
Schmid et al. BMC Bioinformatics 2010, 11:274
http://www.biomedcentral.com/1471-2105/11/274

Open AccessS O F T W A R E
SoftwareA high-level 3D visualization API for Java and
ImageJ
Benjamin Schmid*1, Johannes Schindelin2, Albert Cardona3, Mark Longair4 and Martin Heisenberg1

Abstract
Background: Current imaging methods such as Magnetic Resonance Imaging (MRI), Confocal microscopy, Electron
Microscopy (EM) or Selective Plane Illumination Microscopy (SPIM) yield three-dimensional (3D) data sets in need of
appropriate computational methods for their analysis. The reconstruction, segmentation and registration are best
approached from the 3D representation of the data set.

Results: Here we present a platform-independent framework based on Java and Java 3D for accelerated rendering of
biological images. Our framework is seamlessly integrated into ImageJ, a free image processing package with a vast
collection of community-developed biological image analysis tools. Our framework enriches the ImageJ software
libraries with methods that greatly reduce the complexity of developing image analysis tools in an interactive 3D
visualization environment. In particular, we provide high-level access to volume rendering, volume editing, surface
extraction, and image annotation. The ability to rely on a library that removes the low-level details enables
concentrating software development efforts on the algorithm implementation parts.

Conclusions: Our framework enables biomedical image software development to be built with 3D visualization
capabilities with very little effort. We offer the source code and convenient binary packages along with extensive
documentation at http://3dviewer.neurofly.de.

Background
Life sciences are experiencing an increasing demand for
scientific image processing. Images are the primary data
of developmental and cell biology. The number of images
is exploding with the availability of high-throughput and
high-resolution technologies. The acquisition of large
three-dimensional (3D) data sets, often as time series
(4D), has become the new standard.

The first step in the analysis of biological image data is
its visual inspection. In addition to the general require-
ment for visualization, the unique characteristics of each
data set may demand specialized analysis. The develop-
ment of novel analytical tools is greatly facilitated by the
existence of well-documented software libraries. These
libraries must provide (1) means to load and save any of
the large diversity of image file formats; (2) implementa-
tions for computer vision algorithms; and (3) graphical
user interfaces for data access by a human operator.

We have identified a lack of accessible 3D/4D visualiza-
tion software libraries for biological image processing.
Numerous image processing packages exist, either com-
mercial (Amira, Visage Imaging; MeVisLab, Mevis;
Imaris, BitPlane; Volocity, PerkinElmer) or open source
(VOXX, [1]; VTK and VTK-based applications such as
Slicer3D, BioImageXD, and V3D [2]; UCSF Chimera [3];
VolumeJ [4] and Volume Viewer [5]). These packages
offer excellent solutions for the specific problems they
were designed to solve. While end-users benefit from
well-documented, special-purpose commercial applica-
tions, the development of custom analytical tools is better
handled by open source packages. The application pro-
gramming interfaces of existing packages range from the
non-existent for most closed commercial solutions, to the
very detailed and comprehensive open source VTK envi-
ronment.

We have created a software library for 3D/4D visualiza-
tion, with functions for surface extraction, volume ren-
dering and interactive volume editing. Our library
removes all the complexity of creating and interacting
with image volumes and meshes in a 3D environment.

* Correspondence: b.schmid@biozentrum.uni-wuerzburg.de
1 Department of Neurobiology and Genetics, Biocenter, University of
Würzburg, Am Hubland, Würzburg, Germany
Full list of author information is available at the end of the article
© 2010 Schmid et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20492697
http://3dviewer.neurofly.de

Schmid et al. BMC Bioinformatics 2010, 11:274
http://www.biomedcentral.com/1471-2105/11/274

Page 2 of 7
We have designed our library to enrich the core function-
ality of ImageJ (and its descendant Fiji [6]), an open
source image processing application. Via ImageJ, our
library has access to hundreds of biological image file for-
mats. Over the years, the scientific community has con-
tributed a very large number of ImageJ extensions,
known as plugins, which provide readily accessible imple-
mentations of numerous computer vision algorithms.
With our library, we empower the ImageJ scientific com-
munity to rapidly implement custom analytical tools for
3D/4D data sets, with a minimal investment of time and
resources in handling the complex details of a hardware-
accelerated 3D environment. This reduction in the diffi-
culty of visualizing 3D information commoditizes the
usage of a 3D scene. For example, our library enables soft-
ware developers to visually assess the correctness of indi-
vidual algorithmic steps, such as the 3D shape of a mesh
deformation. The simplicity of our library is in stark con-
trast to existing libraries such as VTK, which require
detailed knowledge of the underlying data structures.

An example application in need of effective 3D visual-
ization is the image volume reconstruction from electron
tomography data as provided by TomoJ [7], an ImageJ
plugin. Our library complements TomoJ, enabling conve-
nient 3D analysis of the results without the need of exter-
nal software such as Chimera [3]. Many other plugins for
image registration or object segmentation are similarly
using our library for integrated and interactive 3D visual-
ization.

Implementation
Our software library implements the concept of three-
dimensional scene ("3D scene") for the interactive visual-
ization of biomedical image data (Figure 1). The 3D scene
is a virtual 3D space in which any number of entities are
hosted. These entities are volume renderings, isosurfaces

and orthoslice sets. Volume renderings are representa-
tions of voxel data viewed from arbitrary angles, with
transparency determined by the intensity values. Isosur-
faces are meshes of triangles described by a list of verti-
ces. Orthoslices are orthogonal planes that cut through
an image volume. Each of these entities, or objects, has a
number of properties, such as transparency, color, and a
unique name. The 3D scene that hosts all objects has the
following properties: a zooming level, an origin of viewer
coordinates, and a scene background.

For efficient rendering in computer graphics, we chose
Java 3D: a low-level hardware-accelerated software
library. Java 3D has the further advantage of being imple-
mented for Java, thus enabling Java applications like
ImageJ to interoperate with the graphics card of a com-
puter, via either OpenGL or DirectX low-level native
layer. Java 3D provides a fine-grained representation of a
virtual scene as a directed acyclic graph [8]. Operations
on any node of the graph affect its entire subtree. In prac-
tice, this means that, for example, zooming in and out of a
scene is expressed as a scaling transformation in a low-
order node. High-order nodes encapsulate images and
meshes.

A key feature of our library is to substantially simplify
the usage of Java 3D. We define our 3D scene in terms of
Java 3D nodes (Figure 2). We provide straightforward
means to instantiate a new interactive 3D scene and to
add objects to it. In the following, we describe the struc-
ture of the scene graph as implemented in our library.

Introduction to Java 3D library nomenclature
Java 3D provides a collection of object templates, referred
to as classes, each of which represents a node of the scene
graph. The most relevant classes are:

• BranchGroup: A node capable of being the root of
several subtrees.

Figure 1 Three display modes supported by the framework. An example image volume containing an adult Drosophila brain, shown (a) as a vol-
ume rendering, (b) as orthoslices and (c) as an isosurface of its external contour.

Schmid et al. BMC Bioinformatics 2010, 11:274
http://www.biomedcentral.com/1471-2105/11/274

Page 3 of 7
• TransformGroup: A node that transforms the
spatial representation of its enclosed subtree.
• Switch: A node to toggle on and off the visibility of
its subtree nodes.
• Shape3D: A node representing a displayable object.
The visualization of a Shape3D is specified by its
Appearance and Geometry.
• Geometry: Defines the geometry of the corre-
sponding Shape3D, i.e. its vertex coordinates.
• Appearance: Defines several attributes of a
Shape3D regarding its visualization, such as color,
transparency and texture.

Core classes of the library
Our library is composed of about ten different modules.
We review here the core module, named ij3d, which
interacts with all other service modules. An overview of

the module structures and their member classes is shown
in Figure 3.

The core ij3d module contains two principal classes,
namely Content and Image3DUniverse. The Con-
tent class is a high-level representation of a single ele-
ment in the 3D scene, such as a volume rendering or an
isosurface. The Image3DUniverse (1) represents the
3D scene itself; (2) provides simplified access for adding,
editing, selecting and removing Content instances to
and from the scene, and (3) controls the view trans-
form that represents zooming and panning. Via its
superclass DefaultAnimatableUniverse, the
Image3DUniverse also provides methods for 3D ani-
mation and recording movies.

In addition to data elements, the 3D scene can also con-
tain analytical elements such as annotations in the form
of named landmark points. These are added either inter-
actively, or programmatically by accessing a Content
instance.

As mentioned above, all elements of the 3D scene are
related in a graph structure. Our constructed Java 3D
graph links image objects (as Content instances) by
wrapping them in ContentNode objects. The latter
extend the functionality of basic Java 3D BranchGroup
class, to serve as high-level scene elements. The Con-

Figure 3 Class diagram of the framework. A schematic diagram of
the principal classes in our framework, illustrating their relationships.
Note that only two classes (Image3DUniverse and Content) are
essential for instantiating a new 3D scene with objects in it. The
Image3DUniverse class represents the 3D scene, ready for user in-
teraction. The Content class wraps data types like image volumes
and meshes, each with a set of properties such as color, transparency
and a local transformation. arrows indicate class inheritance. n indi-
cates that the class contains numerous references to instances of the
other class. 1 indicates that the class contains one reference to the oth-
er class.

Figure 2 Scene graph structure of the framework components.
The Java 3D library offers a set of classes that are organized in a direct-
ed acyclic graph. The relationships of the nodes in the graph deter-
mine how they are rendered in the 3D scene. Our framework, built on
top of Java 3D, consists of a chain of global TransformGroup (TG) nodes
that represent the view's zoom, rotation and panning (top), and which
affect the rendering of all subtree nodes. Subtree nodes contain the
image volumes. Other nodes include BranchGroup (BG) nodes, capa-
ble of holding several subtrees (each representing the internal state
and data of an image volume or mesh; lower right). Switch (S) nodes are
immediate parents of data nodes, and are used to toggle their visibility
state.

Schmid et al. BMC Bioinformatics 2010, 11:274
http://www.biomedcentral.com/1471-2105/11/274

Page 4 of 7
tentNode class is abstract; the four classes Voltex-
Group, MeshGroup, OrthoGroup and CustomNode
respectively represent volume renderings, surface render-
ings, orthoslices and custom geometries.

In summary, our library provides the means to instanti-
ate a 3D scene with a simple user interface for interac-
tions such as zooming, panning, editing objects and
recording movies. Programmatically, the task of adding
content to the scene has been reduced to a handful of
lines of code (see listing 1), which is in stark contrast with
the hundreds of lines of code required to achieve the
same result using Java 3D directly.

Results
Features
We outline the features of our 3D visualization frame-
work. We then describe its usage via both a graphical user
interface (GUI) (for end-users) and an application pro-
gramming interface (API) (for programmers).
The 3D scene
The 3D scene is a virtual 3D space in which image vol-
umes and meshes are displayed. Biological image vol-
umes in the form of stacks of 2D images are shown within
the 3D space in one of three ways: as a volume rendering,
a mesh, or an orthoslice set. Volume rendering [9] is a
technique for displaying image volumes directly. An arbi-
trarily-oriented image volume is projected to the screen
with a transfer function such that dark pixels are more
transparent than bright pixels. Meshes are constructed by
applying the marching cubes algorithm [10] to image vol-
umes to find a surface that encloses all pixels above a
desired threshold value. Finally, orthoslices represent
three perpendicular and adjustable planes that cut
through the volume. An example of each type is shown in
Figure 1. The 3D scene is capable of simultaneously host-
ing multiple image volumes, meshes and orthoslice sets.
Each represented image volume has several adjustable
attributes such as color, transparency and a local 3D
transformation.
The toolbar
ImageJ's toolbar offers a collection of region of interest
(ROI) tools. Closed ROIs, like rectangles, ellipses and
polylines are used for interacting with image volumes
(see "Volume editing" below). The point tool adds 3D
landmarks, which are represented as small spheres.
Volume editing
Programmatically, our library provides access to the val-
ues of all voxels in an image volume. Changes to voxel val-
ues are propagated to the screen. We use this feature for
simulating the dendritic growth over time in the thorax of
a fruit fly Drosophila (Figure 4). More material about this
aspect is available in form of source code (Additional file
1, section 2) and a movie (Additional file 2).

Additionally, volume editing is possible interactively:
The representation of an image stack in a 3D window
enables 2D regions of interest to be projected across arbi-
trary axes of the volume. This enables what we refer to as
"3D cropping", which consists of setting all voxels in the
image volume that fall within the projected 2D region of
interest to a particular color, typically black. We use 3D
cropping to remove arbitrary parts of an image volume to
inspect regions deep into the volume (Figure 5a).
Annotation in 3D space
The 3D scene can display landmark annotations for each
image volume. These are added using the point tool.
Existing landmarks are listed in a table that allows the
manipulation of their properties, such as name and color.
Each image volume hosted in the 3D scene may have an
associated set of 3D landmarks of this type. A set of land-
marks may be stored in a file for analysis, and reloaded in
subsequent annotation sessions.
Landmark-based 3D rigid registration of image volumes
Two sets of homonymous landmarks positioned over two
corresponding image volumes can be used for estimating
a rigid transformation model [11] (see also Additional file
1, Figure S1). Using this model, one image volume can be
aligned onto the other. The "Transform" menu offers
options for exporting the transformed image volume as
an image stack suitable for further processing with
ImageJ.

Figure 4 Animated simulation of dendritic growth. Four frames of
a time sequence, depicting a simulation of dendritic growth in the
Drosophila thorax. Gray background, a volume rendering of the thorax.
Dendrites are shown in red. Each time frame was generated by directly
editing voxels in an image volume, which automatically updates the
3D scene and renders the frame. A complete movie is provided by Ad-
ditional file 2.

Schmid et al. BMC Bioinformatics 2010, 11:274
http://www.biomedcentral.com/1471-2105/11/274

Page 5 of 7
Animation and recording
The 3D viewer offers an option to record a 360-degree
rotation of any 3D scene. Additionally, a recording mode
is available. When this is activated, every manual rota-
tion, translation and zooming of the display or any of its
elements is recorded; when stopped, the recording is dis-
played as an ImageJ stack. Recordings may be output as
videos via ImageJ.
Custom content
Beyond the three basic image volume display types (vol-
ume rendering, mesh and or-thoslice set), the 3D scene
accepts custom-crafted meshes. These meshes are typi-
cally generated programmatically, such as by automatic
segmentation of image stacks.
4D Visualization
Time-lapse recordings of 3D data sets can be loaded and
visualized in the 3D scene. Standard command buttons
for play, pause, fast-forward, etc. control the time point
displayed in the viewer. Interactive zooming, rotation and
panning are enabled as the time sequence progresses.

When paused, the visualization of the current time point
may be annotated, interacted with and measured as with
any other 3D scene.

Usage as a GUI application
Our 3D visualization library includes a fully-functional
plugin for ImageJ named "3D Viewer". The plugin is listed
automatically in ImageJ's plugin menus. When executed,
the plugin creates a new 3D scene, and automatically
offers a dialog for displaying any open image stack as an
image volume. The dialog provides the means to alter the
attributes of the image volume, such as its representation
type (volume rendering, isosurface (mesh) or
orthoslices), and its color and transparency settings. The
menu of the 3D scene window offers options for inserting
further image volumes and editing, annotating and trans-
forming them. Extensive documentation is available
online http://3dviewer.neurofly.de, along with video tuto-
rials and a 'Frequently Asked Questions' section.

Usage as a programming library
Our framework exposes a public API to allow applica-
tions to integrate its features. A basic example demon-
strates the use-case of visualizing in 3D an image volume
and a mesh (see below). The example illustrates the
development of an image segmentation algorithm, which
extracts the boundary of the structures of interest as sur-
faces and represents them as a mesh composed of trian-
gles. First, the image volume is rendered as orthoslices.
Then the surface is displayed.

The first step is to instantiate an object of the class
Image3DUniverse. Then we call its show() method,
which creates a window to interact with the 3D scene.
The scene graph is setup automatically.
Image3DUniverse univ = new

Image3DUniverse(640, 480);
univ.show();
Next, the image volume is loaded. We display it as

orthoslices in the 3D scene by calling the addOrthoslice()
method:
ImagePlus imp = IJ.openImage("fly-

brain.tif");
Content c = univ.addOrthoslice(imp);
Alternatively, instead of addOrthoslice(), add-

Voltex() or addMesh() could be used to display the
image as a volume or isosurface rendering, respectively.

If we assume that there exists an external method cre-
ateVertices() that creates a list of points describing
the vertices of the surface, and that three consecutive ver-
tices define a triangle, the following source code shows
how to create a custom triangle mesh and add it to the
scene:
List<Point3f> vertices = createVerti-

ces();

Figure 5 Example applications. (a) An MRI image of a human head,
demonstrating the volume editing capabilities: A 2D ROI was project-
ed onto the data, and the intersected volume was filled with black. Af-
terwards the head was rotated to show the effect. (b) Visualization of
the output of a segmentation algorithm. The segmented image is a
confocal stack of an adult Drosophila brain. Shown here is the right op-
tic lobe. The segmentation surface (in red) resembles the boundaries of
the medulla and lobula. (c) Snapshot of the Simple Neurite Tracer ap-
plication, featuring the central compartments of the adult Drosophila
brain. The intensity image is displayed as a volume rendering (gray).
The protocerebral bridge and the fan-shaped body are shown as sur-
face renderings (cyan &yellow). The traced neural tracts are displayed as
custom meshes (magenta &green). (d) Visualization of multiple view
registration computed from correspondences of fluorescent beads.
Multiple views were obtained by SPIM imaging of a Drosophila em-
bryo. Beads are rendered as point meshes.

http://3dviewer.neurofly.de

Schmid et al. BMC Bioinformatics 2010, 11:274
http://www.biomedcentral.com/1471-2105/11/274

Page 6 of 7
CustomMesh cm = new CustomTriangle
Mesh(vertices);
univ.addCustomMesh(cm, "triangle mesh");
The result looks similar to Figure 5b, which shows a

confocal image of a fly brain together with parts of the
surface of the medulla and the lobula (two compartments
of the optic lobe).

Another API example illustrates a simulation of den-
dritic growth (Figure 4 and Additional file 1, section 2).
The source code uses direct edits of the volumetric data
to represent the growth over time. Documentation in the
form of source code examples is available online at http://
3dviewer.neurofly.de, in the Developer HowTos category.
The documentation demonstrates in a tutorial style the
available functionality of our framework.

Discussion
Numerous ImageJ-based applications currently use our
3D visualization library. We briefly discuss below how
three key applications use our library, illustrating the
breadth of functionality we provide. We then conclude
with future perspectives considering new demands for
image processing and visualization in biomedical
research.

The Simple Neurite Tracer [12] is an ImageJ plugin for
semi-automated tracing of neurons in 3D image data.
The application provides semiautomatic segmentation of
filament-like structures such as neural arborizations and
blood vessels. A starting point is chosen and then the fila-
ment is auto-traced up to a desired end point. The traced
3D path is visualized using components of our framework
(Figure 5c). This example demonstrates how an analytical
tool for measuring complex 3D structures can be aug-
mented with 3D visualization capabilities to display those
objects.

An algorithm has been developed for registering
images of a 3D sample, where each image volume repre-
sents a different angle of view obtained by Single Plane
Illumination Microscopy [13]. The implementation of
this complex algorithm required the 3D visualization of
intermediate and final image registration steps. Our
library enabled the algorithm developers to generate the
required visualizations with very little effort (Figure 5d).

TrakEM2 is an ImageJ plugin for visualization, analysis,
segmentation, reconstruction and registration of very
large 3D image data sets obtained by serial section elec-
tron microscopy [14]. TrakEM2 makes extensive usage of
our framework for interaction with the 3D representation
of image volumes and segmented objects of interest. The
development of our library empowered TrakEM2 devel-
opers to plan and design for 3D interactive features that
would not have been possible otherwise. Reciprocally, the
high-performance requirements of TrakEM2 drove

implementation of parallel processing strategies for iso-
surface extraction and mesh composition in the 3D scene.

The interaction of our library with other software pack-
ages, each with specific requirements, promotes the
development of new features and improves performance.
These improvements then propagate back and enhance
other ImageJ applications. Detailed information about
the use of the program and downloadable example code
are available on our web page at http://3dviewer.neuro-
fly.de.

The advent of high-throughput microscopy has
increased the number and size of biological image data
sets in need of analysis. The acquisition of 4D data, such
as from laser-scanning fluorescent microscopy of cells
moving through space, has become commonplace. Inter-
active data analysis of 4D data sets for object motion
tracking is in increasing demand. Our framework con-
tains all the key ingredients for 4D visualization and 4D
data representation. For the near future, we will target the
addition of convenient analytical tools that consider the
time dimension. The ease of use and open source nature
of our library enables the development of custom solu-
tions for the highly specialized needs of biomedical image
analysis.

Conclusions
In this paper, we introduced a new high-level 3D visual-
ization framework for ImageJ. The framework provides
an interactive 3D scene for image volume visualization,
annotation, segmentation and transformation. For pro-
grammers, it offers the means to trivially augment the
capabilities of their custom applications with hardware-
accelerated 3D visualization. The framework has been
very well received by the ImageJ user and developer com-
munity, and is currently in use by numerous ImageJ-
based applications.

Availability and requirements
Project name: ImageJ 3D Viewer

Project home page: http://3dviewer.neurofly.de
Operating systems(s): Platform independent
Programming language: Java and Java 3D
Other requirements: ImageJ
Any restrictions to use by non-academics: none
A JAR archive containing the software (with source

code) can be downloaded from the project home page,
following the Download link. Java 3D is available from
https://java3d.dev.java.net and ImageJ from http://
rsbweb.nih.gov/ij. The easiest way to set up these compo-
nents is to install Fiji http://pacific.mpi-cbg.de, which
bundles these dependencies and the software we present
here. Additionally, a movie demonstrating its basic usage
is provided as Additional file 3, and the software in its
current state as Additional file 4.

http://3dviewer.neurofly.de
http://3dviewer.neurofly.de
http://3dviewer.neurofly.de
http://3dviewer.neurofly.de
http://3dviewer.neurofly.de
https://java3d.dev.java.net
http://rsbweb.nih.gov/ij
http://rsbweb.nih.gov/ij
http://pacific.mpi-cbg.de

Schmid et al. BMC Bioinformatics 2010, 11:274
http://www.biomedcentral.com/1471-2105/11/274

Page 7 of 7
Additional material

Authors' contributions
BS designed and wrote the main body of the library. JS implemented numer-
ous algorithms such as for image transformation and registration. AC imple-
mented the parallelization of image volume processing and improved the
graphical user interface. ML implemented segmentation algorithms and
worked on the public API. MH identified the need for the library and coordi-
nated its implementation. All authors read and approved the final manuscript.

Acknowledgements
We would like to thank Henrike Scholz for the confocal stack of the Drosophila
thorax.

Author Details
1Department of Neurobiology and Genetics, Biocenter, University of Würzburg,
Am Hubland, Würzburg, Germany, 2Max Planck Institute of Molecular Cell
Biology and Genetics, Pfotenhauerstrasse 108, Dresden, Germany, 3Institute of
Neuroinformatics, Uni/ETH Zürich, Winterthurerstrasse 190, Zürich, Switzerland
and 4School of Informatics, University of Edinburgh,10 Crichton Street,
Edinburgh, UK

References
1. Clendenon JL, et al.: Voxx: a PC-based, near real-time volume rendering

system for biological microscopy. Am J Physiol Cell Physiol 2002,
282:C213-C218.

2. Peng H: V3D. 2009 [http://penglab.janelia.org/proj/v3d/v3d2.html].
3. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC,

Ferrin TE: UCSF Chimera-a visualization system for exploratory research
and analysis. Journal of computational chemistry 2004, 25(13):1605-1612.

4. Abràmoff M: VolumeJ. 2003 [http://bij.isi.uu.nl/index.htm].
5. Barthel KU: Volume Viewer. 2005 [http://rsb.info.nih.gov/ij/plugins/

volume-viewer.html].
6. Schindelin J: Fiji is just ImageJ - Batteries included. Proceedings of the

ImageJ User and Developer Conference, Luxembourg 2008.
7. MessaoudiI C, Boudier T, Sorzano C, Marco S: TomoJ: tomography

software for three-dimensional reconstruction in transmission
electron microscopy. BMC Bioinformatics 2007, 8:288.

8. Sun Microsystems Java 3D Engineering Team: Java 3D API Tutorial. 2000
[http://java.sun.com/developer/onlineTraining/java3d].

9. Gehringer D: Java 3D Volume Rendering. 2006.
10. Lorensen WE, Cline HE: Marching cubes: A high resolution 3D surface

construction algorithm. In SIGGRAPH '87: Proceedings of the 14th annual
conference on Computer graphics and interactive techniques Volume 21.
New York, NY, USA: ACM Press :163-169.

11. Horn BK: Closed-form solution of absolute orientation using unit
quaternions. Journal of the Optical Society of America 1987, 4:624+.

12. Longair M: Computational Neuroanatomy of the Central Complex of
Drosophila melanogaster. PhD thesis 2009 [http://
homepages.inf.ed.ac.uk/s9808248/imagej/tracer]. University of
Edinburgh, School of Informatics

13. Preibisch S, Saalfeld S, Rohlfing T, Tomancak P: Bead-based mosaicing of
single plane illumination microscopy images using geometric local
descriptor matching. In Medical Imaging 2009: Image Processing Volume
7259. Edited by: Pluim JPW, Dawant BM. SPIE; 2009:72592S.

14. Cardona A, Saalfeld S, Toman.ák P, Hartenstein V: Drosophila brain
development: closing the gap between a macroarchitectural and a
microarchitectural approach. Cold Spring Harb Symp Quant Biol 2009.
sqb.2009.74.037 epub

doi: 10.1186/1471-2105-11-274
Cite this article as: Schmid et al., A high-level 3D visualization API for Java
and ImageJ BMC Bioinformatics 2010, 11:274

Additional file 1 Supplementary material. Top, demonstration of land-
mark selection in two different adult Drosophila brains, for the purpose of
landmark-based image volume registration. Bottom, source code example
implementing the dendritic growth simulation shown in Figure 4 of the
main manuscript.
Additional file 2 Direct volume editing. A movie which shows the result
of the simulated dendritic growth. The corresponding source code is pre-
sented in Additional file 1, section 2.
Additional file 3 Basic usage. A movie which demonstrates the basic
usage of the ImageJ plugin provided by our framework. More screen casts
are available on our web page.
Additional file 4 Software. The JAR archive, containing both binary
classes and the Java source code of our software. To install the software, this
file must be copied into ImageJ's plugins directory.

Received: 13 January 2010 Accepted: 21 May 2010
Published: 21 May 2010
This article is available from: http://www.biomedcentral.com/1471-2105/11/274© 2010 Schmid et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.BMC Bioinformatics 2010, 11:274

http://www.biomedcentral.com/content/supplementary/1471-2105-11-274-S1.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-11-274-S2.MPEG
http://www.biomedcentral.com/content/supplementary/1471-2105-11-274-S3.MPEG
http://www.biomedcentral.com/content/supplementary/1471-2105-11-274-S4.ZIP
http://www.biomedcentral.com/1471-2105/11/274
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11742814
http://penglab.janelia.org/proj/v3d/v3d2.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15264254
http://bij.isi.uu.nl/index.htm
http://rsb.info.nih.gov/ij/plugins/volume-viewer.html
http://rsb.info.nih.gov/ij/plugins/volume-viewer.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17683598
http://java.sun.com/developer/onlineTraining/java3d
http://homepages.inf.ed.ac.uk/s9808248/imagej/tracer
http://homepages.inf.ed.ac.uk/s9808248/imagej/tracer
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20028843

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Introduction to Java 3D library nomenclature
	Core classes of the library

	Results
	Features
	The 3D scene
	The toolbar
	Volume editing
	Annotation in 3D space
	Landmark-based 3D rigid registration of image volumes
	Animation and recording
	Custom content
	4D Visualization

	Usage as a GUI application
	Usage as a programming library

	Discussion
	Conclusions
	Availability and requirements
	Additional material
	Authors' contributions
	Acknowledgements
	Author Details
	References

