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Abstract

Background: While microarrays are the predominant method for gene expression profiling, probe signal variation
is still an area of active research. Probe signal is sequence dependent and affected by probe-target binding
strength and the competing formation of probe-probe dimers and secondary structures in probes and targets.

Results: We demonstrate the benefits of an improved model for microarray hybridization and assess the relative
contributions of the probe-target binding strength and the different competing structures. Remarkably, specific and
unspecific hybridization were apparently driven by different energetic contributions: For unspecific hybridization,
the melting temperature Tm was the best predictor of signal variation. For specific hybridization, however, the
effective interaction energy that fully considered competing structures was twice as powerful a predictor of probe
signal variation. We show that this was largely due to the effects of secondary structures in the probe and target
molecules. The predictive power of the strength of these intramolecular structures was already comparable to that
of the melting temperature or the free energy of the probe-target duplex.

Conclusions: This analysis illustrates the importance of considering both the effects of probe-target binding
strength and the different competing structures. For specific hybridization, the secondary structures of probe and
target molecules turn out to be at least as important as the probe-target binding strength for an understanding of
the observed microarray signal intensities. Besides their relevance for the design of new arrays, our results
demonstrate the value of improving thermodynamic models for the read-out and interpretation of microarray
signals.

Background
Microarrays have become the predominant method for
studying gene expression on a genomic scale. It has
been recognised, however, that probes interrogating
different regions of the same mRNA target show con-
siderable variation in signal intensities [1,2], and that
the observed intensity variation is highly sequence-
dependent [3-5]. This is expected because different
probes vary in their tendency of forming intraand
intermolecular structures that compete with the hybri-
dization of the probe-target duplex, resulting in differ-
ent hybridization efficiencies [6,7]. Comparative studies
have indicated that accurate thermodynamic models
based on the physico-chemical parameters underlying
probe-target interactions are particularly good predic-
tors of actual probe binding behaviour and thus

microarray signal intensity [8]. This is not only impor-
tant in the design of new arrays, where specific and
uniform probes need to be selected [9], but also for
the readout of data from established platforms, where
a better comparability of signals from different genes
improves quantitative modelling and the sensitive
detection of subtle higher-dimensional patterns. When
the effective hybridization temperature is not known,
the probe-target melting temperature Tm is often cal-
culated to predict the expected thermodynamic stabi-
lity of the hybridized complex [10,11]. The melting
temperature is still one of the most popular measures
in the evaluation of microarray probes. It gives the
temperature at which half of all probes form a duplex
with their target while the other half are unbound,
assuming a simple two state transition, thus providing
information about the probe binding behaviour at the
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melting temperature. It makes, however, no statement
about the binding affinity at the actual hybridization
temperature. Probe-target dimers with the same Tm

can actually behave quite differently at typical reaction
temperatures, which are usually considerably lower
than the Tm [12-14]. Increasingly, general thermody-
namic models of probe-target hybridization have
become established in the prediction of microarray
probe behaviour. These models are either based on
published thermodynamic rules for nearest-neighbour
base-pairing and experimentally determined para-
meters, or they determine model parameters from fits
of the observed probe intensities [1-4]. The free energy
of probe-target hybridization can so be calculated for
the effective hybridization temperature.
None of the above approaches yet considers that

nucleic acid sequences can form stable intramolecular
structures that compete with the formation of the
probe-target duplex: Only freely accessible, i. e., mono-
meric and unfolded probe and target molecules can
interact to form probe-target dimers [13,15-17]. More
elaborate models therefore include the effects of the
secondary structures of the probe [8,18-20] and the
target [9,21,22] on the overall binding efficiency.
Another factor that reduces the efficiency of probe-tar-
get hybridization is the formation of probe-probe
dimers [6].
Wei et al. [23] recently examined to what degree

several probe properties affect microarray signal inten-
sities. In this work we extend this analysis by addition-
ally determining the influence of target secondary
structure, the free energy of probe-target hybridization,
and the strength of probe-probe dimerization on the
overall efficiency of probe-target binding on microar-
rays. We used a partition function approach to capture
the full dynamic potential of the different inter- and
intramolecular interactions [24,25]. Although the stabi-
lity of the probe-target duplex alone is a good first
indicator of hybridization behaviour, we will show that
the signal variation observed in the examined data sets
can be better explained by the effective interaction
energy. The effective interaction energy, which is the
free energy of probe-target hybridization reduced by
the free energies of probe and target secondary struc-
tures and the probe-probe duplex formation, can pre-
dict probe dependent signal intensity variation twice as
well as the melting temperature Tm. Considering a
complementary tiling array study [26], we can more-
over show that the higher predictive power of the
effective interaction energy is independent of the typi-
cal probe length and the type of target nucleic acid
(cDNA or RNA) in an experiment.

Methods
Microarray data
We studied the sequence-dependent intensity variations
for two different tiling array experiments. The first one
features sets of probes targeting different regions of the
same transcripts (Dataset II of Wei et al. [23]). It com-
prises nine tiling arrays with a resolution of 22 nt, each
containing about 385,000 probes interrogating the expres-
sion of 32,424 regions throughout the genome. Probe
length ranged from 45 to 75 bases. Chips had been manu-
factured with 5 nt thymidine linkers and had been hybri-
dized to cDNAs from undifferentiated human Embryonic
Stem Cells (hESCs) by NimbleGen Systems [27]. Raw
expression data had been extracted using NimbleScan
software v2.1. After qspline normalization, a non-linear
method for controlling signal-dependent sources of varia-
bility [28], data were median centred using control set
probe intensities. For comparability to the original study,
our analysis is based on the same preprocessed data.
Probe targets were identified by WU-BLAST (W.Gish,
pers. comm.) run against UCSC ‘Known Genes’ annota-
tion [29] (as obtained 2008-08-29). To efficiently identify
perfect matches, WU-BLAST parameters were set as fol-
lows: seed alignment word size W = probe length, match
score M = 1, mismatch score N = -1, gap penalty Q = 3
and gap extension penalty R = 1. As expected for a tiling
array, many probes had no cDNA target (about 90%), and
about half the matches were on the reverse strand. For
simplicity and to avoid confounding effects, we have
focussed on probes complementing the sense strand and
without matches to multiple genes. For simplicity, we only
included probes that showed no cross-hybridization to any
mRNA in the UCSC ‘Known Genes’ annotation [29] in
our analysis.
The second experiment used 25-mer oligonucleotides

for perfectly matching 1 nt tiling probes of ribosomal
RNA (rRNA) sequences from nine nematodes [26]. The
rRNA targets were generated by in vitro transcription.
Each rRNA target was separately hybridized to the spe-
cific compartment on the 12-well NimbleGen array, i. e.,
no interference between targets was possible. We ana-
lyse the fluorescence intensities of the probes perfectly
matching the single hybridized target, giving purely spe-
cific signals with no cross-hybridization. In the hybridi-
zation reactions, an rRNA concentration of 375 ng was
used for each target [26].
Calculation of thermodynamic parameters and model
choice
Melting temperature
Following the approach of Wei et al. [23], melting tem-
peratures were computed by the SantaLucia et al. [15]
method, and included a helix-initiation factor and cor-
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rections for sodium ion and Formamide concentrations
[30]:
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where [Na+] = 0.6 M is the sodium ion concentration
in molar units, A is a helix initiation factor equal to
-10.8 cal/(KM), Ct the molecular concentration of the
oligonucleotide strands in molar units, F the correction
term for Formamide, namely 0.63°C per 1% Formamide.
The universal gas constant R = 1.987 cal/(KM). Wei et
al. [23] estimated the oligonucleotide concentration to
Ct = 6.1 * 10-17M and used a Formamide concentration
of 35% for hybridization (Ron Stewart, pers. comm.,
2009). Since we were interested in the sensitivity of our
study to Tm calculation variations, we also computed
the Tm for different settings of molecular concentration
Ct, and with or without Formamide and sodium correc-
tion terms.
Probe secondary structure
To facilitate a comparison of results with the original
study [23], the minimal free energy (mfe) of the second-
ary structure of the probe molecule was computed by
hybrid-ss-min [31,32], with the nucleic acid type (option
-NA) set to ‘DNA’.
Multi-state thermodynamic model
Many established thermodynamic models use the free
energy of the most stable predicted secondary structure,
i. e., the minimal free energy (mfe) structure [31,33,34].
The hybridization of nucleic acid molecules, however, is
dynamic and each molecule exists in an ensemble of
structures [24,35]. An accurate prediction of nucleotide
behaviour can therefore be achieved with a partition
function approach [36] established in the field of statisti-
cal mechanics. For thermodynamic prediction of probe-
target interaction we thus used RNAup [25]. RNAup cal-
culates free energies applying the full partition function
over possible inter- and intramolecular structures of a
probe and its target. RNAup calculations employed the
energy parameters for DNA folding as distributed with
D. Mathews’ RNAstructure [33] in the calculation of
thermodynamic models for the data set of Wei et al.
[23]. For the data set of Pozhitkov et al. [26] we used
the default RNA folding parameters in the calculation of
secondary structures of the rRNA target and the DNA
folding parameters as distributed with D. Mathews’
RNAstructure in the calculation of secondary structures
of the DNA probe and for the assessment of probe-
probe dimers. In calculating the probe-target binding
energy we used the RNA-DNA folding parameters from

Sugimoto et al. [37,38]. RNAup models the interaction
between a probe and its target as a stepwise process.
The first step of the calculation computes the free ener-
gies ΔGp and ΔGt that are needed to unfold the second-
ary structures of the probe and its binding site in the
target, respectively. Then the binding energy ΔGh gained
by hybridization of the probe to its target is calculated.
The total binding energy is then given by ΔGh-ΔGp-ΔGt.
In addition we consider the free energy ΔGpp, that is
necessary to unfold probe-probe dimers within the same
probe feature, and compute it in an independent step
using RNAup. The effective interaction energy ΔG is
finally given by subtracting the free energies needed to
open secondary structures and unfold probe dimers
from the binding free energy:

        G G G G Gh p t pp. (1)

Here ΔGh, ΔGp, ΔGt, and ΔGpp are always ≤ 0. For
unstable structures, their respective contributions were
zero. The final effective interaction energy ΔG was
stable (< 0) for all considered probe-target pairs.
Target secondary structure
The probe binding site area in the target may form
structural motifs with bases some distance from the
probe binding site. To calculate the free energy ΔGt of
unfolding structures in the target we therefore consider
a target fragment including the probe binding site plus
parts of the flanking sequence. Koehler et al. [21]
showed that 90% of base pairs are formed between
nucleotides less than 85 bases apart in the primary
sequence. They suggest that over 90% of the predicted
structures of the full length target can be found by
using a target fragment consisting of the probe binding
site flanked by 170 bases on either side. We can thus
safely use a target fragment including flanking regions
of 200 bases on either side of the probe binding region
for the calculation of the free energy ΔGt that is
required to unfold the probe binding site in the target.
Importance ranking of thermodynamic parameters
Wei et al. [23] used the GUIDE algorithm [39] to rank
the thermodynamic parameters in order of their impor-
tance for predicting signal intensity. GUIDE constructs a
non-linear model fit by finding an optimal partitioning
of the data together with piecewise least-square regres-
sion models on each data subset, forming a so-called
regression-tree. Variables for the split-condition of a
tree-node are selected by unbiased detection of pairwise
interactions and curvature, where the split points are
found by exhaustive search. Over-partitioning/over-fit-
ting of the data is avoided by limiting the size of the
final regression tree by cost-complexity pruning in
cross-validation, selecting the smallest tree with a mean
prediction error within one standard error of the
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minimal prediction error achieved. The algorithm also
provides importance scores, which reflect the contribu-
tion a predictor variable makes to the non-linear model.
For each split-node and variable in the regression-tree,
it is computed from the chi-square statistic of the inter-
action/curvature detection step for the underlying piece-
wise-constant regression model, and then weighted by
the square-root of the data subset size at the split-node.
The overall importance score of a predictor is obtained
by summing over all split-nodes of the tree (Wei-Yin
Loh, pers. comm., 2009). Software and further bibliogra-
phy are available from http://www.stat.wisc.edu/~loh/
guide.html. For direct comparability to earlier work, we
also employ GUIDE in this study. Bootstrapping was
used to study the robustness of relative importance and
obtain error estimates for GUIDE results: For the whole
dataset of about 3 million probes, 100 random subsets
of 200,000 probes each were sampled with replacement
from the original data. For the smaller subsets examined
(cf. Results), 100 random subsets were generated, each
containing 90% of all probes in the respective dataset.
For the GUIDE scores separately obtained from each of
the 100 random subsets, means and standard deviations
were computed, which were finally scaled by the mean
for the most important parameter to give the relative
importance scores. The analysis was repeated both on
the raw fluorescence intensities and on the log-intensi-
ties (Additional File 1).

Results
0.1 Thermodynamics of microarray hybridization
We used tiling microarray data from Wei et al. [23] to
study the influence of inter- and intramolecular struc-
tures on the efficiency of probe-target duplex formation.
For this purpose, tiling arrays have the advantage that
probes have been selected only by the tile start position
but no probe selection to optimize hybridization effi-
ciency or uniformity has been applied [5]. One therefore
has a set of probes with a highly varying potential for
intra- and intermolecular structure formation, which
results in different binding efficiencies and thus micro-
array hybridization signals for the same transcript target,
allowing a systematic investigation of probe specific
effects.
Our analysis followed the methodology of Wei et al.

[23] yet newly introduces target-side analysis. In addi-
tion, we consider an accurate representation of the free
energy of probe-target dimerization and introduce an
extended model for microarray hybridization that
includes probe dimerization. Our approach assesses the
influence of inter- and intramolecular structures that
compete with probe-target duplex formation in the
hybridization process. We subsequently analyse the rela-
tive contributions of the competing structures and the

probe-target duplex binding strength on the measured
signal intensities.
Thermodynamics of non-specific hybridization
As a first step we aimed to reproduce the results of the
original study and thus calculated the melting tempera-
ture Tm and the minimal free energy (mfe) of probe sec-
ondary structure for each probe. We determined the
relative importances of Tm, the mfe of probe structure,
and the probe length for the prediction of probe signal
intensities according to the GUIDE algorithm [39], vali-
dated by bootstrap. The importance ranking for Tm,
mfe, and probe length (Fig. 1) were in agreement with
the original results of Wei et al. [23]: For the whole
dataset, Tm was the best predictor of intensity variation,
followed by the mfe of probe secondary structure. Probe
length was the least relevant parameter.
The probes in this dataset are tiling probes designed

to interrogate the entire human genome. In a hybridiza-
tion to cDNAs, the majority (about 90%) of these tiling
probes do not have a transcript target. These probes
reflect non-specific hybridization and they dominate the
dataset. The obtained importance ranking actually did
not change when only considering probes with non-spe-
cific hybridization (Additional File 2: Fig. A.2). We
therefore observe that the melting temperature Tm is
the best predictor of non-specific hybridization signal.
(For these probes with no known transcript target, more
advanced thermodynamic models like the effective
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Figure 1 Importance ranking of Tm, the minimal free energy
(mfe) of probe structure, and probe length. All probes:
Importance ranking of Tm, the minimal free energy (mfe) of probe
structure, and probe length. Here, ‘Tm’ stands for the melting
temperature, ‘mfe’ labels the minimal free energy of probe
secondary structure and ‘len’ the probe length. Probe lengths
ranged from 45 to 74 nt. Error bars are from 100 random bootstrap
samples of 200,000 probes each.
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interaction energy cannot be calculated, as they require
knowledge of the target sequence.)
Thermodynamics of specific hybridization
Consequently, it is interesting to focus on the subset of
probes that target expressed genes for a complementary
examination of predominantly specific hybridization sig-
nals. For this purpose, probes were selected that
matched the plus strand of single genes from the UCSC
‘Known Genes’ annotation [29]. For the identification of
clearly expressed genes, we employed a conservative
strategy of keeping only targets having at least one
probe with a signal higher than the mean intensity of
probes targeting transcripts. (Results, however, were
robust under different threshold choices for target
expression; see Additional File 3, Fig. A.3.)
By these criteria, we found 2,472 clearly expressed tran-
scripts, interrogated by 74,267 probes, with an average
of 30 probes per target. The intensity of probes target-
ing the same transcript can vary up to 300-fold, as
shown in Fig. 2: Probe specific intensity variation was
assayed as the log2-ratio of the maximal and the mini-
mal probe intensities for each transcript. Averaged over
all 2,472 transcripts, we observed a typical 18-fold max/
min probe intensity variation (mean log-ratio of 4.2).
Considering probes for known targets now also allows

an introduction of target-side modelling. For simplicity,
we further focus on probes with no cross-hybridization
potential (cf. Additional File 4). In our extended model
we relate the observed binding efficiency to an effective
interaction energy ΔG. This is obtained by subtracting
the free energies of inter- and intramolecular interac-
tions that interfere with the formation of probe-target
dimers from the free energy gained by probe-target
dimer hybridization ΔGh:

        G G G G Gh p t pp , (2)

where ΔGp is the free energy of the probe secondary
structure, ΔGt the free energy of the probe binding site
secondary structure in the target, and ΔGpp the free
energy of probe-probe dimerization within the same
probe feature. For most probes and targets considered,
stable alternative structures were observed (Additional
File 5, Table A.1), highlighting the importance of con-
sidering the effects of this competition for the binding
of the probe.
The importance of alternative thermodynamic proper-

ties in a prediction of probe signal intensity according to
the GUIDE algorithm was validated by bootstrap as
before. Fig. 3 shows that the effective interaction energy
ΔG is by far the best predictor of signal intensity for spe-
cific hybridization, with about twice the relative impor-
tance score compared to alternative predictors like the
melting temperature Tm (left panel). In order to test the
generic nature of this result, we also examined a comple-
mentary tiling array experiment [26] that probes several
ribosomal RNAs (rRNAs) with 25 nt oligonucleotides.
Besides providing a test case with much shorter probes
and a different target type (RNA instead of DNA), hybri-
dization conditions were simpler in this experiment, fea-
turing uniform target concentrations and no complex
background (and thus no cross-hybridization). Table 1
compares the two data sets. Also in this very different
experiment, the effective interaction energy ΔG was the
best predictor of signal intensity, clearly outperforming
alternative predictors like Tm (Fig. 3, right panel).
The relative importance of the other predictors is

most cleanly examined in a separate ranking run. The
rank orders obtained for the two data sets was again
very similar. Although the order of ΔGh and ΔGt was
switched, their relative important scores were separated
by less than one standard deviation. We could thus con-
clude that ΔGp, ΔGh, and ΔGt were all of similar impor-
tance, whereas ΔGpp was considerably less influential
(Fig. 4). Even though ΔGpp, the free energy of probe-
probe dimerization, was by itself the least descriptive
parameter, its inclusion in ΔG improved results by a
further 10% (Additional File 6: Fig. A.5). The similar
relevance of competing intramolecular structures can be
understood by considering the extreme observed vari-
abilities of their contributions for probes of comparable
ΔG. Table 2 shows the variation of the free energies of
these structures for probes with typical effective interac-
tion energies ΔG ± 1 kcal/mol. Even for probes of very
uniform ΔG, which was shown to be a good predictor
of probe signals, the variations observed for ΔGh, ΔGp,
and ΔGt nearly match the ranges seen across all the
probes for clearly expressed genes.
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Figure 2 Probe specific intensity variation. Probe specific
intensity variation. For each target, the probe specific intensity
variation is assayed as log2(max. intensity/min. intensity). The
histogram shows the distribution observed for 2,472 clearly
expressed target genes.
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In summary, the consideration of multiple inter- and
intramolecular structures that compete with the forma-
tion of a probe-target duplex improves the prediction of
probe signal intensity significantly, reflecting particularly
the importance of probe and target accessibility for
microarray hybridization.
Influence of steric effects and probe synthesis yield
Microarray probes are attached to the chip surface with
one end, the other end protrudes into solution. This
causes different reaction conditions for the two ends of a

probe. In high-density microarrays the surface-attached
end is less accessible than the end in solution due to steric
restrictions caused by the substrate [40] and crowding
effects due to neighbouring probes [41]. Therefore the end
of the probe that protrudes into solution plays a larger
role in hybridization than the surface-tethered end [23,42].
To study these effects using our extended model, we

removed the terminal 5, 10, or 20 nucleotides from both
ends of the probe sequence and reran the analysis with
the shortened probes. Fig. 5 shows the comparison of
the effective interaction energies of the shortened probes
to ΔG of the full-length probes. While a removal of 20
and 10 bases at the surface end reduces the predictive
power of ΔG, the effective interaction energy of probes
shortened by 5 nt at the surface tethered end is as good
as ΔG of the full length probes. This suggests that the 5
nt closest to the surface have only a marginal contribu-
tion to the effective interaction energy.
The influence of the terminal bases at the solution

end can be limited by the synthesis yield. NimbleGen’s
mask-less array synthesis technology has an average
stepwise yield between 96% and 98% [27]. The probes
in this study had a length range of 45 - 75 nt. Even for
a coupling efficiency of 98%, less than 30% of 60-mer
probes reach full length [12]. Nevertheless, we find
that the effective interaction energies of probes shor-
tened at the solution end were significantly less predic-
tive than the values for full-length probes, even if only
5 nt were removed (Fig. 5). These results are in
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Figure 3 Importance ranking of thermodynamic probe properties including target-side modeling. Importance ranking of thermodynamic
probe properties including target-side modelling. The left hand figure (A) shows the Guide ranking for the clearly expressed genes showing no
cross-hybridization from Wei et al. [23], whereas the right one shows the results for the Pozhitkov et al. [26] dataset (B). ΔG stands for the
effective interaction energy including relevant competing intra- and inter-molecular effects. ΔGp labels the free energy of the probe secondary
structure, ΔGt the free energy of the probe binding site secondary structure in the target, ΔGh the free energy of the probe-target duplex, and
ΔGpp the free energy of probe-probe dimerization within the same probe feature. ‘Tm’ stands for the melting temperature. Error bars are from
bootstrap re-sampling of 90% of all probes. Below the x-axis, the Spearman rank correlation of predictions to the observed signal intensity is
shown. All correlations were highly significant, with the correlation for ΔGpp in (A) having p < 10-9, and p ≤ 10-5 in (B). For the other
correlations, p < 10-15. We note that the correlation values for the sample with complex background are considerably lower, suggesting further
scope for improvements in our model.

Table 1 Characteristic differences between the two
studied datasets

Comparison of datasets

Parameter Pozhitkov et al. [26] Wei et al. [23]

probe DNA DNA

target rRNA cDNA

probe length 25-mers 45- to 75-mers

resolution 1 nt 22 nt

number of probes 7, 519a 21, 813b

number of targets 9a 2, 472b

target concentration 375 ng Unknown
a We analysed the probes perfectly matching the respective separately
hybridized individual targets, ensuring no crosshybridization effects.
b We focused on probes targeting clearly expressed transcripts and showing
no cross-hybridization in our analysis.
Caption: This table summarizes the characteristic differences between the two
datasets studied. The dataset of Pozhitkov et al. [26] comprises tiling probes
targeting 9 rRNA fragments. The dataset of Wei et al. [23] consists of tiling
probes designed for high-resolution interrogation of the entire human
genome. The row ‘probes’ shows the nucleic acid type of probes, row ‘target’
the nucleic acid type of targets.
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agreement with the observations of Wei et al. [23] that
protruding ends contribute more to signal intensity
than tethered ends, confirming the dominance of steric
effects over limitations from synthesis yield for this
platform.

Discussion
Although DNA microarrays have become the predomi-
nant method for gene expression profiling, the quantita-
tive understanding of the measurement process still
constitutes an active field of research. It is recognised
that probe signal variation is highly probe-sequence
dependent [3-5]. A recent study [23] has thoroughly

examined the effect of different probe properties on
probe signal intensities. We have extended this work by
introducing target side modelling, an accurate represen-
tation of the free energy of probe-target dimerization
and an improved model for microarray hybridization
that includes probe dimerization. We separately consid-
ered specific and unspecific hybridization modes.
Reproducing results of Wei et al. [23], we obtained

the melting temperature Tm as the best predictor of
probe signal intensity for the employed tiling array (Fig.
1). Most tiling probes hit non-exonic regions, with only
10% of the probes targeting mature mRNAs. Most
probes therefore showed non-specific hybridization, and

Table 2 Variation of thermodynamic properties for probes of similar effective interaction energies or binding
strengths.

Variation of properties for probes with similar free energies

Variation range within ± 1 unit of the median

fixed ΔG fixed ΔGh fixed Tm all probes

-ΔG 44 ... 46 26 ... 62 22 ... 66 19 ... 66

-ΔGp 0.5 ... 18 0.1 ... 16 0.3 ... 16 0.1 ... 22

-ΔGt 2.2 ... 23 2.3 .... 26 1.7 ... 22 0.6 ... 32

Tm 36 ... 64 40 ... 60 46 .... 48 33 ... 66

-ΔGh 54 ... 84 65 ... 67 49 ... 89 45 ... 89

Caption: Variation of thermodynamic properties for probes of similar effective interaction energies or similar probe-target duplex binding strengths. Probes
similar in certain thermodynamic properties were selected from an interval of ± 1 of the median values of ΔG (column 1), ΔGh (column 2), and Tm (column 3).
Intervals are printed in bold face. These intervals contained 13460, 9806 and 10494 probe-target pairs, respectively. The last column, labelled ‘all probes’, shows
the variation range for all probes matching clearly expressed genes. Less than 2% of all probes had unstable probe-probe interactions.
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Figure 4 Importance ranking of contributions to ΔG. Importance ranking of ΔGh, ΔGp, ΔGt, and ΔGpp computed separately. The left-hand side
(A) shows the GUIDE results for the data from Wei et al. [23] (probes for known targets without cross-hybridization), the right-hand side the
results for Pozhitkov et al. [26] dataset (B).
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these dominated the dataset. Indeed, working with all
array probes or restricting analysis to the non-specific
probes gave the same results (Additional File 2: Fig.
A.2). We thus observe that Tm is the best predictor of
non-specific probe signals.
In contrast, focussing on clearly expressed genes, we

could show that the effective interaction energy ΔG was
the best predictor for specific probe signal intensity (Fig.
3). Here, we computed ΔG by also considering inter-
and intramolecular structures that interfere with probe-
target binding, cf. Eq. (1). This improved the prediction
of signal intensity considerably, with ΔG performing
about twice as well as Tm. Probe and target secondary
structure gave a similar performance for signal intensity
prediction as the free energy of the probe-target duplex
ΔGh or the melting temperature Tm (Figs 3 and 4). The
large impact of probe secondary structure can be under-
stood by considering how secondary structure affects
probe-target binding efficiency: Hybridization between
two nucleic acids starts with the nucleation of a few per-
fectly matched bases, followed by a comparatively fast
zipping reaction [43]. Nucleation can actually be the
rate limiting step for hybridization [44]. Probe secondary
structure reduces the number of available nucleation
sites because bound bases cannot take part in a nuclea-
tion reaction [41]. Moreover, probes with secondary
structure fold back on themselves, with the solution
ends of the probes brought into closer proximity to the
microarray surface. Steric effects close to the array sur-
face are another considerable factor determining probe
accessibility. All these effects reduce hybridization effi-
ciency and thus probe signal and may explain the
importance of probe secondary structure for probe sig-
nal intensity prediction. The large variation of ΔGt and

its strong influence on probe signal, on the other hand,
can be understood by considering that bases outside the
binding site can also contribute to structures interfering
with probe binding, which results in an overall larger
number of potentially stable relevant secondary struc-
tures in the target. Finally, while the incorporation of
probe and target secondary structures into an effective
interaction energy, Eq. (1), made the biggest contribu-
tions to better model performance, the consideration of
probe-probe interactions also improved prediction
power by a further 10%.
Besides their relevance for the design of new arrays,

our results have demonstrated the value of improving
thermodynamic models for the read-out and interpreta-
tion of microarray signals. Necessary next steps in the
development of improved models include both the
incorporation of intermolecular target-target interactions
as well as of ‘cross-hybridization’ effects to unintention-
ally matching non-target molecules in a complex sample
background. Target-target interactions on one hand are
particularly challenging because they involve multimers
of a probe, its bound target, and another sequence that
binds to the target. This other sequence can thus contri-
bute to the measured signal intensity [45]. More accu-
rate models of interactions with target sequences will
also have to consider the respective target fragmentation
and labelling steps of microarray protocols. Models of
cross-hybridization on the other hand need to address
two tasks: identifying potential non-targets unintention-
ally matching the probe, and modelling their influence
on the hybridization signal. Established probe design
tools already filter out non-specific probes through
cross-hybridization prediction after efficient sequence-
similarity based detection screens [46,47]; similar to the
filtering employed in this study. Latest advances now
promise sufficiently fast and more sensitive detection
tools based on thermodynamic models [48,49]. While
recent developments have shown how the competitive
formation of probe and target secondary structures as
well as probe-probe and target-target dimers affect the
probability of finding the desired probe-target duplex
[31], these calculations still require several hours of
computation time per probe-target pair, precluding their
large-scale application. In approximation, the free energy
contributions of competing structures can be obtained
separately and effective interaction energies can be cal-
culated [25], as in Eq. (1). A similar approach could also
be taken to quantitatively consider cross-hybridization
effects, as implemented in state-of-the-art probe design
tools [9]. For this, special validation experiments that
allow a separation of specific signals and cross-hybridi-
zation effects will be valuable. The results of our current
study suggest that the establishment and validation of
more sophisticated models can in the near future
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Figure 5 Effect of removal of terminal bases from the probe
sequence. Effect of removal of terminal bases from the probe
sequence. ΔG is the effective interaction energy of the full-length
probe. For shortened probes, the respective end (5’ is the solution
end, 3’ is the surface-tethered end) and the number of bases
removed (5, 10, 20) are given, i. e., 3’: 5 refers to the removal of 5
bases from the tethered (3’) terminus.
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provide further improvements to our understanding and
ability to quantitatively predict microarray hybridization
signals in a complex sample background.

Conclusions
We have introduced an improved thermodynamic model
for probe-specific signal intensity on microarrays. The
hybridization efficiency between a probe and its targets
is determined by the balance of the binding strength of
the probe-target duplex on one hand and the competing
formation of probe-probe dimers and secondary struc-
tures in either probes or targets on the other hand.
Consequently, the effective interaction energy between a
probe and its target is modelled as the free energy
gained by probe-target duplex formation reduced by the
free energies needed to open alternative structures com-
peting with probe-target binding. For specific hybridiza-
tion, the effective interaction energy is a twice as
powerful predictor of signal intensity variation as the
melting temperature Tm. We furthermore analysed the
effects of the alternative competing structures in relation
to probe-target binding strength, which highlighted the
strong influence of intramolecular structures on specific
hybridization signals. In summary, the improved model
introduced here considerably enhances our ability to
predict and understand sequence-specific variation of
microarray signal intensities.

Additional file 1: Robustness of conclusions under scale
transformation. Fig. A.1 shows the importance ranking for
thermodynamic properties of probes without cross-hybridization against
known targets on different intensity scales (linear and logarithmic).
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
35-S1.PDF ]

Additional file 2: Dominance of non-specific probes on the chip. Fig.
A.2 shows the importance ranking of Tm, the mfe of probe structure,
and probe length for all probes that had no target in a mature mRNA.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
35-S2.PDF ]

Additional file 3: Effect of intensity threshold. Fig. A.3 shows the
importance ranking for thermodynamic properties of probes without
cross-hybridization against known targets with different signal intensity
thresholds.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
35-S3.PDF ]

Additional file 4: Comparison of results with and without cross-
hybridization. Fig. A.4 shows the importance ranking for
thermodynamic properties with and without cross-hybridization.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
35-S4.PDF ]

Additional file 5: Stability of probe and target structures. Table A.1
shows basic features that differ in the two datasets, including the
stability of probe and target structures.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
35-S5.PDF ]

Additional file 6: Influence of probe-probe dimers. Fig. A.5 shows the
relative importance of Probe-Probe dimerization for the prediction of
signal intensities.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
35-S6.PDF ]
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