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Abstract

Background: In the yeast Saccharomyces cerevisiae, interactions between galactose, Gal3p,
Gal80p, and Gal4p determine the transcriptional status of the genes required for the galactose
utilization. Increase in the cellular galactose concentration causes the galactose molecules to bind
onto Gal3p which, via Gal80p, activates Gal4p, which induces the GAL3 and GAL80 gene
transcription. Recently, a linear time-invariant multi-input multi-output (MIMO) model of this GAL
regulatory network has been proposed; the inputs being galactose and Gal4p, and the outputs being
the active Gal4p and galactose utilization. Unfortunately, this model assumes the cell culture to be
homogeneous, although it is not so in practice. We overcome this drawback by including more
biochemical reactions, and derive a quadratic ordinary differential equation (ODE) based model.

Results: We show that the model, referred to above, does not exhibit bistability. We establish
sufficiency conditions for the domain of attraction of an equilibrium point of our ODE model for
the special case of full-state feedback controller. We observe that the GAL regulatory system of
Kluyveromyces lactis exhibits an aberration of monotone nonlinearity and apply the Rantzer
multipliers to establish a class of stabilizing controllers for this system.

Conclusion: Feedback in a GAL regulatory system can be used to enhance the cellular memory.
We show that the system can be modeled as a quadratic nonlinear system for which the effect of
feedback on the domain of attraction of the equilibrium point can be characterized using linear
matrix inequality (LMI) conditions that are easily implementable in software. The benefit of this
result is that a mathematically sound approach to the synthesis of full-state and partial-state
feedback controllers to regulate the cellular memory is now possible, irrespective of the number of
state-variables or parameters of interest.
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Background
Introduction to the GAL regulatory system
Naturally occurring networks of genes and proteins,
especially in eukaryotic organisms, feature multiple com-
plex nested feedback loops. So, although gene expressions
can be affected at many levels including protein-DNA
interactions, protein-protein interactions, and protein-
small molecule interactions, it is difficult to characterize,
a priori, the systemic effect of these changes. An example of
such networks is the galactose signalling pathway in the
yeast Saccharomyces cerevisiae. Despite extensive data on its
molecular interactions, an a priori prediction of its systemic
behavior remains challenging (see [1,2], and [3]). In the
GAL regulatory network (see Fig. 1), the galactose signal
propagates through a four-stage signalling cascade. At the
uppermost stage is Gal2p, which imports extracellular
galactose into the cell.

Subsequently, intracellular galactose binds to and
activates Gal3p (see [2] and [3]). At the third stage of
this cascade, the activated Gal3p binds to and sequesters
Gal80p in the cytoplasm, depleting Gal80p from the
nucleus. The transcriptional activator Gal4p, which is
constitutively bound to promoters of the GAL genes, is
then released from the inhibitory action of Gal80p and
activates expression of genes at the output of the cascade,
including GAL1, GAL2, GAL3 and GAL80. Because an
increase in Gal2p and Gal3p concentration results in

enhanced transcriptional activity, these two proteins
each enforce a positive feedback loop whereas Gal80p
enforces a negative feedback loop (see [1]).

Modelling assumptions
We mostly follow [1] to model the GAL regulatory
network. We denote genes in all capital letters, and
proteins with only first letter in capital letters. We focus
on only early stages of the galactose induction, and
disregard the events that occur after the Gal4p phos-
phorylation. We overlook the details of signal transmis-
sion from galactose to Gal4p. In other words, Gal4p
encountered in our model could be bound to DNA or
could be bound to DNA and Gal80p. Likewise, Gal80p
in our model is either bound to DNA and Gal4p or
bound to Gal3p or unbound. Gal1p and Gal3p are taken
to play a similar role, and are together referred to as
Gal3p.

Modelling the GAL regulatory system
We shall first summarize the logic of [1] and describe its
model of the GAL regulatory system, and then relax
some of its assumptions to derive a nonlinear model.
The states of interest of the system are shown in Fig. 2. In
the absence of galactose, Gal4p can bind to Gal80p and
has no transcriptional activity. Following a step increase
in galactose, Gal3p rapidly binds galactose, and Gal80p
is consumed by being recruited in a complex with
Gal3p. As the concentration of the unbound Gal80p
decreases, the Gal4p/80p complex is destabilized, which
activates Gal4p. Activated Gal4p then initiates the
slower biosynthetic reactions, viz., transcription of the
GAL genes including GAL3 and GAL80, followed by
translation into their protein products. Following Gal4p
activation, and consequent GAL gene expression, newly
synthesized Gal3p and Gal80p shift the equilibrium
back towards Gal4p inactivation. As a result, GAL
transcriptional activity decreases. Newly formed proteins
can bind to the incoming galactose molecules, thus
restoring sensitivity to any further galactose input. This
effectively closes the feedback loop. We lump Gal3p and
Gal80p together as the Gal3/80p complex. In the
absence of galactose, Gal3p, Gal80p and Gal4p form
an inactive complex Gal4/3/80p called receptor R.
A bound receptor BR comprising Gal3p, Gal80p and
galactose remains inactive or may be degraded. The total
Gal4p concentration is assumed to be constant during
the GAL response, as suggested by transcriptomics data
(see [4,3], and [5]).

Biochemical reactions in the GAL regulatory system
We represent a gene, its encoded mRNA and protein as a
single entity. G4 denotes Gal4p protein and G4

∗ denotes

Figure 1
The galactose signalling pathway. The external galactose
signal controls the transcriptional activity of the GAL genes.
Galactose can shuttle between the cytoplasm and the
nucleus. The galactose bound stage of the protein Gal3p is
Gal3p*. The pointed arrows indicate activation whereas the
blunt arrows indicate inhibition.
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activated Gal4p protein. The reactions of interest are as
follows:

G G Gal G Gal R R Gal G BR4 4 3 80 4 3 80 4→ + + ↔ + ↔ +∗ ∗ ∗/ , / , .

(1)

The first reaction is the slow biosynthesis of transcription
and translation, comprising the binding of Gal4p to the
GAL3 and GAL80 gene promoters, and all subsequent
actions until Gal3/80p molecules are newly synthesized
one at a time, and Gal4p stays activated. The second
reaction is the inactivation of Gal4p into its inactive
form called the receptor R, and the third reaction is the
activation of Gal4p due to the binding of galactose, Gal,
to the receptor, yielding the bound receptor, BR. For
simplicity, these three reactions are reduced to the
following two reactions in [4]:

R Gal G BR G R
K K

+ + →∗ ∗3 1

4 4, . (2)

Let S0 denote the initial quantity of galactose and let R0

denote the initial quantity of Gal4p. Let us normalize
K1 to unity. Then, it is shown in [4] that the above
model of the GAL regulatory system gives rise to a
system of differential equations that can be analyzed
using the phase-plane method to better understand
how the GAL regulatory system is robust to parameter
variations and gene transcription time-delays. In deriv-
ing this model, [4] makes the following assumptions
which may not hold in practice: (i) the cell culture has
a homogeneous distribution whence Ki are equal; and
(ii) the feedback loops of GAL3 and GAL80 can be
lumped together. In this paper, we relax the above two
assumptions and derive a less simplified nonlinear
model. We then apply multiplier theory to better
understand stability and robustness of the GAL
regulatory network.

Methods
A nonlinear state-space model of the GAL regulatory
system
The state-space model derived in [4] is as follows. Let R
and Gal be the states x1 and x2 of the system, and let x ≐
[x1 x2]

T. Define a1 = -(K3S0 + 1), a2 = -K3R0, a3 = - K3S0
where Ki are the kinetic reaction constants, and the
nonlinearity f(ζ1, ζ2) = (K3 - K2) ζ1ζ2. Then, a state-space
model of the GAL system is SL initialx Ax x x: ( )= + +Φ ,
where

A x
f x x

f x x
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−
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Remark 1 In [4], only the initial condition response, i.e.,
the response to S0 and R0, is considered. The two inputs
of interest are the galactose injected in the cell, and R; the
first input can be varied using Gal2p, and the second
input can be varied by transforming Gal4 deleted cells
with a plasmid expressing Gal4.

Remark 2 Arguing that Ki are all equal, F(x) is set to zero
in [4], and the phase-plane method is applied on the
linearized 2-state system to determine the conditions
under which the system is stable and robust to the gene
expression delays. In practice, however, the cells are not
uniformly distributed whence Ki are not equal so that the
nonlinearity F cannot be neglected. Further, as the
following lemma shows, SL fails to exhibit bistability, a
key property of the GAL regulatory network, even after F
is accounted for.

Lemma 1 SL has a unique steady state and does not exhibit a
Hopf bifurcation.

Proof: See Additional file 1.

Figure 2
The galactose induction loop. This figure is reproduced
from [4]. (i) In the absence of galactose, the transcriptional
activity of Gal4p is inhibited by Gal3/80p. (ii) The association
of galactose with Gal3/80p allows Gal4p to be freed from
Gal80p inhibition and to activate the transcription of new
Gal3/80p. (iii) Newly synthesized Gal3/80p inhibits the
transcriptional activity of Gal4p.

BMC Bioinformatics 2010, 11(Suppl 1):S43 http://www.biomedcentral.com/1471-2105/11/S1/S43

Page 3 of 8
(page number not for citation purposes)



Remark 3 Lemma 1 implies that the GAL regulatory
system model of [4] is not bistable. However, it is well
known that the GAL regulatory system exhibits bist-
ability (see [1]). This anomaly results because, in
deriving SL , the nonlinear feedback loops of GAL3
and GAL80, one of which is positive whereas the other is
negative, are overly simplified using a single negative
feedback loop in [4]. We propose a correction by
including more molecular reactions and, hence, more
state variables in our model.

Let us choose the state variables x1 = G4
∗ , x2 = Gal3/80, x3

= R, x4 = BR, x5 = Gal, and let x ≐ [x1 x2 x3 x4 x5]
T . Then

(1) can be expressed as x = Ax + F(x) + Bu, where
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(3)

where ai and bi are the kinetic reaction constants, ζi are
the degradation rates, and u is the input galactose. This is
our model SG of the GAL regulatory system. Note that
the nonlinearity F(x) is quadratic and can be expressed
as F(x) = xTNx where N ≐ [N1 N2... N5]

T for some Ni Œ
R5×5. Literature on the stability analysis of such systems
is sparse although sufficiency conditions have been
established in [6]. It appears that L2 stability cannot be
expected of multistable models due to the following
reason.

Lemma 2 A bistable controllable state-space system is not L2-
stable.

Proof: Let u, x denote the input and output of the system.
Since the system is bistable, there exists a time τ and
control signals u1, u2 Œ Pτ L2 that drive the system output
to each of two distinct constant equilibrium output
values, say x1o and x2o, at time τ such that x1(t) = x1o and
x2(t) = x2o for all t ≥ τ . Hence, u1, u2 Œ L2, but x1 - x2 ∉
L2. Therefore, either x1 ∉ L2 or x2 ∉ L2 or both. QED.

As a result, we focus only on establishing a domain of
attraction for an equilibrium point of such models.
Determination of the domain of attraction is useful since
it determines the stability region for cellular memory
that can be controlled using a linear feedback of the gene
expression states. An extreme example is that of
persistent memory, obtained by deleting the GAL80
feedback loop; this phenomenon is observed in mutant
genes [1].

Remark 4 Experimentally, we have observed that the
input-output map of Kluyveromyces lactis with GAL80 as

the output and galactose as the input is an aberration of
friction nonlinearity. Multiplier theoretic stability analy-
sis results (see [7-10], and [11]) can be applied to
determine the finite-gain stability of such reduced order
models as we demonstrate in the Results section.

Stability and multipliers
We now formally introduce the notation and the notion of
stability; a detailed description of these notions is available
in [9] and [10]. Let (R+) R denote the set of all
(nonnegative) real numbers. Let (·)’ (or (·)T) denote the
transpose of a vector or a matrix (·). Let the inner-product

〈 〉
−∞

∞
∫x y y t x t dtT, ( ) ( ) and let the norm x x x〈 〉, .

The vector space L2 comprises all signals x for which ||x|| <

∞. The norm z z t dt
1

( )
−∞

∞
∫ . The Dirac delta function

is denoted δ(·). The time-truncation operator is denoted
Pτ. In stability analysis, a given system S is often
decomposed into two interconnected subsystems – a linear
time-invariant (LTI) subsystem S1 in the feedforward path
and an otherwise subsystem S2 in the feedback path (see
Fig. 3(i)). Stability of S is then deduced if there exists a
quadratic functional that separates the graph of S1 from
the inverse graph of S2 (see [12]). Certain classes of
convolution operators, also called stability multipliers (see
[7]), specify such functionals. The larger the class of the
stability multipliers, the lower the conservatism in the
stability analysis [13]. Stability multipliers for memoryless
monotone nonlinearities are the Zames-Falb multipliers
[8] and their limiting cases include Popov multipliers [11]
and RL/RC multipliers [14]. A key property of such a
multiplier M is that it preserves the positivity of a
memoryless monotone nonlinearity N in the sense that
the positivity of N implies the positivity of MN. Well
known examples of positivity preserving multipliers
include the Popov multipliers and the Zames-Falb multi-
pliers (see [7,8], and [[9], Chapter 3]).

Definition 1 A system S mapping u Œ L2 into y Œ L2 is said
to be finite gain stable if there exists g ≥ 0 such that|| S (u)||
≤ g ||u|| for all u Œ L2.

Definition 2 The class NM of monotone nonlinearities
consists of all memoryless mappings N : Rn ↦ Rn such that: (i)
N is the gradient of a convex real-valued function, and (ii)
there exists C Œ R+ s.t. ||N (x)|| ≤ C||x|| ∀ x Œ L2. The class
N N{ | ( ) }N NM∈ =0 0 .

Definition 3 The class ℳZF of Zames-Falb multipliers
denotes the class of convolution operators, either continuous-
time or discrete-time, such that the impulse response of an M
Œ ℳZF is of the form m(·) = g δ (·) + h(·) with ||h||1 <g, h
(t) ≤ 0 ∀ t, where g, h(·) Œ R.
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Remark 5 The Nyquist plot of a Zames-Falb multiplier
is constrained to lie inside a disc in the open right-
half s-plane, as shown in Fig. 3(ii). In [15], aberrations
of monotone nonlinearities, as shown in Fig. 3(iii),
are considered and a class of positivity preserving
multipliers for these nonlinearities is established.
The results of [15] facilitate a class of stabilizing
controllers for systems featuring such nonlinearities.
It turns out that Kluyveromyces lactis exhibits
such a nonlinearity when the input is galactose and
the output of interest is the GAL4 expression (see
Fig. 4).

Results and discussion
Determination of the domain of attraction for equilibrium
gene expression states
We now establish sufficiency conditions under which a
polytope P ≐ {aix ≤ 1 | i = 1, 2... n + 1} belongs to the
domain of attraction of the equilibrium point x = 0 given
that the state feedback u = Kx is used to control the
galactose entering the cell. Let νi denote the vertices of
P . The following result is well known (see [16]).

Theorem 1 Given a closed set E ⊂ Rn such that the
equilibrium point xois contained in E, suppose the following

Figure 3
Stability analysis of feedback systems. (i) We decompose any given system as a feedback interconnection of a linear time-
invariant system H and an otherwise system N. Stability of the feedback interconnection follows if there exists a hyperplane
that separates the graph of H from the inverse graph of N. If N is a monotone nonlinearity, the Zames-Falb multipliers are
commonly used to reduce conservatism in multiplier-based stability analysis of this system. (ii) The Nyquist plot of a Zames-
Falb multiplier is constrained to lie inside an open disc in the right-half s-plane. (iii) Rantzer has investigated these distortions of
monotone nonlinearities, and has shown that the stability multipliers for such systems can be obtained by adding a DC offset to
the Zames-Falb multipliers (see [15]). The Nyquist plot of these multipliers is constrained to lie in the open disc shown in (iv).
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conditions are satisfied: (i) E is an invariant set of the given
system; and, (ii) a Lyapunov function V (x) exists such that V
(x) is positive definite on E and, further, V x( ) is negative
definite along the trajectories of the given system in E. Then, E
is an estimate of the domain of attraction of xo.

The above theorem can be specialized to our system as
follows.

Theorem 2 P is in the domain of attraction of an equilibrium
point x = 0 of SG if there exist scalars g Œ (0, 1), c > 0, a
symmetric positive definite matrix P Œ Rn×n, and a matrix K
such that

1
0

1
0 1 2

γα

γα

ν
ν

i
T

i
T T

i
T

i

Pc

Pc Pc
and

cP
i

( )
, , , , .

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≥ = ..., ,5

(4)

Herm A BK P

N

N

N

PT

T
i

T
i

T
i

γ

ν

ν

ν

( )+ +

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟

1

2

5

⎟⎟
⎟⎟

< =0 1 2 5, , ,..., ,i

(5)

where Herm(·) denotes the Hermitian of (·). The desired
controller is given by u = Kx.

Proof: Our proof uses the results derived in [17] and
[18], and can be sketched as follows. Let us consider the
function V (x) = xTP-1x as the candidate Lyapunov
function. Since P is a symmetric positive definite matrix,
ν(x) is positive definite. It needs to be shown that V x( )
is negative definite along the system trajectories on P .
Observe that the inequality (5) holds not only for the
vertices νi but for all points x inside the scaled polytope
P P1/ γ since the function on the left-hand side is an
affine function of x. It can be observed that the left hand
side of this inequality is V x( ) along the trajectories of
SG so that V x( ) is indeed a Lyapunov function for SG .
We next show that the polytope P contains a level curve
of the chosen Lyapunov function. It is well known that
the ellipsoid ℰ ≐ {x Œ R5 | xTP-1x ≤ c}contains the
polytope P (see [[19], pp. 69]). Now, the polytope P
can be expressed as P = {x Œ R5|gaix ≤ 1 i = 1, 2, ..., 5}.
Now, using the Schur complement, the condition (4) can
be re-written as γ γ( )a cPa ii

T
i ≤ ∀1 Hence, by [[19], pp.

70], it follows that P contains ℰ. Hence V (x) is a
Lyapunov function on ℰ. Further, the boundary of ℰ is a
level curve of V (x) whence ℰ is an invariant set. Hence,
by Theorem 1, ℰ ⊃ P is an estimate of the domain of
attraction. Hence the proof. QED.

Remark 6 Theorem 2 establishes a lower bound P on
the domain of attraction of an equlibrium point and also
yields a full-state feedback controller u = Kx which
asymptotically drives a state within P to the equili-
brium point. The result applies only for the special case
wherein the equilibrium point xois the origin, and can be
extended to cover the case of other equilibrium points.

Remark 7 The domains of attraction of the equilibrium
points have been experimentally reported as the regions
of persistent and non-persistent memory in [1]. Theorem
2 characterizes the domain of attraction for the special
case in which a linear time-invariant feedback from the
expressed genes is used to control the input galactose.

Stabilizing feedback controller for gal4
expression in kluyveromyces lactis
If the objective is to control only GAL4 expression, as
opposed to controlling all individual gene expression
levels, the classical multiplier theory might provide a
wide range of linear and nonlinear stabilizing controllers.
We have experimentally observed that the GAL4 expression
exhibits an aberration of monotone nonlinearity when the
cell is excited with galactose (see Fig. 4); the expression is
further inhibited in the presence of glucose. Some
experimental set-ups require that the galactose be injected

Figure 4
Nonmonotone nonlinearity in Kluveromycetes lactis.
We experimentally observed that the synthesis of G4

∗ using
galactose in Kluveromycetes lactis exhibits the shown
nonlinearity. WT culture was grown in different concentrations
of lactose and galactose in liquid culture. The concentrations
used were 0.1%, 0.5%, 1%, and 2%. The beta-galactosidase
activity was measured in different concentrations of sugar by a
protocol described by Miller method (see [20]). The maximum
enzyme activities at different concentrations are plotted; the
plots are not to scale.
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in a cell such that the GAL4 expression is regulated to a
desired value. For these applications, a class of stabilizing
controllers may be obtained as follows using the frame-
work of [15]. Let N denote this nonlinearity, and let Δ
denote the dip in the nonlinearity (see Fig. 4). Let C be the
controller to be designed. Then, feedback system ΣR of
interest is as follows: y1 = N (u1), u1 = C(e1), e1 = r - y1.
Using Theorem 1 of [15], the following result is readily
established.

Lemma 3 Let ℳR denote the class of convolution operators,
either continuous-time or discrete-time, such that the impulse
response of an M Œ ℳR is of the form

m g h with h g h t t( ) ( ) ( ) ( ) , ( ) ,⋅ = + ⋅ + ⋅ < ≤ ∀Δ δ
1

0  

where g, h(·) Œ R. Then ΣR is finite-gain stable if C Œ ℳR.

Proof: The proof follows as a ready consequence of
[[15], Theorem 1].

Remark 8 This controller can be used to control the
expression of GAL4. However, it cannot control the
cellular memory since it cannot regulate the expression
of other genes.

Conclusion
We have derived an ODE model of the GAL regulatory
network of Saccharomyces cerevisiae. We have shown that
although the ODE model of [4] gives an elegant
explanation of the transient response of a subset of this
network, it does not exhibit bistability, a key property of
the GAL regulatory network. By including more chemical
reactions in the approach of [4], we have proposed a 5-
state quadratic model of the GAL regulatory network. For
this model, we have established sufficiency conditions for
the domain of attraction of an equilibrium point for the
special case of full-state feedback control. This result is
useful in characterizing the persistence of cellular memory.
We have experimentally observed that the GAL4 expression
in Kluyveromyces lactis exhibits an aberration of monotone
nonlinearity. For a simplified model of this system,
wherein the input is galactose and the output is GAL4
expression, we have derived a class of stabilizing controllers
using the results of [15]. Unlike the existing literature on
GAL regulatory systems, our approach is not limited to 2
state-variables or 2 parameters; our LMI conditions scale
well to address more state-variables and parameters, as is
the case in the GAL regulatory system, and can be easily
implemented in software.

Competing interests
The authors declare that they have no competing
interests.

Authors’ contributions
The experimental results for Kluyveromyces lactis were
obtained by Prof. Venkatesh Kareenhalli and Pushkar
Malakar. Lemma 1 was derived by Prof. Ganesh Viswa-
nathan and Prof. Vishwesh Kulkarni. Lemma 2 was derived
by Prof. Michael Safonov. Theorem 2 was derived by
Prof. Vishwesh Kulkarni. The ODE model was derived by
Pushkar Malakar and Prof. Vishwesh Kulkarni. The
application of [15] is due to Prof. Vishwesh Kulkarni,
Prof. Lucy Pao, and Prof. Michael Safonov.

Proof of Lemma 1: At an equilibrium, the following
equalities hold:

( ) ( ) ( )

( )

K K GalR K R Gal K S K R R K S

K K GalR K S
3 2 3 0 3 0 1 0 3 0

3 2 3

1 0− − − + + + =
− + 00 0 3 0 3 0 0R K S R K R Gal− − = .

The steady state solution is given by

R
R
K

Gal
K S K

R
K

R K S

K K
R
K

K S
ss ss= =

+ − +

− −
0
1

3 0 1
0
1

0 3 0 1

3 2
0
1

3 0

,
( ) ( )

( )
.

So, the Jacobian at the steady state (Rss, Galss) is given by

J
K K R K R K K Gal K S K

K K R K R K
ss ss

ss
=

− − − − +
− − −

( ) ( ) ( )

( ) (
3 2 3 0 3 2 3 0 1

3 3 3 0 3 KK Gal K Sss2 3 0) −
⎡

⎣
⎢

⎤

⎦
⎥

As the Jacobian is non-singular for all values of the
model parameters, it satisfies the implicit function
theorem. As a result, the system cannot exhibit any
steady state bifurcations and, therefore, does not exhibit
bistability. Next, we investigate the presence of a Hopf
bifurcation point that may lead to oscillatory solution or
dynamic equilibrium. Now, the model exhibits Hopf
bifurcation if and only if trace(J) = 0 and det(J) >0.
Hence, the given system has a Hopf bifurcation if and
only if

( ) ( ) , (( ) )K K R K R K K Gal K S and K K R K R Kss ss ss3 2 3 0 3 2 3 0 3 1 3 0 10− − + − − = − − >> 0.

Since K1 is positive, a Hopf bifurcation exists if and only
if

( ) [( ) ] ( ) .K K R K R K K Gal K S K K Gal K Sss ss ss3 2 3 0 3 2 3 0 3 2 3 00− − = − − − > ⇒ − <

After simplifying the above equations, we get

K
K K

S
R

3
2 1

1 0
1

1−
⎛

⎝
⎜

⎞

⎠
⎟ > . (6)

Hence, Hopf bifurcation exists if and only if (6) holds
together with the following equation:
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( ) .K K
R
K

K R K K S R3 2 3 0

2

2 3 0 0
0
1

0− −
⎡

⎣
⎢

⎤

⎦
⎥ + =

Since all parameters are strictly positive and since R0, the
initial quantity of GAL4p, and S0, the initial quantity of
galactose, are non-zero quantities (see [4]), the above
condition cannot be satisfied. Therefore, Hopf bifurca-
tion does not exist for SL . QED. □
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