is
not a specific group of potentials that outperform
others. The composite potential QMEANS6, with its indi-
vidually evaluated all-atom term and components
accounting for secondary structure and solvent accessi-
bility agreement, is among the best performing poten-
tials. The residue level RF_CB_SRS_OD potential
proposed in the present work compares competitively in
this test. However, QMEAN “agreement-based” terms
perform rather modestly in the presence of the native
structure, and all other functions discussed here
(QMEAN6, QMEAN-all_atom and RF_CB_SRS_OD)
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underperform some other all-atom potentials
(RF_HA_SRS and Shortle2006), as mentioned above.

Assessing statistical significance of performance
differences

An important question in benchmarking various poten-
tials is the assessment of the statistical significance of dif-
ferences of their performances. We performed pairwise
one-tailed Wilcoxon tests on results obtained in the
absence of the native structure (Fig. 1). Potentials are
sorted in the same order as in Table 1. Only p-values
higher than 0.05 are shown, pointing out pairs of scoring
functions that are not significantly different from one
another. We employed the Wilcoxon test because the
distributions of the calculated ranks of decoys that scored
as best are highly different from normal. In this test the
null hypothesis is that the ranks calculated by two meth-
ods under comparison share the same distribution and
the one-sided alternative is that the ranks obtained with
the method listed in the row of the Fig. 1 are lower than
ones obtained with the method listed in the column.
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The importance of reference state definition
A large group of various potentials, specifically QMEAN
residue-based pairwise and accessibility agreement terms
(QMEAN-SSE_agree, QMEAN-ACC_agree, QMEAN-
pairwise), our atomic level potentials with shuffled
(RF_HA_SRS) and classic (RF_HA) reference states, our
residue-level potentials with and without orientation
dependence and shuffled reference state (RF_SRS_CB_OD,
RF_CB_SRS, RF_CB_OD, RF_CB), Rosetta++ scoring
function (Rosetta), both pairwise (VSCORE-pair) and
composite (VSCORE-combined) versions of VSCORE
potential, PROSA2003 composite scoring function
(PROSA-combined), as well as profile based distance-
dependent potential from Dong group (Dong-pair) and
OPUS_PSP potentials do not demonstrate statistically sig-
nificant difference to one another (Fig. 1). However, one
can speculate that p-values obtained for the residue-level
regular (RF_CB_SRS) and orientation dependent
(RF_CB_SRS_OD) potentials, both of which utilize a
recently introduced shuffled reference state definition [21],
are superior to (RF_CB), which is a potential based on a
classic reference state definition (p-values of differences
are 0.06 and 0.007, respectively). Orientation dependence
is another important factor, which contributes significantly
to the potential performance, resulting in statistically sig-
nificant superiority the (RF_CB_SRS_OD) potential over
classic reference state potential (RF_CB). It is also interest-
ing to mention that the distribution of ranks obtained
with OPUS_CA scoring function is located significantly
lower on the rank scale than most other potentials in this
group, whereas the average rank value calculated with this
potential is in the middle of this group. This fact can be
explained by the observation that OPUS_CA is able to
score decoys with the highest GDT_TS values as the best
ones in many more cases than other potentials in this
group (Table 1). However, the relatively low average rank
for this potential is because it exhibits a drastically high
error in cases in which it fails to find the best structure.
The performance of the molecular mechanics based
CHARMM potential depends on the number of steps of
structure relaxation. The performance of the CHARMM
is close to random after one and even after 1000 steps of
relaxation. A further 10-fold increase in the energy mini-
mization steps brings CHARMM performance to the
middle of the group of similarly performing potentials,
discussed above (average rank in the absence of native
structure is 5.27, data not shown in the Table 1 and Fig.
1). However, the exceedingly high computational cost
makes the use of such long minimizations impractical.

Effect of accounting for microenvironments on the
performance

It is interesting to survey the common features among
the best performing potentials. As we noted above, the
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choice of the type of interaction center (either atomistic
or residue level potential or a composite scoring func-
tion) does not correlate with the performance. Indeed,
one can see, from the color coding of interaction center
types in raw titles (Fig. 1), that potentials of every kind
can be found over the entire range of performances.
The very small number of residue level potentials that
are based on interaction centers other than Cg atoms
(Floudas-Ca, Floudas-CM, PC2CA) does not allow us to
draw a conclusion about their performance. Meanwhile,
some conclusions can be drawn from the effect of cer-
tain other features of scoring functions, such as the use
of solvent accessibility, torsion angle, accounting for sec-
ondary structure and consideration of orientation
dependence. The aforementioned features are color-
coded in the column titles of Fig. 1. The secondary
structure dependent functions (red) perform better than
average, whereas torsion angle dependent functions
(blue) perform worse than average. Potentials using
information on solvent accessibility (green) and orienta-
tion dependence (shown in italic) do not show a clear
advantage.

It is interesting to see if the performance of various
scoring functions varies with the quality of the best
available model for a given target. This dependence is
plotted in Fig. 2, panels (A) (B) and (C) display the
accuracy dependence of composite, all-atom and resi-
due-based potentials, respectively. One can observe a
general trend in the case of composite (Fig. 2A) and
especially of all-atom potentials (Fig. 2B), according to
which the performance improves with the improvement
of the quality of the best available model. Noticeable
exceptions are composite VSCORE and PROSA poten-
tials, which perform visibly worse for the highest accu-
racy groups, when the best model has GDT_TS 95.0 or
higher. These two potentials include solvent accessibility
term in addition to their distance dependent terms. Sol-
vent accessibility term may have limited benefit at this
high accuracy level, when solvent accessibility of alterna-
tive models is essentially identical. Another example of
such “reversed” dependence is OPUS_PSP, which is the
best in the group of targets in the bin of 80.0, but its
performance decreases as higher quality models become
available. The group of residue-based potentials (Fig.
2C) does not show the above trends. Instead, this group
collectively shows inferior performance for targets in
72.5 bin as compared to the 65.0 bin, as well as for tar-
gets in 87.5 bin as compared to 80.0 bin. An interesting
exception is the performance of QMEAN-SSE_agree
(using secondary structure dependent term) and
QMEAN-ACC_agree (using solvent accessibility depen-
dent term) potentials. Both are among the best ones for
sets of targets with lower quality (65 and especially 72.5
bins), QMEAN-SSE_agree keeps its leading position up



Rykunov and Fiser BMC Bioinformatics 2010, 11:128 Page 7 of 11
http://www.biomedcentral.com/1471-2105/11/128

= QMEANG
—=—0PUS_CA

Rosetta
———VSCORE-combined
—=—PROSA-combined

Shortle2005
—=PROSA-pair

PC2CA
==—namd1000

namd01

Average rank

65 725 80 875 95
GDT_TS

= QMEAN-all_atom
——RF_HA_SRS
VSCORE-pair
RF_HA
~=—DOPE
- QPUS_PSP
—=—dFIRE
—=—Liang-geometric
Shortle2006
~==—Melo-ANOLEA
Melo-NL

Average rank

65 725 80 875 95
GDT_TS

———RF_CB_SRS_OD
——QMEAN-SSE_agree
—==—QMEAN-ACC_agree
QMEAN-pairwise
———RF_CB_SRS
——RF_CB_OD
———RF_CB
—=— Dong-pair
Floudas-CM
QMEAN-torsion
==—QMEAN-soivation
Floudas-Ca

Average rank

65 725 80 875 95
GDT_TS

Figure 2 Performance of different potentials as a function of the quality of the best available model. Average rank calculated by (A)
composite functions, (B) heavy-atom based functions, and (C) residue-based potential functions for targets having best model with GDT_TS

better than 95.0 (11 targets), between 87.5 and 95.0 (25 targets), between 80.0 and 87.5 (32 targets), between 72.5 and 80.0 (47 targets) and
between 65.0 and 72.5 (28 targets).




Rykunov and Fiser BMC Bioinformatics 2010, 11:128
http://www.biomedcentral.com/1471-2105/11/128

to 87.5 GDT_TS target group but looses its sensitivity as
nearly perfect models of GDT_TS 95.0 or higher
become available. This observation together with the
outstanding performance of the QMEAN-all atom
potential, which is also a secondary structure dependent
one, confirms the previous observations about the gen-
eral benefit of incorporating secondary structure infor-
mation in the potential function. However, the
QMEAN-ACC_agree potential with solvent accessibility
term loses its sensitivity much earlier. This behavior of
the QMEAN-ACC_agree potential is in agreement with
earlier discussed behavior of composite VSCORE and
PROSA potentials, which also dependent on solvent
accessibility.

We also reviewed the performance of the scoring
functions as a function of various structural classes.
Because only 56 out of 143 targets are currently classi-
fied in the SCOP database [60,61], the significance
of such analysis is limited. We could not find a signifi-
cant correlation between particular scoring function
features and the fold classes (Additional file 1, Fig.
Al). In general, all scoring functions show a better
performance in case of o/ proteins, an average per-
formance can be observed for all-a proteins and o+
proteins, while the worst performance is detected for
all-B proteins.

Conclusions

In summary, the correct definition of the reference state
used in statistical potentials is critical. In addition, there
seems to be a benefit of including information on var-
ious protein microenvironments. An effective reference
state definition should be free of systematic errors, as it
is in our SRS model, and actual interactions should be a
function of amino acid frequency variations caused by
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local microenvironments such as different secondary
structure preferences, and other deviations of local char-
acteristics from the average.

Methods

Set of proteins and parameters used to derive residue-
level potentials

A novel distance dependent residue-level potential
(RF_CB_SRS_OD), utilizing shuffled reference state [21]
and featuring orientation dependence, was derived from
a representative set of 375 globular proteins selected
from the Protein Data Bank[62]. General procedure and
details for the protein set selection are described pre-
viously for all-heavy-atom potential [21]. Briefly, the set
was composed of X-ray solved structures of proteins of
at least 50 residues long, which crystallographic resolu-
tion and R-value were better than 2.1 A and 0.2, respec-
tively; all PDB structures with incomplete, missing,
modified, or nonstandard residues were excluded except
structures that had missing residues in the terminal
positions only; structures co-crystallized with ions were
also discarded; additionally, the pairwise sequence iden-
tity between any two proteins in the set was required to
be less than 40%.

Three additional potentials were generated in order to
evaluate its improvement over the “isotropic” reference
state and over unidirectional accounting for interacting
pairs. Two of these additional potentials employed aver-
aging over all residue types [19], where one was built as
orientation-dependent (RF_CB and RF_CB_OD, respec-
tively). A third potential (RF_SRS) was based on shuffled
reference state, but lacked the orientation dependence.
For all of the potentials the first bin for spatial separa-
tion spanned the distance between 0-4 A and every next
bin spanned a 1 A increment thereafter. Cp atoms were

C

Figure 3 Definition of residue orientation used to derive potentials. (A) interaction i — j is considered “parallel” if the scalar product of C,-
Cg vectors for residues 7 (vector a) and j (vector b) is positive; (B) interaction i — j is considered “antiparallel / facing j if scalar product of a and
b is non-positive and scalar product of vector a and vector from C, atom of residue i to C, atom of residue j (vector ¢) is positive; (C)
interaction i — j is considered as “antiparallel / pointing away from j if both a-b and a-c scalar products are non-positive.

Cp Cp
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used for system representation. A virtual Cp atom was
built for Glycine residue. No minimal sequence separa-
tion between interacting residues was required. For
sparse data treatment the scheme introduced by Sippl
[19] was used.

In order to generate a shuffled reference state, rando-
mized model sets were obtained by shuffling residue
identities within each protein. Shuffling procedure was
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repeated 1000 times using different seed values for the
random number generator. Potentials were derived as
described previously [21]

For orientation-dependent potentials residue pairs
were classified into three groups (Fig. 3): pairs with
“parallel” C,-Cg vectors, pairs with “antiparallel” C,-Cg
vectors facing each other, and ones with “antiparallel”
Cq-Cp vectors pointing away from each other. This

Figure 4 Superimposition of models of different quality with the experimental solution structure. Experimental structure of the CASP8
target T0502 (violet) and its models, (A) METATASSER_TS5, GDT_TS = 80.357, (B) 3Dpro_T54, GDT_TS = 60.204, and (C) panther_server_TS2,
GDT_TS = 44.643 are shown as C, traces. Those parts of the models, where the experimental positions are not known are colored white. Parts
of models deviating from experimentally determined positions less than 4 A are colored green, and the rest is colored bronze. C,-C,,
pseudobonds longer than 3.9 A are shown thin. This plot has been generated using MOLSCRIPT software [63].
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definition of the orientation dependence is substantially
simplified in comparison to ones suggested earlier
[39,42]. However, this simplification results in more
representative statistics of contacts.

Potentials developed in the present study are labeled
as “RF_CB”, with “_SRS” suffix for shuffled reference
state and “_OD” suffix for the orientation dependence.

Set of decoys

Predicted models for 143 targets collected from the
CASP5-CASP8 experiments [49] were used as decoys,
including a total of 2628 models produced by a large
variety of groups and methods. These models were
selected using the following procedure: (i) only all-atom
models were used; (ii) the set for a given target was
required to include at least one model with GDT_TS
score upon superposition to the experimental solution
structure 65.0 or better; (iii) all models for each target
were clustered by their lengths, and models from the
most populated cluster were used; (iv) models were
binned by their GDT_TS scores with increments of 2.5
and one random representative was kept from each bin.
Only targets for which the experimental solution is pub-
licly available were kept. As a result, a ranked list of
representative models was selected for each of the 143
targets. Fig. 4 gives an example of superimposition of
models of different quality to the experimental structure.
Lists of selected targets and their models along with
corresponding GDT_TS values can be downloaded
from our website http://www.fiserlab.org/potentials/
casp_decoys

Additional file 1: Figure A1. Performance of different potentials as a
function of SCOP class definitions. Average ranks were obtained for
target structures of specific SCOP classes using various scoring functions.
Connecting lines facilitate visual tracking of results for a given scoring
function.
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