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Abstract

Background: Drugs can influence the whole metabolic system by targeting enzymes which catalyze metabolic
reactions. The existence of interactions between drugs and metabolic reactions suggests a potential way to
discover drug targets.

Results: In this paper, we present a computational method to predict new targets for approved anti-cancer drugs
by exploring drug-reaction interactions. We construct a Drug-Reaction Network to provide a global view of drug-
reaction interactions and drug-pathway interactions. The recent reconstruction of the human metabolic network
and development of flux analysis approaches make it possible to predict each metabolic reaction’s cell line-specific
flux state based on the cell line-specific gene expressions. We first profile each reaction by its flux states in NCI-60
cancer cell lines, and then propose a kernel k-nearest neighbor model to predict related metabolic reactions and
enzyme targets for approved cancer drugs. We also integrate the target structure data with reaction flux profiles to
predict drug targets and the area under curves can reach 0.92.

Conclusions: The cross validations using the methods with and without metabolic network indicate that the
former method is significantly better than the latter. Further experiments show the synergism of reaction flux
profiles and target structure for drug target prediction. It also implies the significant contribution of metabolic
network to predict drug targets. Finally, we apply our method to predict new reactions and possible enzyme
targets for cancer drugs.

Background
The dysregulation of the Human metabolism is closely
related to human diseases. Many human diseases are
metabolic diseases, which are directly caused by a defi-
ciency of metabolic enzymes and the subsequent accu-
mulation of toxic substances or the lack of essential
metabolites. Many common diseases such as cardiovas-
cular disease, cancer and diabetes are related to a mal-
function of the human metabolism. The statistics from
OMIM show that around 23% of the metabolic genes
are disease-related genes and more than 48% of
the metabolic reactions are affected by disease-related

genes [1]. The emergence of metabolic diseases has sti-
mulated research in human metabolism and its regula-
tion to discover the mechanism of drug-target
interactions. Enzymes catalyze reactions, which produce
metabolites in the metabolic network of an organism.
Enzyme malfunctions can cause the accumulation of
certain compounds that may result in diseases. In fact,
many enzymes have already been selected as drug tar-
gets [2,3]. An effective drug may target the enzymes to
recover the concentration of signal metabolites that are
in abnormal states. Thus, it is important for drug devel-
opment to identify more enzyme targets.
Recently, significant work has been gradually done to

reconstruct human genome-scale metabolic network,
which provides a unified platform to integrate the
experimental data for genes, proteins, drugs, drug tar-
gets, metabolites and metabolic reactions in the same
system for the study of human metabolism and the
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identification of novel drug targets. Currently there are
two high quality human metabolic networks developed
independently: EHMN reconstructed by Ma et al. [4]
and Human Recon 1 reconstructed by Duarte et al. [5].
Note that Human Recon 1 has been adapted for flux
analysis while EHMN has not. In our study, we use
Human Recon 1 since our method is based on flux ana-
lysis. A metabolic network consists of three parts of
metabolic information: 1) stoichiometry; 2) the relation-
ships between enzymes and metabolic reactions; and 3)
flux capability of each metabolic reaction. Stoichiometry
provides the quantitative relationships between reactants
and products for all metabolic reactions, and the rela-
tionships between enzymes and metabolic reactions
identify enzymes that catalyze each reaction. In the
Human Recon 1 metabolic network, 2299 (61%) of the
total 3742 metabolic reactions are catalyzed by enzymes,
which we call enzymatic reactions.
One traditional approach to analyze a metabolic net-

work is constraint-based flux distribution prediction,
which employs stoichiometric, thermodynamic, flux cap-
ability and other constraints to determine the space of flux
distributions. One commonly used constraint-based
approach is Flux Balance Analysis (FBA), which utilizes
stoichiometries to predict a network’s ability to produce
pseudo-steady state conditions [6]. Recently, Shlomi et al.
[7] proposed a computational constraint-based method for
systematically predicting human tissue-specific metabolic
behavior in ten human normal tissues by integrating the
human metabolic network with tissue-specific gene and
protein-expression data. Although their work was focused
on gene activity prediction in a specific tissue, their
method provided a way to connect the states of metabolic
reactions in the metabolic network with specific cellular
environments. This motivates us to profile each metabolic
reaction by analyzing its fluxes in different cellular envir-
onments such as NCI-60 cancer cell lines. Thus, each
reaction can be represented as its reaction fluxes in the
different cells. This is the reaction representation method
what we call reaction profiling. By this method, we can
construct the flux similarity between the reactions and
then further use the machine learning methods to analyze
their properties in the metabolic network.
A promising approach in drug target discovery

involves the integration of available biomedical data
through mathematical modeling and data mining. Signif-
icant work [8-11] has been done on drug discovery by
integrating different data sources including gene expres-
sion data, protein sequence, mass spectrum, chemical
structure, drug response and side effects. However, few
papers discussed the integration of these data with the
human metabolic network. Almaas et al. [12] applied
flux-balance analysis to identify a set of metabolic reac-
tions forming a connected metabolic core and found

that the enzymes catalyzing the core reactions display a
considerable higher fraction of phenotypic essentiality
and evolutionary conservation than those catalyzing
noncore reactions. This implies the importance of
understanding the properties of metabolic reactions.
They also found that most current antibiotics interfering
bacterial metabolism target the core enzymes and
implied that metabolic reactions play an important role
in drug-target discovery. Sridhar et al. [13,14] formu-
lated an optimal enzyme combination identification pro-
blem on metabolic networks, but the focus was to select
a subset of enzymes that can reduce the amount abnor-
mally accumulated metabolites. In this paper, we pro-
posed a supervised method by integrating the human
metabolic network and gene expression to predict new
related reactions for old drugs. We first constructed sev-
eral similarity measurements for enzymatic reactions
(flux similarity mentioned above and structure similarity
discussed later), and then applied machine learning
approaches to predict novel drug-reaction interactions
based on their known interactions, which are obtained
from known drug-target interactions. We also con-
structed a Drug-Reaction Network (DRN) based on
these known interactions to get a deeper understanding
of the influences of drugs on the metabolic network.
Thus our drug-target prediction procedure is mainly
that we first did reaction profiling and meanwhile
extracted known drug-reaction interactions, and then
used machine learning approaches to predict new drug-
reaction interactions. There are two innovations in our
method. The first is that we constructed the DRN and
predicted drug targets by predicting the interactions
between drugs and metabolic reactions. Drugs are con-
sidered to influence several enzymatic reactions, since
they can interact with enzymatic reactions through their
targets as enzymes. Thus, a bipartite network between
drugs and enzymatic metabolic reactions (named as
Drug-Reaction Network) can be constructed. This net-
work shows the influences of drugs on the metabolic
reactions and the metabolic pathways from a global
view. The second innovation of our method is the new
concept of reaction profiling for each metabolic reaction
and the new measurement for reaction similarity in the
context of a specific disease, such as cancer. By this
method, each reaction can be represented quantitatively
as its flux states in NCI-60 cell lines, and thus computa-
tional models can be used to predict novel drug-reaction
interactions for cancer drugs, which leads to the discov-
ery of their novel drug targets. We also further improve
the performance by integrating target sequence data
with the reaction profiling, and the results show the
synergism of structural similarity and functional similar-
ity between reactions for drug reaction/target interaction
prediction.
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Methods
Data and softwares
The genome-scale human metabolic network recon-
structed by Duarte et al. [5] consists of 2766 metabo-
lites, 3742 reactions and 1905 genes. We downloaded
the data from the BiGG database http://bigg.ucsd.edu/.
The COBRA toolbox [15] developed by Palsson’s group
was then used to parse the data. Gene expression data
(mRNA:Affy-U133B, GCRMA-normalized) in NCI-60
cell lines conducted by Shankavaram et al. [16] was
downloaded from NCI website. In fact, only 59 cell lines
have available gene expression data. We also down-
loaded protein sequence data from KEGG database [17],
and computed the protein sequence similarities using
Smith-Waterman method by Matlab. Drug-target asso-
ciation data was downloaded from DrugBank. In the
process of constraint-based flux analysis, we used the
freely available software, GLPK solver, to solve LP/MILP
problems. In the following subsections, we will discuss
the details of the two models: The Linear Programming
(LP) Model for flux analysis and The Kernel KNN
Model for drug-reaction interaction prediction.

Linear programming model for flux analysis in NCI-60 cell
lines
A network-based method is proposed by Shlomi et al.
[7] to predict human tissue-specific metabolic behavior
in ten tissues by integrating tissue-specific gene and pro-
tein expression data with the global human metabolic
network, and their work reveals a central role for post-
transcriptional regulation in shaping tissue-specific
metabolic activity profiles. This inspires us to analyze
cell line-specific metabolism based on gene expression
data in NCI-60 cancer cell lines. By integrating the
metabolic network and the cell line-specific gene expres-
sion, we can predict reaction flux and activity for all the
reactions in each cell line by our proposed linear pro-
gramming model. Thus, each metabolic reaction in the
metabolic network has 59 flux levels in 59 cell lines.
Reaction profiling is the procedure to represent each
reaction as its flux values in NCI-60 cell lines.
For a specific cell line, we first identify highly/lowly

expressed genes based on the gene expression data in
this cell line. Then for each metabolic reaction, if one of
its enzyme genes is highly expressed, the reaction is
considered as highly expressed. If all of its enzyme
genes are lowly expressed or undetermined, the reaction
is considered as lowly expressed or undetermined,
respectively. The boolean gene-to-reaction mapping can
be obtained from the metabolic network model. Thus,
based on the expression states of the corresponding
genes, all the reactions are classified into a highly
expressed subset RH, a lowly expressed subset RL and an

undetermined subset. We revised Shlomi’s Mixed Inte-
ger Linear Programming (MILP) model to a Linear Pro-
gramming (LP) model by relaxing the integer variables
yi
+ and yi

- to be continuous. The reasons for the relaxa-
tion are twofold. First, the relaxation allows the activity
score of reactions to be continuous rather than binary
value, which is more reasonable and flexible. Second, LP
model is much easier to handle than MILP model. The
LP model is presented as follows:
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where v is the flux vector in the considered specific cell
line for all reactions, S is the stoichiometric matrix
obtained from the metabolic network, and ε is a flux
threshold. The flux threshold is to control the distri-
bution of the likelihoods yi
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expressed reaction is considered to be more likely to be
active if it carries a significant positive flux that is greater
than a positive threshold ε or a significant negative flux
< -ε. Lowly expressed reactions are considered to be
more likely to be inactive if they carry almost zero meta-
bolic flux. Flux threshold ε = 1 is used throughout the
experimental analysis although its changes did not make
a big difference in the results. For a highly expressed
reaction i, yi

+ and yi
- are the likelihood that reaction

i is active in either direction. Their closeness to one
means i is likely to be active, while the closeness to zero
means it is likely to be inactive. For a lowly expressed
reaction i, yi

+ represents the likelihood that it is inactive.
We first apply LP model in each of NCI-60 cancer cell
lines to predict flux distribution for all the metabolic
reactions, and then, we can obtain for each reaction its
flux profile in these 59 cancer cell lines.

Reaction flux similarity
We denote the set of considered reactions as R, and
define ΓRDR and ΓRER as follows: ΓRDR/RER = {(i, j) Î R × R|
i, j are associated with same Drugs/Enzymes}. ΓRDR
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includes all reaction pairs that are associated with the
same drugs, while ΓRER includes all reaction pairs asso-
ciated with the same enzymes. Based on any reaction
similarity metric s, we can define the conditional
probability:

P t P i j s i j t

P i j s i j t

P s i j

D RDR

RDR

( ) {( , ) , }

{( , ) , , }
{ ,

= ∈ >

= ∈ >
Γ

Γ
| ( )

( )
( ))

| ( )
( )

,

>

≈ ∩ ∈ × >
∈ × >

t

i j R R s i j t

i j R R s i j t
RDR

}

| {( , ) , }|
|{( , ) | , }|

Γ

where |S| is the number of elements in set S, and s
(i, j) is the similarity between reaction i and j. PE(t) is
defined in the same way. PD(t)/PE(t) are conditional
probabilities that a pair of reactions share the same
drugs/enzymes if their similarity score is larger than t.
An ideal similarity metric s makes pairs of reactions
with larger similarity score share the same drugs/
enzyme with higher probability. This means the s-based
conditional probabilities PD(t)/PE(t) should be increasing
functions of t.
We now define a similarity metric based on reaction

flux profiles and then check whether it’s a possible ideal
metric. The flux of reaction i in jth cell line, fij, can be
obtained from the optimal solution v of the above linear
programming model for jth cell line. We represent the
profile for reaction i as fi = [fi1, ..., fij,..., fi,59]

T. Each reac-
tion is thus profiled using its 59 flux values in NCI-60
cell lines, and can be considered as a data point in 59-
dimensional flux feature space. We use cosine similarity
(discussed more in Additional file 1) of reaction flux
profiles to measure the similarity among metabolic reac-

tions: s ( )RF
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flux (RF) similarity between reaction i and j. It turns out
in the results section that, sRF-based probabilities PD(t)/
PE(t) are increasing with t, thus the similarity metric sRF
is likely to be an ideal metric for drug-reaction interac-
tion prediction.

Reaction structure similarity
Denote the set of target enzymes for reaction i by Mi. Tar-
get sequence (TS) similarity for protein s and t is denoted
by sTS (s,t) (normalized to be between 0 and 1). Then the
reaction similarity for reaction i and j based on target
sequence is defined as the maximum, average or minimum
of all the possible enzyme target sequence similarities
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reaction structure (RS) similarity sRS since it is defined
based on enzyme targets’ structure.
sRF measures the functional similarities among reac-

tions, while sRS measures their similarity based on
enzyme targets’ structural information. The integration
of sRF and sRS may provide an optimal measurement.
Thus we define a new reaction similarity sR as the
weighted sum of reaction flux similarity and reaction
structure similarity: sR (i, j)=lsRF(i, j) + (1 - l)sRS(i, j) for
any reaction i and j.

Kernel KNN model
For a specific drug, we can obtain its true interactions
with m reactions from known drug-target interactions.
We aim to predict whether a new metabolic reaction
interacts with the drug or not. Here we propose a Ker-
nel KNN (K-Nearest Neighborhood) method for this
binary classification problem using the similarities
between reactions. We denote xi = 1 if the drug has
interaction with the reaction i, xi = 0 otherwise, for i =
1,...,m. Then, for a new metabolic reaction, we predict

its interaction with all drugs as x
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where s is a reaction similarity metric, s(new, i) repre-
sents the similarity between the new reaction and reac-
tion i and N{k} is the set of k reactions nearest to the
new reaction under the meaning of the metric s. s can
be sRF, sRS or their integration sR. Here xnew is called the
association score of the new reaction and the specific
drug. Higher association score indicates a higher prob-
ability of the reaction interacting with the drug. Kernel
KNN is a kernel version of KNN classification method.
Note we still call this model as Kernel KNN method
even if s may not be positive semi-definite. Both KNN
and Kernel KNN classify a new point simply through its
nearest neighborhood. However, Kernel KNN considers
the weight of voting from different individuals in the
neighborhood.

Results and discussion
Drug-Reaction Network construction
The flow chart of the whole task of drug reaction/target
prediction using reaction flux similarity is shown in
Figure 1. This task involves four stages including flux
analysis, reaction profiling, drug-reaction interaction pre-
diction and drug-target prediction. In the first stage,
metabolic reactions in the metabolic network are first
classified as highly or lowly expressed based on the
expression levels of the genes which encode the enzymes
catalyzing the reactions. Integrating the classified reac-
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tions with metabolic stoichiometry, the LP model is used
to predict the flux distribution for metabolic reactions in
the different cellular environments of 59 cancer cell lines.
After generating reaction profiles in stage two by putting
reaction fluxes of 59 cell lines together, reaction flux
similarity is constructed to measure the similarities
among reactions functionally. With reaction flux similar-
ity and their known interactions with drugs, stage three
applies the proposed Kernel KNN model to predict novel
drug-reaction interactions. The last stage is to obtain
novel drug targets using the hints from drug-reaction
interactions. In this section, we discussed how to con-
struct the Drug-Reaction Network based on the known
drug-target interactions, and then reported some results
from the analysis of this network.
Although relationships between drugs and targets have

been depicted in a global view [18], the relationship
between drug and enzymatic reactions remains

uncharacterized. The effect of a drug on human meta-
bolism takes place through its target protein, which, as
an enzyme, can catalyze its corresponding metabolic
reactions directly. Thus, if any target of a drug catalyzes
a reaction as an enzyme, the drug can interact with the
reaction through the enzyme target and the reaction is
considered to be a target reaction of the drug. An illus-
trative example is shown in Figure 2. The green circle,
yellow rectangle and red triangle represent drug, protein
and reaction, respectively. Black edges and green edges
indicate drug-target relationships and reaction-enzyme
relationships. We consider two approved anti-cancer
drugs DB01097 (Leflunomide) and DB00179 (Masopro-
col). From the Figure 2, we can see that DB01097
interacts with reaction R_DHORD9 through the
enzyme target DHODH, and DB00179 interacts with
R_ALOX15 through the enzyme target ALOX15. Both
drugs interact with R_ALOX52 and R_AL0X5 through

Figure 1 Flow chart for drug-target prediction. The 4-stage task includes flux analysis, reaction profiling, drug-reaction prediction and finally
drug target prediction.
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ALOX5. The blue solid edge between two reactions in
Figure 2 indicates that two reactions interact with the
same drug through different enzyme targets, while the
blue dashed edge means that two reactions interact with
the same drug through the same enzyme targets.
We constructed a Drug-Reaction Network (DRN) to

depict the interactions between the approved drugs and
metabolic reactions. We used Cytoscape [19] to show
the network in Figure 3. The nodes in DRN include
drugs and enzymatic reactions, and the edges between
drugs and reactions indicate their interactions. Two
kinds of data are required to construct this bipartite
graph: drug-target interaction data, which was obtained
from the DrugBank [20] database, and gene-to-reaction
mapping data, which was obtained from metabolic net-
work Human Recon 1 reconstructed by Duarte et al. [5].
All drug-reaction interactions and the corresponding
enzyme targets are listed in Additional file 2, Table S1.
The resulting Drug-Reaction Network includes 339
(23%) of 1492 whole approved drugs, 811 (35%) of 2299
enzymatic metabolic reactions, 338 enzyme targets and
1800 interactions between drugs and reactions. Figure 4
shows the degree distribution in DRN. We report the
numbers of nodes (both drugs and reactions, reactions
only and drugs only) with different degrees from 1 to

20, which are the network degree distribution, reaction
degree distribution and drug degree distribution, respec-
tively. There are 80% of the drugs and 95% of the reac-
tions in DRN with a degree less than 5. Maximal degree
of the drugs and reactions are 112 and 35, respectively.
We also colored all the drug nodes in Figure 3 accord-
ing to the Anatomical Therapeutic Chemical (ATC)
Classification of drugs. Detailed classification informa-
tion for each drug and statistics in DRN is shown in
Additional file 2, Table S2 and Table S3, respectively).
We found that around half of the approved drugs in
DRN are for metabolic diseases, cardiovascular diseases
and antineoplastic drugs. This implies that among all 14
classes of drugs, these three classes are related to meta-
bolic network most closely. We also found that DRN has
29 (50% of total) approved drugs for Musculoskeletal dis-
eases, 67 (40% of total) approved drugs for Cardiovascu-
lar diseases, 46 (31% of total) approved metabolism
drugs, 13 (30% of total) approved drugs for blood dis-
eases and 32 (26% of total) approved antineoplastic
drugs. Large percentage of these drugs in DRN shows
that it may be a good way through DRN to get deep
understanding of the mechanism of these drugs. Particu-
larly, for metabolism drugs, we found that targets of the
remaining are related to metabolism by their own specific

Figure 2 An illustrative example of the relationship between drugs, enzyme targets and metabolic reactions. Green circle, yellow
rectangle and red triangle represent drug, protein and reaction, respectively. Black edge and green edge indicate drug-target interaction and
reaction-enzyme relationship. The blue solid edge between two reactions indicates that two reactions interact with the same drug through
different enzyme target, while blue dashed edge means that two reactions interact with the same drug through the same enzyme targets.
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protein function, but not by catalyzing metabolic reac-
tions as an enzyme, thus this part of metabolism drugs
are not involved in DRN. In order to illustrate which
pathways the drugs interact with, we also colored meta-
bolic reactions according to their pathways. The most
frequent pathway in DRN is transport. 145 metabolic
reactions of total 811 reactions in DRN are related to
transport pathways. Note that in the BIGG database,
there are six types of transport pathways: Lysosomal
Transport, Mitochondrial Transport, Endoplasmic Reti-
cular Transport, Extracellular Transport, Nuclear Trans-
port and Golgi Apparatus Transport. For simplicity, we
combine all these six transport pathways to one pathway
as transport in Figure 3. The less frequent pathways are
Carnitine shuttle (99), Keratan sulfate (44), Folate Meta-
bolism (39), Tyrosine metabolism (33), Nucleotides (33)
and Steroid Metabolism (30). Thus, Figure 3 illustrates

not only the interactions between the cancer drugs and
enzymatic reactions, but also the pathways each drug
interacts with.
From Figure 3, we can see that the resulting network

is naturally clustered by major therapeutic classes and
major pathways, although DRN layout is generated with-
out the knowledge of drug classes and reaction classes.
The clustering of drugs may be mainly because they
have the same targets. The most obvious cluster of
drugs is the tightly connected drugs for the nervous sys-
tem. Antineoplastic drugs, drugs for blood diseases,
metabolic diseases, cardiovascular diseases, respiratory
diseases and Musculoskeletal diseases are also clustered
together, although less distinct than the cluster of drugs
for nervous system. Reactions are clustered less
obviously than drugs. The most obvious cluster of meta-
bolic reactions is reactions related to folate metabolism

Figure 3 Drug-Reaction Network (DRN). DRN is generated by using the known interactions between approved drugs and their target
reactions. Circles and triangles correspond to drugs and reactions, respectively. An edge between a drug node and a reaction node is placed if
the drug targets at least one enzyme of the reaction. The area of the drug (reaction) node is proportional to the number of reactions (drugs)
the drug (reaction) interacts with. Drug nodes are colored according to their Anatomical Therapeutic Chemical Classification, and reactions are
colored according to their subsystems obtained from human metabolic network data.
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and vitamin metabolism. Further observation from Fig-
ure 3 is the relationship between drug classes and reac-
tion pathways. Most of the neurological drugs, blood
drugs and cardiovascular drugs are connected with
transport reactions. Many cancer drugs and some of
cardiovascular drugs are related to the nucleotides
reactions.

Reaction profiling
Reaction profiling we propose here is a method to quan-
tify metabolic reactions. Using this method, the profile
for each metabolic reaction is identified by its flux states
in different cellular environments. Compared with the
traditional equation representation of metabolic reaction,
this new representation makes quantitative analysis of
reactions obviously easier. In each of NCI-60 cell lines,
LP model was used to predict metabolic flux distribution
for all the metabolic reactions based on gene expression
data in the cell line. Thus, each metabolic reaction was
only designated one profile as its signature, which was
used to quantitatively measure the similarity among reac-
tions and thereby for prediction of novel drug-reaction
interactions. We only focused on enzymatic reactions

since only enzymatic reactions have direct interaction
with drugs through enzymes. Around 2299 of total 3742
metabolic reactions in the human metabolic network can
be catalyzed by enzymes. Some of the enzymes in meta-
bolic network have been identified as drug targets.
Among the 811 enzymatic reactions in DRN, the flux
analysis shows that 400 reactions are inactive (-1 < flux <
1) in NCI-60 cancer cell lines. We only consider 353
reactions that are active in at least one cancer cell line.
We report, in Figure 5, the heat map of these reaction
profiles using cosine similarity and complete linkage
algorithm. Red and green indicates different directions of
metabolic reactions, while black indicates a flux value
very close to zero. From the figure, we can see that both
the enzymatic reactions and cancer cell lines cluster as
two major groups. Especially, for enzymatic reactions,
one group involves reactions with many positive fluxes
(red), while the other group involves reactions with many
negative fluxes (green). Note that very few differences
between cell lines can be seen in some metabolic reac-
tions, which may be due to the common biological prop-
erties of cancer cell lines, for example, uncontrolled
growth, invasion, and sometimes metastasis. Although

Figure 4 Degree distribution in Drug-Reaction Network: Red represents the histogram for all nodes in DRN. Green and blue represent
the histograms for drug nodes and reaction nodes, respectively.
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the two groups of cell lines are not as distinct as reac-
tions due to these common properties, they may imply
further study for these cancer cell lines.
To understand more about the relationship between

reactions, enzyme targets, and drugs, we listed a table
(Additional file 3) with reaction pairs in DRN that share
the same associated drugs, their reaction flux similarity
scores, their common enzymes, and their common asso-
ciated drugs. Different reactions can interact with the
same drugs in two ways. One is through the same
enzymes, while the other is through different enzymes
that are targets of the same drugs. Denote the set of the
353 considered reactions as R. The analysis shows that
3744 pairs of reactions ΓRDR share the same drugs while

670 pairs (ΓRER) share the same enzymes.  = | |
| |

Γ
Γ

RER

RDR
is

defined to represent the percentage of reaction pairs
that are associated with the same drugs through the
same enzyme targets. b = 670/3744 = 0.18 indicates that
around 18% reaction pairs interact with the same drugs
because they are catalyzed by common enzyme targets,
while the remaining 72% pairs interact with the same
drugs through different enzyme targets. We also found
that if reaction flux similarity is larger than 0.9, more
than 50% of reactions interact with same drugs through
the same enzymes. Figure 6A shows b increases as the
cutoff value of reaction flux similarity increases. This
means that if the reactions are more similar, they are
more likely to interact with same drugs through same
enzymes rather than through different enzyme targets.
Figure 6B illustrates how the probability of reactions
interacting with the same enzymes/drugs changes with

Figure 5 Heat map of metabolic reaction profiles using complete linkage algorithm. Rows represent different reactions, and columns
represent different cell lines. Red and green indicate different directions of metabolic reactions, while black indicates a flux value very close to
zero.
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their similarity scores of reaction flux profiles. Although
the maximum value of the probability is only around 0.4
for drugs and around 0.3 for enzymes due to the sparse
relationship of drugs and reactions, it shows that reac-
tion pairs with larger reaction flux similarity are more
likely to interact with same drugs/enzymes. The obser-
vation implies that two reactions sharing high flux pro-
file similarity tend to interact with same drugs/enzymes.
One possible explanation is that, two highly similar
reactions measured by reaction flux similarity may have
functionally common properties in the context of cancer
cell lines, thus the interaction of one with a drug may
imply the interaction of the other with the drug. There-
fore, for drug-reaction interaction prediction, it should
be an effective way to depict the reaction space by reac-
tion flux profile.

Drug-Target interaction prediction by reaction flux
similarity
We used two kinds of information for drug target pre-
diction: 1) target similarity and 2) known drug-target
interactions. Machine learning algorithms were first
used to predict drug-reaction interactions, which then
lead to novel drug-target interactions. The basic
assumption is that if a drug is predicted to interact with
a reaction, the enzyme catalyzing the reaction is likely
to be the target of the drug. For the metabolic reactions,
the constraint-based flux analysis in NCI-60 cell lines
were first applied to obtain reaction profiles. Reaction
flux similarity is then defined as the cosine similarity
among reaction flux vectors. All the known drug-reac-
tion interactions are obtained from the DrugBank data-
base. Since we represent each metabolic reaction based

on NCI-60 cancer cell lines, we focused on 32 cancer
drugs in DRN to perform cross validation of the predic-
tion method. We eliminated the reactions that have
inactive flux states (-1 < flux < 1) in all the 59 cell lines.
Training set includes 260 metabolic reactions. We
denote this dataset as SET-I, which contains 32 cancer
drugs, 260 metabolic reactions in DRN and their ground
truth interactions. We also generated the dataset, SET-
II, which includes 32 cancer drugs, available expression
in NCI-60 for genes encoding 629 targets and their
ground truth interactions. SET-I was used to predict
drug targets through target reaction classification based
on target reaction similarity, while SET-II was through
target gene classification based on target gene similarity.
In the process of classification, both proteins and reac-
tions are considered as drug targets.
Different classification methods were performed on

both SET-I and SET-II, such as Nearest Profile, Bipartite
graph model [8], Support Vector Machine (SVM),
K-Nearest Neighbor (KNN) and Kernel KNN. Nearest
Profile simply assigns new target to the drug class labels
of its nearest neighbor. Bipartite graph model first mea-
sures the similarity among all nodes in the bipartite net-
work by their shortest paths, then maps all the nodes
into a common space preserving the distances among all
nodes. A new reaction target is mapped to the common
space first, and then correlation with all drugs is calcu-
lated. Large correlation indicates high probability of
drug-target interaction. For SVM, we used a Radial
Basis Function (RBF) as kernel.
Table 1 shows the prediction results of drug-target

interaction. Mean AUCs (Area Under Curves) for 50
times are reported for each method and each dataset.

Figure 6 Analysis for reaction flux similarity sRF. 6A: the change of b as the cutoff value of reaction similarity changes; 6B: PE(t) and PD(t) are
increasing functions of t.
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From the table we can see that the performance of drug
target prediction through target reaction similarity is
much better than through target gene similarity for
almost all classification approaches (Note that when
using the KNN classification approach, the perfor-
mances of two methods are similarly bad). This implies
that the metabolic network provides important and use-
ful information for the drug target prediction. It also
indicates that target reactions are easier to be classified
than target genes. Among all the target reaction classifi-
cation methods we used, Kernel KNN performs best. Its
AUC can reach 0.85. The second best classification
method is SVM, AUC of which can reach 0.81. One
possible reason to explain why Kernel KNN is better
than SVM is that the interactions between drug and tar-
gets are very sparse, which can cause the relatively bad
performance of SVM. Bipartite graph model performs
badly due to the sparse interactions between drugs and

targets. The result also proves that reaction profiling is
an effective approach to quantify metabolic reactions,
and the similarity measured in this way is meaningful
for drug target prediction.

Integration with target sequence data
In Figure 7 we report the prediction performances of
the three reaction structure similarities s sRS RS

avgmax , and
sRS
min using Kernel KNN method. We can see that

among the three similarity measurements, sRS
max per-

forms the best. We then further evaluated the prediction
performance by integrating reaction flux profiles with
target sequence. Figure 8 reports the prediction accuracy
of Kernel KNN method using the integrated reaction
similarity sR = lsRF + (1 – l)sRS, where s =sRS RS

max . We
performed 50 times 10-fold cross validation of Kernel
KNN for each combination of k = 1 ~ 100 and l =
0,0.1,0.2,...,1, where k is the parameter in Kernel KNN

Table 1 Drug target Prediction Performance

AUC Nearest Profile KNN Bipartite SVM-RBF Kernel KNN

Target Gene Classification 0.6267 0.6570 0.4994 0.7791 0.6263

Target Reaction Classification 0.6911 0.6589 0.5276 0.8136 0.8469

Figure 7 Comparison of the kernel KNN method with different reaction structure similarity smax
RS, savgRS and smin

RS. The three curves show
how the corresponding prediction AUCs change when the parameter k changes.
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method and l is the weighting of reaction flux similarity
mentioned in the section of Methods. Figure 8A is a
heat map for all the mean AUCs by corresponding k
and l. It shows that the maximum prediction accuracy
is obtained around k = 20 and l =0.1 ~ 0.3. In fact, the
best AUC can reach 0.92 and the worst AUC is around
0.66. Figure 8B further plots the l-paths of the heat
map. When l = 0, only enzyme target sequence is used
for classification, while when l = 1, only reaction flux
profile is used. From the figure of l-paths we can see
that l-paths for l = 0.1 ~ 0.6 are almost always higher
than l-path for l = 0, this means the integration of
reaction flux with target sequence makes the classifica-
tion performance better, for almost all k = 10 ~ 100.
We also performed the t-test on the respective 50 AUCs
of l = 0 and l = 0.2 when k = 20 is chosen, the result-
ing p-value of 1.17 e-028 shows the difference is statisti-
cally significant. The synergism of reaction flux profiles
and enzyme target sequences further supports that reac-
tion flux similarity obtained by reaction profiling does
help for exploring the associations between drugs and
reactions or targets. Figure 8 shows that l = 0.1 ~ 0.3
are best choice for the classification model. From the
figure of l-paths of the prediction performance, we can
also see that the changes of the performance by k at
around l = 0.1 ~ 0.3 is much less than l = 0 and l = 1,
this means the prediction becomes more stable after the
integration of two data sources.
We also further compare the prediction results of the

methods using l = 0 and l = 0.2 by removing metabolic
reactions one after another from the training data and
then predicting its associations with all the drugs. This is

the Leave-One-Out method. We chose k = 20 for the
validation. The prediction AUC by the methods using l
= 0 and l = 0.2 is 0.83 and 0.85, respectively. This shows
that the integration of flux information can improve the
prediction accuracy. For each reaction, we further
reported in Additional file 4 its related drugs with asso-
ciation score larger than the cutoff value 0.35. There are
24 and 27 predicted drug reaction pairs for the methods
with l = 0 and l = 0.2, respectively. Although the two
methods have 13 common predicted drug-reaction pairs,
with 11 true positives and 2 false positives, their results
have some differences. By the method with l = 0.2, we
can get 12 other true positives and only 2 false positives,
while with l = 0 we can get 3 other true positives and 8
false positives. Specifically, the method with reaction
structure similarity cannot identify the targets AMPD1,
AMPD2, AMPD3, GMPR, GMPR2, GMPS, HPRT1,
IMPH1 and IMPH2 of azathioprine and mercaptopurine,
and the target ABCC1 of daunorubicin, while the integra-
tion of the reaction flux similarity can identify the rela-
tionships by leveling up the their association scores. For
example, ABCC1, the multidrug resistance protein 1(also
known as MPR1), is one of the approved targets [21-23] of
daunorubicin. It can be re-identified if we integrate reac-
tion flux information and reaction enzyme structure infor-
mation. Belonging to the ATP-binding cassette (ABC)
superfamily of transport proteins, ABCC1 can confer resis-
tance to daunorubicin in human tumor cells. MRP1 is
expressed in normal tissues acting as an efflux pump for
glutathione, glucuronate, and sulfate conjugates and may
thus influence the pharmacokinetic properties of many
drugs. The intracellular accumulation of daunorubicin is

Figure 8 The prediction performance by the integration of reaction profiles with target sequence. 8A: The heat map of the mean AUCs
at all considered l and k. 8B: The l-paths of the heat map.
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decreased and the efflux of daunorubicin is increased in
the transfectant. Furthermore, the reaction flux similarity
can also avoid the false positives produced by reaction
structure similarity by depressing corresponding associa-
tion scores.
We then predict new reactions and enzyme targets for

the cancer drugs by Kernel KNN of k = 20 and l = 0.2.
The results show that for four cancer drugs Daunorubi-
cin, Cladribine, Mercaptopurine and Azathioprine, some
new related reactions are identified with high association
scores. We report all the predicted reactions and
enzymes for these 4 drugs in Additional file 5. Figure 9
shows these new related reactions for the four cancer
drugs. 36 reactions are predicted to be associated with
both Mercaptopurine and Azathioprine, other 11 reac-
tions are for both Daunorubicin and Cladribine, and the
remaining 8 reactions are for only Cladribine. It is rea-
sonable that Mercaptopurine and Azathioprine are pre-
dicted to interact with exactly same reactions since the
two drugs have the same known targets. These predic-
tions may lead to further biological research.
Daunorubicin is an aminoglycoside of the anthracycline
class that is mostly used in the treatment of leukemia.
The cytotoxic activity of daunorubicin is through interca-
lation between DNA base pairs, which results in DNA
strand breakage. The drug also inhibits topoisomerase II
and polymerase. Daunorubicin is the substrate of ATP-
binding cassette proteins (sub-family C member 1 and
sub-family B member 1). Studies indicate that daunorubi-
cin is effluxed through these transporters together with
glutathione [24]. The stoichiometry of the co-transport is
approximately 1:1. Cancer cells typically overexpress

multidrug resistance proteins and also have high levels of
glutathione. Glutathione confers survival advantage to
cancer cells not only by increased resistance to oxidative
stress and apoptosis, but potentially also by increased
efflux of anticancer drugs. The other three identified glu-
tathione peroxidases (GPX1, GPX2 and GPX4) all cata-
lyze the reduction of reactive oxygen species by reduced
glutathione, and therefore protecting cancer cells from
oxidative damage. Studies have demonstrated that che-
motherapy leads to a decrease of glutathione peroxidase
activity. The prediction of the glutathione peroxidases as
potential targets of daunorubicin provides a plausible
explanation of this phenomenon.
Cladribine is a synthesized analog of the nucleoside

adenosine. It interferes with synthesis and repair of
DNA by inhibiting adenosine deaminase, and therefore
has a strong inhibitory effect on the rapidly-replicating
leukemia cells. The in vivo phosphorylated derivative of
cladribine is incorporated into DNA and leads to DNA
strand breakage. Cladribine and some of its analogs
have also been shown to be substrates and inhibitors of
E. coli. purine-nucleoside phosphorylase, although they
do not react with mammalian purine nucleoside phos-
phrylase [25]. Some analogs, however, are active against
leukemia cells [25]. The GPX peroxidases are also pre-
dicted as targets of cladribine. It is likely that the drug
may also inhibit these enzymes, weakening their protec-
tive role in leukemia cells.
Mercaptopurine is a purine analogue which interferes

with nucleic acid biosynthesis by inhibiting purine meta-
bolism and has been found active against human leuke-
mias. It is usually used in the treatment of or in

Figure 9 Top 100 predicted related reactions for cancer drugs. Red and green nodes represent reactions and drugs, respectively.
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remission maintenance programs for leukemia. Our pre-
diction suggests that the mechanism of action of mer-
captopurine may be related to 5’-nucleotidase (GMP).
This reaction preferentially hydrolyzes inosine 5-prime-
monophosphate (IMP) and other purine nucleotides,
and is allosterically activated by various compounds,
including ATP. The enzyme GMP, also known as
NT5C2, is exclusively located in the cytoplasmic matrix
of cells and may have a critical role in the maintenance
of a constant composition of intracellular purine/pyrimi-
dine nucleotides in cooperation with other nucleo-
tidases. Besides NT5C2, GGH and FPGS are also
suggested to be targets of mercaptopurine. These two
enzymes are both in the pathway of folate biosynthesis.
Folic acid is especially important during periods of rapid
cell division and cell growth. Mercaptopurine may inhi-
bit the tumour cell growth by interfering folate bio-
synthesis. SLC25A15 and SLC25A2, two orinithine
transporters for the urea cycle in liver, are also predicted
as targets of mercaptopurine. The two transporters are
responsible for removing ammonia from blood. Besides
the predicted reactions and targets listed in Table 2,
Table S2 in Additional file 5 lists other possible targets.
Enzyme CTPS for CTP synthase (NH3), and NT5C2 for
5’-nucleotidase (XMP) are possible targets. Although they
have not been approved as targets of mercaptopurine,
these reactions and related pathways are known to act clo-
sely to mercaptopurine. For example, some mercaptopur-
ine is converted to nucleotide derivatives of 6-thioguanine
(6-TG) by the sequential actions of inosinate (IMP) dehy-
drogenase and xanthylate (XMP) aminase, converting
TIMP to thioguanylic acid (TGMP). Besides, the reaction
xanthine oxidase with its Enzyme XDH is also a promising
target since studies [26,27] have shown that mercaptopur-
ine is inactivated by xanthine oxidase.
Like mercaptopurine, azathioprine is also an immuno-

suppressive agent which works by suppressing the body’s
immune response. Azathioprine is a prodrug which is
converted to 6-methyl-mercaptopurine by thiopurine
methyl transferase (TPMT) and then metabolised to the
active metabolite 6-thioguanine. Thus it’s reasonable to
predict the same reactions/targets for mercaptiopurine
and azathioprine.

The activity of these four cancer drugs against the
predicted enzymes can be tested by direct enzyme activ-
ity assays. Considering some drugs may need in vivo
activation (e.g., cladribine), enzyme activity is best mea-
sured after administration of the drugs both in vitro and
in vivo (e.g., in cell cultures or animal models). If there
are known mutations that affect enzyme structure or
activity, these may be taken advantage of to see if the
mutations also alter effect of the predicted drugs on the
enzyme.

Conclusions
In this study, we first construct a drug reaction network
to show their relationships in a unified context, and
then present a reaction profiling method to depict sys-
tematically the metabolic reactions in a quantitative
way. Reaction flux profiling makes it possible to mea-
sure the similarity of metabolic reactions functionally,
which is a key step in many kinds of data analysis tech-
niques such as clustering and classification. The com-
parison of target gene classification with target reaction
classification shows the effectiveness of the indirect
method to predict drug targets, and implies the impor-
tant contribution of reaction flux similarity in drug tar-
get prediction. We also integrate the reaction structure
similarity with this reaction flux similarity, and the
results show the synergism of the structural similarity
and functional similarity. We also notice that the inte-
gration of two similarity metrics makes the prediction
more stable. This further implies the effectiveness of
reaction profiling for drug target prediction. We thus
predict some related reactions and possible targets for
four cancer drugs for further biological research.
Note that one limitation of reaction profiling lies in

that proteomics and phorsphoproteomics are not
involved. It may decrease to some extent the impact in
the understanding of the multitude of interactions
between drugs and entire metabolic network. In the
future work we will address it when proteomics and
phorsphoproteomics data become available. Metabolic
reaction profiling has more applications than what we
have discussed in this work. Besides NCI-60 cancer cell
lines, other disease cell lines can be used to discuss the

Table 2 Top Predicted Reactions for 4 drugs

Drug Name Reaction Name Sub System Target Enzyme Score

Cladribine Glutathione peridoxase Glutathione Metabolism GPX1/GPX2/GPX4 0.6145

Daunorubicin Glutathione peridoxase Glutathione Metabolism GPX1/GPX2/GPX4 0.5631

Azathioprine/Mercaptopurine Gamma-glutamyl hydrolase (5DHF), lysosomal Folate Metabolism GGH 0.5692

Ornithine mitochondrial transport via proton antiport Transport, Mitochondrial SLC25A15/SLC25A2 0.5598

5’-nucleotidase (GMP) Nucleotides NT5C2 0.5477

Folylpolyglutamate synthetase (DHF) Folate Metabolism FPGS 0.545
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related metabolic reactions. The statistics of the drugs in
DRN show that drugs for metabolic diseases, cardiovas-
cular diseases or antineoplastic drugs are the most
related to metabolic networks. This gives us a hint that
these three diseases may also be discussed using meta-
bolic network. We also note that our flux analysis is
based on the mRNA content in the context of transcrip-
tion, thus further flux analysis using metabolomic data
may be developed to explore the underlying mechanism
of interactions between drugs and metabolic reactions.
Another possible application is metabolic biomarker dis-
covery, which attempts to explore significant metabolites,
metabolic reactions and enzymes. A biomarker discovery
method involving gene expression and protein-protein
interaction has been developed by Ideker et al. [28]. It
compares the gene expression over particular subset of
conditions to identify active sub networks. This idea can
be integrated with reaction flux profiling to identify sig-
nificant metabolic reactions. We can first predict the
metabolic states of cells before and after the absorption
of drugs based on the gene expression data, and then
compare the reaction flux over different conditions to
identify significant metabolic reactions, from which the
related metabolites biomarkers can also be identified.

Additional material

Additional file 1: Different reaction measure of similarity. The file
gives the comparison of performance using different reaction measure of
similarity in Kernel KNN.

Additional file 2: Drug-Reaction Network. This file lists the detailed
information in Drug-Reaction Network.

Additional file 3: Reaction flux similarity score This file lists the
reaction flux similarity and the common drugs between each pair of
metabolic reactions.

Additional file 4: The performance for the integration of reaction
flux similarity and reaction structure similarity. This file lists the
performance for the integration of reaction flux similarity and reaction
structure similarity.

Additional file 5: The predicted reactions and targets for cancer
drugs. This file lists the predicted reactions and targets for cancer drugs.
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