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Discovering local patterns of co - evolution:
computational aspects and biological examples
Tamir Tuller1,2,3,4*, Yifat Felder1, Martin Kupiec2

Abstract

Background: Co-evolution is the process in which two (or more) sets of orthologs exhibit a similar or correlative
pattern of evolution. Co-evolution is a powerful way to learn about the functional interdependencies between sets
of genes and cellular functions and to predict physical interactions. More generally, it can be used for answering
fundamental questions about the evolution of biological systems.
Orthologs that exhibit a strong signal of co-evolution in a certain part of the evolutionary tree may show a mild
signal of co-evolution in other branches of the tree. The major reasons for this phenomenon are noise in the bio-
logical input, genes that gain or lose functions, and the fact that some measures of co-evolution relate to rare
events such as positive selection. Previous publications in the field dealt with the problem of finding sets of genes
that co-evolved along an entire underlying phylogenetic tree, without considering the fact that often co-evolution
is local.

Results: In this work, we describe a new set of biological problems that are related to finding patterns of local co-
evolution. We discuss their computational complexity and design algorithms for solving them. These algorithms
outperform other bi-clustering methods as they are designed specifically for solving the set of problems
mentioned above.
We use our approach to trace the co-evolution of fungal, eukaryotic, and mammalian genes at high resolution
across the different parts of the corresponding phylogenetic trees. Specifically, we discover regions in the fungi
tree that are enriched with positive evolution. We show that metabolic genes exhibit a remarkable level of co-evo-
lution and different patterns of co-evolution in various biological datasets.
In addition, we find that protein complexes that are related to gene expression exhibit non-homogenous levels of
co-evolution across different parts of the fungi evolutionary line. In the case of mammalian evolution, signaling
pathways that are related to neurotransmission exhibit a relatively higher level of co-evolution along the primate
subtree.

Conclusions: We show that finding local patterns of co-evolution is a computationally challenging task and we
offer novel algorithms that allow us to solve this problem, thus opening a new approach for analyzing the
evolution of biological systems.

1 Background
Co-evolution is the process by which two (or more) sets
of orthologs exhibit a similar or a correlative pattern of
evolution. Co-evolution can be measured in various
ways; those most commonly used are: the similarity in
absolute Evolutionary Rate (ER; dN; the rate of non-
synonymous substitutions) or dN/dS (the rate of non-
synonymous substitutions rate divided by the rate of
synonymous substitutions) [1-3], correlative ER or dN/

dS [4-6], and similarity in the pattern of protein pre-
sence in the proteomes of a set of organisms [7-9].
Detecting co-evolving sets of orthologs is an important
matter since physically interacting proteins [4,5,10,11]
and functionally related proteins [1,3,6,12,13] tend to
co-evolve. Thus, an appropriate analysis of co-evolving
genes can lead to a better understanding of the evolu-
tion of various cellular processes and gene modules (e.g.
see [14] and [15]).
The most popular approach for detecting co-evolution

is based on phylogenetic profiles [7-9]. It searches* Correspondence: tamirtul@post.tau.ac.il
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groups of orthologs with similar phyletic patterns. The
main disadvantage of this approach is the fact that it
totally ignores the topology of the organisms’ evolution-
ary tree. A similar measure is the Propensity for Gene
Loss (PGL) in evolution [12,13,16]. Genes with lower
PGL have lower ER and tend to be essential for the via-
bility of the organism. It has been proven recently [13]
that orthologs with correlative PGL tend to be function-
ally related.
Another related measure for evolutionary distance is

the difference between the average dN/dS or ER of pairs
of orthologs [1-3]. Using this measure Marino et al.
showed that there is a strong connection between the
function of genes and their evolutionary rates [3]. All
previous approaches for detecting co-evolution have not
considered the fact that gene modules can exhibit strong
patterns of co-evolution in some parts of the evolution-
ary tree while exhibiting a very weak signal of co-evolu-
tion in other periods of their evolution. There may be a
number of reasons for this phenomenon.
First, evolving genes may gain or lose functions (see e.

g. [17]); loss or gain of a new function can move an
ortholog from one co-evolving module to a different
one. Additionally, there may be differences in evolution-
ary pressure acting within ortholog groups in different
parts of the evolutionary tree (see e.g. [18]). Second, the
analyzed biological data may be noisy or partial in some
portions of an evolutionary tree while it can have higher
quality in other parts. In such cases, searching sets of
orthologs with similar evolution along the entire phylo-
genetic tree may result in high false negative rates.
Third, there are co-evolutionary problems that are local
by definition. For example, genes tend to undergo posi-
tive selection in a small fraction of their history (see e.g.
[19]). Thus, if we define co-evolution as a process in
which a set of orthologs undergoes positive selection
together, we should not expect that such type of co-evo-
lution should span the entire phylogenetic tree.
The goal of this work is to study the Local Co-Evolu-

tionary problem. Namely, given a phylogenetic tree
and a set of vectors describing the evolution of ortho-
logous sets along the evolutionary tree we aim to find

sub-sets of orthologs with similar evolution along sub-
trees of the evolutionary tree (see Figure 1C). We for-
malize a new set of Local Co-Evolutionary problems,
study their computational hardness and describe algo-
rithms and heuristics for solving them. A simulation
study shows that these algorithms give much better
performances than popular bi-clustering algorithms for
gene expression. Finally, we generate five relevant bio-
logical datasets and use our computational tools to
analyze them. Three datasets include dN/dS and gene
Copy Number (CN) of thousands of orthologs across
evolutionary trees. The two other datasets include the
dN/dS and CN related to hundreds of signaling path-
ways and protein complexes across evolutionary trees
with dozens of nodes.

2 Definitions and Preliminaries
As was mentioned in the Introduction, in this work the
aim is to find sets of orthologs with similar evolutionary
along parts (subtrees) of the evolutionary tree. In this
section, we formally define this problem. Furthermore,
we define several measures of co-evolution and a few
possible inputs to our problem.
Let T = (V, E) be a tree, where V and E are the tree

nodes and tree edges respectively. In this work, we con-
sider rooted binary phylogenetic trees (i.e. the degree of
each node in the tree is either 1, 2, or 3), and all the
trees that are described in this work are species trees. A
node of degree 1 is named a leaf, a node with degree 3
is named an internal node, and the root has degree 2. A
tree T’ is a subtree of T if it is a connected subgraph in
T. We denote such a relation by T’ ⊆ T. Note that by
the above definition an internal node of a tree T can be
a leaf in the subtree T’ ⊆ T.
A Node Orthologous Labeling (NOL) of a tree T, is a

set of labels (real numbers) for each of the nodes in T;
an Edge Orthologous Labeling (EOL) for a tree T, is a set
of labels for each of the edges in T (see Figure 1). An
Orthologous Labeling (OL, i.e. a NOL or EOL) of a tree
reflects the evolutionary patterns along the tree. Thus,
we also name the OL of a tree: the evolutionary pattern
along the tree.
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Figure 1 A. A hypothetic example of a node orthologous labeling which includes gene copy number in each node of the evolutionary
tree. B. A hypothetic example of an edge orthologous labeling which includes dN/dS along each edge of the evolutionary tree. C. The goal of
the local co-evolutionary problem is to find large sets of orthologs that have similar patterns of evolution across large subtrees of the
evolutionary tree.
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Let S denote a set of OLs in T, and let S’ be a subset
of S. Let Dc(S’, T’) denote a measure for co-evolution
along a subtree, T’ ⊆ T. Such a measure returns a real
positive number which reflects how similar is the co-
evolution of the OLs from S’ along the subtree T’ (0
reflects an identical evolution). Formally, we deal with
versions of the following problem:
Problem 1 Local Co-Evolution
Input: A phylogenetic tree, T = (V, E), a set of NOLs or

EOLs, S = [S1,.., Sm], two natural numbers, n’, m’, a real
number, d, and a measure of co-evolution, Dc(.,.). Ques-
tion: Is there a subtree T’ = (V’, E’) ⊆ T with |E’| = n’, and
a subset S’ ⊆ S with |S’| = m’, such that Dc(S’, T’) ≤ d ?
In the rest of this section we describe a few examples

of NOLs and EOLs, and give a few examples of mea-
sures of co-evolution.
In this work, we analyzed one NOL:
(1) Gene copy number of orthologs, which is the

number of paralogs of a given gene (from a certain
orthologous group) in each node (genome and ancestral
genome) of the evolutionary tree. In general, we can
deal both with absolute values and discrete values of
gene copy numbers. In the discrete case, we are only
interested in whether a certain ortholog appears or not
in each node of the evolutionary tree and not in the
number of times it appears, while in the absolute value
we do consider the number of times each ortholog
appears in each node of the evolutionary tree.
We also analyzed two EOLs:
(1) Non-synonymous substitution rate, dN, divided

by the synonymous substitution rate, dS (i.e. dN/dS).
We examined absolute, discrete, and relative values of
dN/dS. The absolute case is dN/dS (a positive real
number) without additional processing. In the discrete
case, we only consider three possibilities: dN/dS > 1
(positive selection, dN/dS > 1), dN/dS ≈ 1 (neutral
selection, dN/dS ≈ 1), or dN/dS < 1 (purifying selec-
tion, dN/dS <1). In the relative case, we perform an
additional normalization of the dN/dS of each ortholo-
gous group by comparing them to the dN/dS of other
orthologous groups. This is done by computing for

each edge of the tree the rank of the dN/dS of an
orthologous group among the dN/dS of all orthologous
group.
(2) Change in orthologous gene Copy Numbers

(CN) along the tree edges. In this case, we can check
the exact changes or only the direction of the changes
(i.e. if the copy number increases, decreases, or does not
change along an edge).
We analyzed the following measures of co-evolution

(Figure 2; we usually give examples that are related to
dN/dS but with the appropriate changes all the mea-
sures can be implemented on NOLs and on labelings
that are related to CNs):
(1) D S S S S Tc1 1 2 f( [ , ,.., ], )      is the maximal L1 norm

between all the pairs of   S S S f1 2, ,.., along the evolu-

tionary subtree T’. Dc1 measures the similarity of the
absolute values in the OLs (see Figure 2A). Thus, ortho-
logs that have similar dN/dSs along each branch of T’
will have a significantly low Dc1.
(2) D S S S S Tc2 1 2 f( [ , ,.., ], ) | |       1 r , where r

denotes the minimal Spearman correlation among all

pairs of the OL of   S S S f1 2, ,.., along the edges or nodes

of T’. Orthologs can differ in their average dN/dS but
exhibit similar fluctuations in their ER (see Figure 2B).
Dc1 can not discover such pattern of co-evolution but
Dc2, as it finds sets of orthologs with correlative pattern
of evolution, is suitable for this task.

(3)
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where ℓ is a certain labeling. This measure is used for
finding a large subtree and a set of orthologs with iden-
tical labeling along most of this subtree (see Figure 2C).
In this work, we used this measure for finding a sub-

tree where a set of orthologs undergoes positive selec-
tion (i.e. dN/dS >1) together. To this end, we first
performed a two-level discretization of the dN/dS
values; one discrete level was assigned to the dN/dS
above 1 and the second discrete level was assigned to
the dN/dS below 1.
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Figure 2 Illustration of the four measures of local co-evolution (A. Dc1, B. Dc2, D. Dc3 and E. Dc4) along a hypothetical evolutionary tree
(C.). A. In the case of Dc1, the co-evolution score is high when values of all the OLs along a sub-tree are similar. B. In the case of Dc2, the co-
evolution score is high when values of all the OLs along a sub-tree are correlative (i.e. the OLs tend increase/decrease on the same branches). D.
Dc3 is used for finding a large subtree and a set of orthologs with identical labeling along most of a subtree. E. Dc4 is used for finding sets of
orthologs that have similar monotonic/non-monotonic decreasing/increasing evolutionary pattern along a path.
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(4) Dc4(S’, T’): In the case of Dc4(S’, T’), we want to
find a path along the evolutionary tree (i.e. T’ is a path),
and a set of OLs, S’, that have similar monotonic/non-
monotonic decreasing/increasing evolutionary pattern
along the path (see Figure 2D).
Dc4(S’, T’) = d denotes that the maximal number of

components of an orthologous labeling, Si Î S’, that
should be changed in order to fit them to the pattern
that the path induces is less than d. This measure can be
useful for discovering modules of orthologs that exhibit
together acceleration or deceleration in their ER or dN/
dS along a certain evolutionary path due to speciation.

3 Hardness Issues
Hardness issues that are related to the Local Co-Evolu-
tionary problem appear in additional files 1 and 2.
Specifically, in this note, we show that some versions
of the problem are NP-hard, but in practice it seems
that the Local Co-Evolutionary problem has a shorter
running time than the bi-clustering problem which is
highly used in the context of gene expression analysis.
Furthermore, we show that there are versions of the
Local Co-Evolutionary problem that can be solved by a

fixed-parameter tractable (FPT) algorithm or by a poly-
nomial algorithm.

4 Methods
4.1 Heuristics and Algorithms
This section includes a description of the two algo-
rithms that we developed for finding local patterns of
co-evolution. The goal of these algorithms is to find co-
evolving sets with at least m’ OL, that exhibit co-evolu-
tion score <d along a tree with more than n’ edges. The
threshold d determines the sizes of the subtrees in the
solutions. It is easy to see that on average OLs corre-
sponding to larger subtrees have higher co-evolutionary
score. Thus, larger d will result in solutions with larger
subtrees while smaller d will result in solutions with
smaller subtrees.
We designed two main algorithms. The first algo-

rithm, the Tree Grower, starts with sets of orthologs
with similar patterns of evolution along small subtrees,
and expands these initial trees while possibly decreasing
the set of orthologs (Figure 3B). The second algorithm,
the Tree Splitter, finds first sets of orthologs with similar
pattern of evolution along the entire input tree, and
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Figure 3 An illustration of the two algorithms (see the text for more details). A. The input. B. The Tree Grower algorithm. C. The Tree Splitter
algorithm.
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recursively cuts edges from the initial tree while possibly
increasing the sets of orthologs (Figure 3C).
As we demonstrate in the next sections, each of

these algorithms has it own advantages. As the Tree
Grower is a bottom up algorithm, it outperforms the
Tree Splitter in finding sets of OLs that co-evolve
along relatively small parts of the evolutionary tree. On
the other hand, the Tree Splitter is better at finding
sets of OLs that co-evolve along larger parts of the
evolutionary tree.
4.1.1 The Tree Grower Algorithm
Let dg <d, mg >m’, and ng <n’ denote pre-defined
parameters.
The first stage of the Tree Grower algorithm includes

generating a collection of sets of OLs (seeds) that have
a high co-evolutionary score along a small subtree (e.g.

a subtree with around log(n) nodes or edges). The set
of seeds was generated by the FPT procedure that we
described in the previous sections, or by implementing
K-means [20] on the OLs that are induced along each
of the small subtrees. Formally, each set includes at
least mg >m’ OLs that have significant co-evolving score
(dg <d) on small subtrees (trees that have less than
ngedges).
Next, the Tree Grower procedure greedily ‘grows’ solu-

tions with larger subtrees that may have less OLs than
in the initial seeds. This is done by increasing the size
of the trees in the initial seeds while possibly decreasing
the number of orthologs in each set. Each solution
includes at least m’ orthologs that have co-evolution
scores better than d across a subtree with at least n’
edges (see Figure 4 for exact details).

Figure 4 The Tree Grower algorithm for the Local Co-Evolution problem with edge orthologous labelings. A similar heuristic was used for
the Local Co-Evolution problem with node orthologous labelings.
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Let fc(|E|, |S|) denote the running time for computing
Dc(S, T). In the most general case, the running time of
the Tree Grower on an input tree T = (V, E), a set of
OLs, S, and initial set of seeds of size |H| is O((|E| + |
S|)·|S|·|E|·|H|·fc(|E|, |S|)).
4.1.2 The Tree Splitter Algorithm
Let ds >d and ms <m’ denote pre-defined parameters.
In this case, by the FPT procedure and by K-means

we first generated a set of clusters of OLs along the
entire input phylogenetic tree. Each of the initial set of
seeds includes all the edges of the tree but has relatively
low number of orthologs (ms <m’), and high co-evolu-
tion score (ds >d).
Next, at each stage, the Tree Splitter algorithm cuts

edges from the subtree related to each cluster while
greedily increasing the size of the set of OLs that is
related to the cluster. The outputs of the algorithm are
co-evolving sets of orthologs (of size at least m’ ortho-
logs) that have co-evolution scores better than d across
a subtree of size at least n’ (see Figure 5). Let K denote
the initial number of clusters; the running time of Tree
Splitter is |K|·|S|·|E|·fc(|E|, |S|). The Tree Splitter algo-
rithm is usually faster than the Tree Grower.
4.1.3 The parameters used for the algorithms
In the case of the tree grower algorithm, the initial seeds
were generated by performing k-means with k between
10 and the number of OLs divided by 10 (we filtered

similar clusters), and by checking (extending) all possi-
ble paths in the tree. In the case of the tree splitter algo-
rithm, the initial seeds included all the branches of the
tree (and the OLs as before). In the case of the tree
grower, d was at most x = %30 higher than dg, in the
case of the tree splitter, d was at least x = %30 lower
than ds. The minimal size of each solution appears in
the corresponding supplementary table (see additional
files 3, 4, 5, 6, 7, 8, 9 and 10 with the results).

4.2 The Random Trees Used in the Simulation
The random trees used in the simulation were generated
by the following algorithm:
Generate a random tree:

• Start with the set of nodes corresponding to the
tree’s leaves, L.
• While |L| >1:
• - Choose two random nodes, l1 and l2, from L.

• - Merge these leaves to a new node, l1,2 (corre-
sponding to an internal node of the tree).
• - L ¬ L/{l1 ∪ l2} ∪ l1,2

It is easy to see that each such a step can describe an
internal node (l1,2) whose two children are the two
nodes (leaves or internal nodes) that were merged to
generate it (l1 and l2).

Figure 5 The Tree Splitter algorithm for the Local Co-Evolution problem with edge orthologous labelings. A similar heuristic was used for
the Local Co-Evolution problem with node orthologous labelings.
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4.3 P-values and GO Enrichments
4.3.1 P-values
Empirical p-values for a co-evolving set of m’ OLs over
subtrees of size n’, when the input includes m OLs
along a tree of size n, was computed by the following
permutation test: 1) Generate N random permutated
versions of the input, each permutated version is the
result of O(n · m) single random permutations of the
OLs of the original input. 2) Implement the algorithms
for finding co-evolving sets on these random inputs. 3)
Compute the fraction of times the algorithms found a
co-evolving set with larger properties (m’ and n’) than
the original one. In this work we used N = 100 to filter
solutions when we analyzed the biological datasets.
4.3.2 GO-enrichment
GO enrichment of the co-evolving sets was computed
using the GO ontology of S. cerevisiae (downloaded
from the Saccharomyces genome database, http://www.
yeastgenome.org/) and H. Sapiens (downloaded from
EBI - BioMart, http://www.biomart.org/). We used the
algorithm of Grossmann et al. [21] for detecting over-
represented GO terms. All the S. cerevisiae or the H.
Sapiens genes respectively were used as reference for
the enrichments calculations. We decided to use a glo-
bal background (the entire gene set of H. sapiens and S.
cerevisiae) for the enrichment computation since we
believe that part of the signal of co-evolution can appear
in the analyzed datasets themselves. For example, OLs
that exhibit change(s) in their copy number (see, for
example, section 4.5.2) may have higher chance to co-
evolve. Thus, the enrichments reported in this paper
should be related both to the methods that we used and
the datasets we analyzed.

4.4 Implementation
The software for the algorithms (Tree Grower and Tree
Splitter) was written in C++, and the implementation
run on regular PCs (Pentium M, 1400 MHz with 512
MB of RAM, and with Windows XP) and is available
upon request.

4.5 Biological inputs
We analyzed five biological datasets: 1) relative dN/dS of
1, 372 orthologous sets (12, 348 genes) along the phylo-
genetic tree of nine fungi (Figure 6A); we named this
dataset the small fungi dN/dS dataset. 2) Gene copy
number of 6, 227 orthologous sets (56, 043 genes) along
the same phylogenetic tree of the nine fungi (Figure
6A); we named this dataset the fungi CN dataset. 3)
gene copy number of 4, 851 orthologous sets (33, 957
genes) along the phylogenetic tree of seven eukaryotes
(Figure 6B); we named this dataset the eukaryote data-
set. 4) The mean changes in the copy number of 190
complexes along the phylogenetic tree of 17 fungi

(Figure 6C); we named this dataset the large fungi com-
plexes dataset. 5) The mean dN/dS of 85 signaling path-
ways along the phylogenetic tree of seven mammals
(Figure 6D); we named this dataset the mammalian sig-
naling pathway dataset.
The analyzed organisms included eukaryotes and in par-

ticular fungi; horizontal gene transfer events are very rare
in these organisms. Thus, the methods used for inferring
the ancestral families of orthologs, which assume only
gene deletions and duplications, should reliable.
The following subsections include additional details

about each of these inputs. Figures 7 and 8 describe the
protocol used to generate the biological inputs.
4.5.1 The small fungi dN/dS dataset
The small fungi dN/dS dataset was downloaded from [6].
The major stages in generating this dataset included iden-
tifying the phylogenetic tree, generating sets of orthologs
without paralogs, aligning these sets, using maximum like-
lihood for reconstructing the ancestral genes of these
orthologs (the sequences at the internal nodes of the phy-
logenetic tree), and using these orthologs and ancestral
genes for computing ranked dN/dS values along each
branch of the phylogentic tree (as we described in section
2; see also see steps A - G in figure 7).
4.5.2 The small fungi CN dataset
The small fungi CN dataset was downloaded from [6].
This dataset includes sets of orthologs that exhibit at
least one change in their corresponding gene copy num-
ber along the phylogenetic tree. The ancestral copy
numbers for each of these sets were reconstructed by
maximum likelihood. The gene copy number and ances-
tral copy number induce a set of NOLs that can further
be translated to a set of EOLs (as we have described in
section 2; see steps A - G in figure 8).
4.5.3 The eukaryote CN dataset
This dataset includes orthologs from seven Eukaryotes
whose phylogenetic tree appear in figure 6B. The set of
orthologs were downloaded from the COG database [22]
http://www.ncbi.nlm.nih.gov/COG/. The ancestral copy
numbers were reconstructed by CAFE’ [23]. To this end,
we used the edge lengths estimations and phylogeny from
the work of Hedges et al. [24]. Finally, using the copy
number in each internal node, we computed the change in
copy number for orthologous set along each edge to get a
set of EOLs (see steps A - G in figure 8).
4.5.4 The large fungi complexes dataset
This dataset includes the mean CN of complexes in 17
fungi whose phylogenetic tree appears in Figure 6C
The vectors of copy number and ancestral copy num-

ber of orthologs at each node of the large fungi phyloge-
netic tree (Figure 6C) were downloaded from [14]. The
complexes of S. cerevisiae were downloaded from the
Saccharomyces genome database http://www.yeastgen-
ome.org/ and appear in additional file 3.
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For each complex, we computed the mean copy num-
ber of its genes in each internal node and each leaf of
the large fungi tree (Figure 6C). The input to our algo-
rithm was a set of EOLs corresponding to the mean
change in the complexes copy number along the edges
of the evolutionary tree. Figure 8 describes this protocol
used to generate the input.

4.5.5 The mammalian signaling pathway dataset
Figure 7 describes the protocol used to generate this
input. At the first stage, we computed the dN/dS of
mammalian genes along each branch of their evolution-
ary tree (see Figure 6D). To this end, we downloaded
the orthologous groups of the seven mammals that
appear in figure 6D from EBI - BioMart Homology
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Figure 6 The phylogenetic trees of the analyzed biological datasets: A. The small fungi dataset, B. The eukaryote dataset, C. The large fungi
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(BioMart November 2007). We considered only sets that
include orthologs in all these species. Sets of homologs
that did not include exactly one representative in each
organism were removed from our dataset, to filter out
paralogs and avoid potential errors in evolutionary rate
estimation due to duplication events.
In the next step, stop codons were removed from each

gene and the genes were translated to sequences of
amino acids. The corresponding amino acid sequences of
each orthologous gene set were aligned by CLUSTALW

1.83 [25] with default parameters. By using amino acids
as templates for the nucleotide sequences and by ignor-
ing gaps we generated gap-free multiple alignments of
the three orthologous proteins in each orthologous set
and their corresponding coding sequences.
Given the alignments of each set of orthologs and

given the phylogenetic tree of the seven mammals (see
Figure 6D), we used the codeml program in PAML
for the joint reconstruction of ancestral codons [26]
in the internal nodes of the phylogenetic tree. This
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Figure 7 The different steps in generating the small fungi dN/dS dataset and the mammalian signaling pathway dataset.
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reconstruction induced the sequence of the ancestral
proteins and their corresponding ancestral DNA coding
sequences. We hence obtained sets of 12 sequences; 7
from the previous step (corresponding to the 7 leaves of
the phylogenetic tree) plus 5 reconstructed sequences of
the internal node of the phylogenetic tree. We denote
such a set of 12 sequences a complete ortholgous set.
For each complete ortholgous set, we computed the dN
(the rate of non-synonymous substitutions) and dS (the
rate of synonymous substitutions) along each branch of
the evolutionary tree by the y00 program in PAML
[27,28].
In the second stage, we computed the mean dN/dS of

the genes corresponding to each of 85 signaling path-
ways. The set of genes that appears in each pathway was
downloaded from Ingenuity Pathways Analysis web-soft-
ware http://www.ingenuity.com and is depicted in addi-
tional files 4.

5 Results and Discussion
5.1 Synthetic inputs
For evaluating the performances of our algorithms we
designed the following simulation: 1) We generated ran-
dom trees with 12 - 52 nodes by random hierarchical
clustering of the trees’ leaves, and generated random
sets of 1000 - 3000 OLs that are related to these trees
(see the Methods section). The labelings were sampled
from the uniform distribution U [0, 3].
2) In these random inputs, we “planted” solutions,

which are OLs (with 100 - 300 orthologs) that have high
co-evolutionary score (identical co-evolution) in large
subtree (e.g. 5 - 20 nodes) of the input tree. We added
additive noise with uniform distribution U[-0.15, 0.15]
to each component of the “planted” solutions.
3) We implemented the two algorithms, Tree Grower

and Tree Splitter, on these inputs. 4) Currently there are
no other algorithms that were designed specifically for
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Figure 8 The different steps in generating the small fungi CN dataset, the eukaryote CN dataset, and the large fungi complexes
dataset.
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discovering local patterns of co-evolution. Thus, we
compared the performances of the algorithms to two
popular bi-clustering algorithms (SAMBA [29] and the
algorithm of Cheng and Church (C&C) [30]). To this
end, we used two measures of performances: False Posi-
tive (FP) rate, which is the fraction of orthologs (OFP)
or tree branches (BFP) in the output that are not part of
a ‘planted’ solution, and False Negative (FN) rate, which
is the fraction of orthologs (OFN) or tree branches
(BFN) in the ‘planted’ solution that do not appear in the
output. Figure 9 includes a summary of the simulation
study. As can be seen, the performances of our algo-
rithms are very good and far exceed the performances
of the competing bi-clustering algorithms. For example,
when considering all the synthetic inputs, the average
OFN, OFP, BFN, and BFP of the Tree Splitter are 0.002,
0.25, 0.07, and 0.14 respectively. For comparison, the
average OFN, OFP, BFN, and BFP of the algorithm of
C&C are 0.52, 0.76, 0.16, and 0.61 respectively. This
result justifies designing algorithms that are specific for
solving the co-evolutionary problem, instead of using
general bi-clustering algorithms.
Finally, our simulation showed that there are many

inputs where the Tree Splitter algorithm outperforms
the Tree Grower algorithm. However, there are cases
where the Tree Grower gave better results (the intuition
for this phenomenon was given in section 3.1). Thus, we
employed both algorithms in the biological analysis.

5.2 Biological Inputs: Results and Discussion
In this section, we describe our main biological findings.
The full lists of all the co-evolving sets that were found
along with their local co-evolutionary patterns, and their
functional enrichments appear in additional files 5, 6
and 7. The two main goals of this section are: 1) to
describe a variety of biological examples that can be
analyzed by our approach; 2) to depict some new biolo-
gical insights related to this analysis.
The biological datasets describe the evolution of

diverse sets of organisms and OLs, along different time
ranges. The Eukaryote dataset includes both multicellular
and unicellular organisms and describes evolution along
1642 million years. The fungi are unicellular organisms

that appeared 837 million years ago. The mammals are
multi-cellular organisms that appeared 197 million years
ago (see [16,31] for the divergence times of the different
phylogenetic groups).
In the case of the fungi, we analyzed both dN/dS and

CN. The dN/dS dataset includes conserved OLs that
have exactly one ortholog in each organism while the
fungi CN dataset includes OL with varying number of
orthologs in each organism (see section 4.5). In the case
of the eukaryote dataset, we analyzed only CN. In Addi-
tion to the analysis of OLs we also analyzed the local
co-evolution of mammalian signaling pathways (based
on dN/dS) and fungi complexes (based on CN; see sec-
tion 4.5).
The rest of this section includes comparisons between

the different measures of co-evolution and a summary
of our findings in each of the biological datasets. As
mentioned in the methods section, the reported signals
of co-evolution can be attributed both the different
datasets that we analyzed and/or our computational
approach. The fact that some of the signals appear in
more than one of the analyzed dataset demonstrates
that these signals are very robust. On the other hand,
the fact that some enrichment appear in only part of the
datasets may be attributed to the fact that the sets of
OLs in each database are different, to the different mea-
sures of co-evolution that was used, and/or to the differ-
ent type of OLs that was used.
5.2.1 Comparison between the Different Measures
of Co-evolution
The purpose of this subsection is to compare the differ-
ent measures of co-evolution that are described in this
work and to show that they are not redundant. To this
end, we first compared the local co-evolutionary pat-
terns found by the different measures of co-evolution.
We defined two sets of co-evolving OLs to be identical
if they have at least 70% similarity (measured by the cor-
responding Jaccard coefficient [32]) both when consider-
ing their OLs and when comparing the corresponding
set of branches on which they co-evolve. Figures 10A, B,
and 10C include such a comparison. Each table corre-
sponds to one dataset, and each cell in these three tables
corresponds to a comparison of two measures. These

1

0.8

0.6

0.4

0.2

OFN OFP BFN BFP

n = 42

eta
R rorr

E

0
OFN OFP BFN BFP

1

0.8

0.6

0.4

0.2

0

eta
R rorr

E

n = 52 n = 32

eta
R rorr

E

OFN OFP BFN BFP
0

1

0.8

0.6

0.4

0.2

0
OFP BFN BFP

0

0.2

0.4

0.6

0.8

1

n = 12

OFN

eta
R rorr

E

Splitter
Grower
SAMBA
C&C

Figure 9 Simulation study of the algorithms. The figure depicts the average OFP, OFN, BFP, and BFN of the two algorithms (the Tree Grower
and the Tree Splitter), and two bi-clustering algorithms (SAMBA and C&C) for different sizes of input trees (n is the number of nodes in the input
trees). For each size of input trees we averaged the error rates of 100 simulations.
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Figure 10 Comparison between the different measures of co-evolution (A. - C.) and comparison between local and global co-
evolution (D.). A - C: each table corresponds to one dataset, and each cell in these three tables corresponds to a comparison of two measures.
These cells contain the fraction of the results that are not identical when comparing the corresponding plots of our approach; by our definition,
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cells contain the fraction of the results that are not
identical when comparing the corresponding plots of
our approach. By our definition, 0 denotes identical sets
of results while 1 denotes completely non-identical sets
of results. As can be seen, the values in most of the
cells are much closer to 1 than 0, demonstrating that
the different measures of co-evolution are not
redundant.
Our approach can detect regions in the evolutionary

tree where sets of orthologs exhibits co-evolution. By
definition, this can not be done by clustering; we
demonstrate this point in the next sections (see, for
example, section 5.2.3). In this section, we demonstrate
that also the OLs found by local and global approaches
are different. To this end, we compared the results
found by our approach to those obtained by a global
clustering (k-means with various values of k). In this
case, we only compared the OLs in each solution and
used the same definition as described above. We

compared the global and local results for each measure
in each dataset. Figure 11D includes such a comparison.
Again, as can be seen, the values in most of the cells are
much closer to 1 than 0, demonstrating that many of
the results found by our local approach can not be
detected by a global clustering.
5.2.2 Local Co-Evolution of Cellular Processes:
A Global View
The small fungi dN/dS dataset, the small fungi CN data-
set, and the eukaryote CN dataset relate to orthologs
(single genes) and not to complexes/pathways as the
other two datasets. Thus, it is possible to compute func-
tional enrichment for the resulting sets that co-evolve
locally (Methods, subsection 4.3.2).
A summary of these results appears in Figures 11A, B

and 13. As can be seen, 10% - 56% of the co-evolving
sets that we found are functionally enriched. This fact
demonstrates that groups of genes with similar function-
ality tend to undergo local co-evolution.
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Figure 11 A. Summary of the biological results. The number of local co-evolving groups and the number of enriched co-evolving groups (in
brackets) that were found in each of the biological datasets according to each of the co-evolution measures. B. A global view at the co-
evolving functions (GO groups) in the yeast and the Eukaryote datasets, and the appearance time of each of the analyzed biological groups. C.
An illustration of the break in co-evolution along the subtree of the Plantae.
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Figure 11B depicts the main GO functions that were
enriched in the co-evolving sets of OLs in each of the
three datasets. As can be seen, our analysis shows that
there are cellular processes, such as metabolism and reg-
ulation, that exhibit co-evolution in all the three datasets.
Figure 12 includes a concentrated view on the co-evo-

lution of the cellular processes that are related to meta-
bolism and regulation in the three biological datasets.
The figure depicts the regions in the evolutionary trees
where we detected co-evolving sets of OLs that are
enriched with metabolic and regulatory GO functions.
This figure also includes information about the corre-
sponding measures of co-evolution that were used for
detecting each of the co-evolving sets of OLs. As can be
seen, the fact that these two groups of cellular functions

exhibit local pattern of co-evolution is robust to the
type of the OL, the measure of co-evolution, and the
input dataset used.
Additional file 6 includes a comparison between the

co-evolving sets of OLs found by our approach and by
SAMBA for the Fungi dN/dS dataset; it shows that
many cellular functions were found to be enriched by
our approach but not by SAMBA.
5.2.3 Fungi Copy Number and dN/dS
The two fungi datasets are interesting since they enable
us to compare the two types of co-evolution: co-evolu-
tion via similar/correlative dN/dS (Figure 13A), and evo-
lution via similar/correlative gene copy number (Figure
13B). Many metabolic cellular functions (e.g. metabolism
of amino acids), and cellular functions that are related
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to regulation (e.g. translation) exhibit local co-evolution-
ary patterns both via changes in copy number and via
changes in dN/dS. Though the GO enrichments that
appear in Figure 13A and in Figure 13B are similar, it is
important to note that the OLs (and thus the co-evol-
ving sets of OLs) in the two cases are completely differ-
ent. This fact emphasizes the centrality of these
processes in the fungi evolution.
One explanation of this phenomenon is the fact

that fungi datasets includes both anaerobic organisms
(S. cerevisiae, S. bayanus and S. glabrata) and aerobic

organisms (A. nidulans, C. albicans, D. hansenii, K. lac-
tis, and Y. lipolytica) [33]; and the switch between these
two types of metabolism required the co-evolution of
various metabolic processes.
We discovered two regions where many of the fungal

genes underwent positive selection. By definition, such
regions in the evolutionary tree can not be discovered
by global clustering methods. The larger set of OLs (554
orthologs) exhibits positive selection along the branch
(11, 12) (see Figure 13A) probably following the whole
genome duplication event that has occurred at this
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bifurcation [34]. This whole genome duplication event
probably served as a driving force underlying this burst
of positive selection, by relaxing the functional con-
straints acting on each of the gene copies (see for exam-
ple [35]). Interestingly, this branch also partites the
fungi into two groups, anaerobic and aerobic, that were
mentioned above. This fact further supports the central-
ity of metabolism in fungi evolution.
Another set of OLs (11 orthologs) exhibits positive

selection along the subtree with the nodes 13, 14, and
15 (see Figure 13A). The branch between nodes 13 and
14, leads to a subgroup (D. hansenii and C. albicans)
that evolved a modified version of the genetic code [36],
and the branch between nodes 13 and 15 leads to
Y. lipolytica (which is a sole member in one of the three
taxonomical clusters of the Saccharomycotina [37]). All
the results for these datasets appear in additional file 5
and additional file 7.
5.2.4 Eukaryote Copy Number
As mentioned, this biological dataset gives a wider evo-
lutionary view than the fungi datasets. Cellular processes
that are related to metabolism, signaling, and mRNA
processing exhibit co-evolutionary patterns along this
dataset (see Figures 11B and 13). One striking phenom-
enon is that many of these co-evolving sets (87%) exhib-
ited co-evolution (according to all the measures of co-
evolution) along the subtrees of the Animalia and
Fungi, and excluding the subtree of the Plantae (see
illustration in Figure 11C).
It is possible that this result is partially related to the

fact that the analyzed subtrees of the Plantae included
only one organism with relatively high evolutionary
distance from other organisms. However, we also found
two possible biological explanations for this phenom-
enon: First, many gene modules changed their function-
ality after the split between the Plantae and the two
other groups (Animalia and Fungi). Cases where homo-
logous protein complexes in Plantae and Animalia have
rather different functions were reported in the past. For
example, the COP9 signalosome, a repressor of photo-
morphogenesis in Plantae, regulates completely different
developmental processes in Animalia [38,39]. Our ana-
lysis, however, may suggest that this is a wide scale
phenomenon.
Second, it is possible that there is a relatively higher

rate of changes in the protein-protein interactions along
the split between the Plantae and the two other groups
(i.e. more pairs of protein gain/lose new interactions).
Thus, these results suggest that the protein-protein
interaction network of Plantae may be relatively differ-
ent from that of the other groups (see [40] for a com-
parison of protein-protein interaction networks). To the
best of our knowledge, an alignment of the protein
interaction network of a plant and organisms from the

other two groups has not been performed yet. When
such an alignment will be performed, it will be possible
to check this hypothesis.
All the results for these datasets appear in additional

files 8 and additional files 7.
5.2.5 Co-Evolution of Cellular Functions
The functional enrichments of the co-evolving OLs can
teach us about functional interdependencies between
cellular functions and about the co-evolution of cellular
functions. We found many subtrees where sets of OLs
that are enriched with various GO functions exhibited
co-evolution. For example, Translation and Gene expres-
sion exhibited a copy number based co-evolution in the
fungi subtree that is under internal node 12 (Figure
12B), as expected from two coordinated biological pro-
cesses in charge of producing RNA or proteins from the
corresponding genes (DNA sequences).
Additional cellular processes showed coordinated evo-

lution. For example, Translation and Amino acid meta-
bolic process exhibited co-evolution in the Eukaryotes
(Figure 12C) in the subtree that included nodes 1, 2, 3,
4, 5, and 8 (as detected by copy number variations).
The link between these two processes is probably not
direct. A possible explanation is that the evolution of
the metabolism of various Amino Acids (AA) altered
the composition of the AA pool in the fungi cell. These
changes were then followed by a corresponding evolu-
tion of the translation machinery to cope with the new
AA pool.
5.2.6 Co-Evolution of Fungal complexes
We implemented our approach to find groups of com-
plexes that exhibit correlative (Spearman Correlation)
patterns of co-evolution along parts of the Fungi evolu-
tionary tree (Figure 13A; see the Method section).
To discover complexes that co-evolve with other com-

plexes in specific parts of the phylogenetic tree, we
divided the evolutionary tree into the three parts that
are marked in Figure 6C (Hemiascomycota, Euascomy-
cota, and Archeascomycota). Then, we computed for
each complex the number of solutions (co-evolving
groups) that include it in each of these three parts of
the tree (all the results appear in additional files 9). We
focused on complexes whose co-evolution with other
complexes is time dependent (i.e. it is relatively higher
in a narrow part of the evolutionary tree).
We found that several complexes exhibit different

levels of co-evolution with other complexes along differ-
ent parts of the evolutionary tree. For example, the
complexes: Transcription elongation factor and Tran-
scription export which are important for mRNA produc-
tion, as well as the Proteasome core complex sensu
Eukaryota and Proteasome regulatory particle lid sub-
complex sensu Eukaryota, in charge of protein degrada-
tion, exhibit relatively higher level of co-evolution in the
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subtree of the Hemiascomycota. These complexes affect
general protein amounts in the cell at two different
levels, transcription (mRNA formation) and protein sta-
bility (protein degradation). In the sub-tree of the Euas-
comycota we see co-evolution of the Mediator complex
and the U2 snRNP. These two complexes affect mRNA
level by influencing the rate of transcription and the
rate of splicing, respectively. Finally, the SLIK SAGA-like
complex, encoding a chromatin remodelling complex, as
well as the mRNA cleavage factor and the Spliceosome,
involved in mRNA processing, exhibit relatively higher
level of co-evolution in the subtree of the
Archeascomycota.
Notably, all the complexes whose co-evolution was

enriched in specific branches of the tree are involved in
basic gene expression processes at all possible levels
(mRNA creation, stability and processing, protein crea-
tion and stability). A recent work of Man and Pilpel [33]
showed that differential translation efficiency of ortholo-
gous genes can produce phenotypic divergence of Fungi.
Our results may suggest a similar and wider picture
where the co-evolution of various gene expression pro-
cesses is involved in phenotypic divergence.
5.2.7 Co-Evolution of Mammalian Signaling Pathways
Similarly to the previous subsection, we implemented
our approach to find groups of signaling pathways that
exhibit correlative (Spearman Correlation) and abso-
lutely similar (L1 norm) pattern of co-evolution along
parts of the mammalian evolutionary tree (Figure 13B;
see the Methods section).
To discover co-evolution of specific pathways in speci-

fic parts of the phylogenetic tree, we divided the evolu-
tionary tree into the three parts that are marked in
Figure 6D (Rodentia, Laurasitheria, and Primates).
Then, we computed for each pathway the number of
solutions (co-evolving groups) that include that pathway
in each of these three parts of the tree (all the results
appear in additional file 10). We focused on those sig-
naling pathways whose co-evolution is time dependent
(i.e. it is relatively higher in a narrow part of the evolu-
tionary tree).
In this case, we found that in general pathways exhibit

relatively homogenous levels of co-evolution along dif-
ferent parts of the evolutionary tree. However, also in
this case, for the L1 norm, some of the pathways exhibit
accelerated levels of co-evolution in particular branches.
For example, the pathways Toll-like Receptor Signaling,
a pathogen-associated pattern recognition receptor, Cell
Cycle: G1/S Checkpoint Regulation, and Cell Cycle: G2/
M Checkpoint Regulation exhibit relatively higher levels
of co-evolution in the subtrees Rodentia and Laura-
sitheria. Interestingly, in the latter subtree co-evolution
can also be seen between these pathways and IL-6 Sig-
naling, which plays a central role in inflammation. The

association between basic cellular checkpoints and the
response to external insults such as pathogens is intri-
guing and deserves further investigation.
Finally, in the subtree of the Primates we observe co-

evolution of pathways related to neurotransmission and
neuronal evolution (e.g. GABA Receptor Signaling, the
main inhibitory neurotransmitter in mammalian CNS,
TR/RXR Activation, related to activation of the thyroid
hormone, and Amyotrophic Lateral Sclerosis Signaling, a
disorder of the motor neurons).

6 Conclusions
In this work we carried out a large-scale analysis of local
co-evolution. As some of these problems are NP-hard,
we suggested two heuristics for solving them. We
showed that the different measures of co-evolution are
non-redundant. Finally, we demonstrated the biological
significance of the local co-evolutionary problems
through the analysis of five biological datasets. The goal
of this part was to demonstrate how our computational
tools can be used in practice.
In the future, we intend to extend this work in four

directions. First, in this work, we showed that the local
co-evolution is NP-hard when using Dc3 as measure of
co-evolution. It is important to show that detecting
local co-evolution according to the other measures of
co-evolution is also NP-hard. Second, in this work we
described two heuristics for solving co-evolutionary
problems. These heuristics gave very encouraging
results in the simulation study. However, as we believe
that better algorithms are within reach, we plan to
spend more time in designing faster and more accurate
algorithms for solving these problems. A related open
problem is to find approximation algorithms for sol-
ving at least some of the co-evolutionary problems
mentioned.
Third, in this work, we decided to demonstrate our

approach by focusing on four typical versions of the
Local Co-Evolutionary problem. However, the concept
that was described here can be used for solving both
more specific queries (e.g. finding co-evolving sets of
OLs along a subtree that includes at least one leaf)
and more general ones (e.g. a joint analysis of dN/dS
and copy number of orthologs across a phylogenetic
tree).
Finally, generating biological inputs for local co-evolu-

tionary problems is a non-trivial task (see section 4.5
and [6,14,22]) as it includes dozens of preprocessing
steps that should be performed properly. We plan to
use our approach for studying co-evolution across the
entire tree of life. To this end, we intend to generate the
phylogenetic tree and the OLs of hundreds of organisms
(Archaea, Bacteria, and Eukaryota), and to analyze this
input by our approach.
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