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Abstract

Background: Weak motif discovery in DNA sequences is an important but unresolved problem in computational
biology. Previous algorithms that aimed to solve the problem usually require a large amount of memory or
execution time. In this paper, we proposed a fast and memory efficient algorithm, RecMotif, which guarantees to
discover all motifs with specific (l, d) settings (where l is the motif length and d is the maximum number of
mutations between a motif instance and the true motif).

Results: Comparisons with several recently proposed algorithms have shown that RecMotif is more scalable for
handling longer and weaker motifs. For instance, it can solve the open challenge cases such as (40, 14) within
5 hours while the other algorithms compared failed due to either longer execution times or shortage of memory
space. For real biological sequences, such as E.coli CRP, RecMotif is able to accurately discover the motif instances
with (l, d) as (18, 6) in less than 1 second, which is faster than the other algorithms compared.

Conclusions: RecMotif is a novel algorithm that requires only a space complexity of O(m2n) (where m is the
number of sequences in the data and n is the length of the sequences).

Introduction
After transcription and translation, genetic information
in gene sequences that will be passed to offsprings is
expressed into functional products such as proteins.
Before transcription, transcriptional factors bind to
DNA sequences to regulate the transcription of DNA
into mRNA. The domains where the transcriptional fac-
tors are bound are called as Transcriptional Factor
Binding Sites (TFBSs), also known as DNA motifs. To
understand the complex regulatory process, the first
task is to locate these TFBSs, i.e. DNA motif discovery
[1].
An algorithm challenge of DNA motif discovery was

proposed in [1]: find a motif of length l in m DNA
sequences. Each sequence is n nucleotides long and con-
tains one motif instance with up to d mutations to the
true motif. In the above Motif Challenge Problem

(MCP), typical values of l, d, m, n are 15, 4, 20 and 600.
Following the definitions here, we model a motif as
(l, d). For a specific l, the larger the value d and the
longer the sequences, the weaker the motif thus the
more difficult to discover it.
For the (15, 4) motif, probabilistic algorithms, such as

MEME [2] and GibbsDNA [3], cannot give satisfactory
performance with n>400 [1].
WINNOWER is a combinatorial approach which uses

all sample substrings in the data set to discover cliques
of motif instances, i.e. it is a sample-driven algorithm.
It works by deleting spurious edges between vertices in
a constructed graph, where the vertices represent the
l-mer substrings in the data set and the edges indicate
that the hamming distances between two vertices are
not more than 2d. The final edges left after deletions
are expected as the edges between the motif instances.
That is, the remaining vertices are the motif instances.
WINNOWER shows better results than MEME and
GibbsDNA. However, substantial memory and execution
time are required by WINNOWER [1].
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PROJECTION is also a sample-driven algorithm using
random projection and Expectation Maximization (EM)
[4]. Random projection is the key step, which prepares
starting points for EM. In this step, PROJECTION maps
all the l-mer substrings from the data into buckets
labeled with k-mer subsequences of the substrings. After
projection, if a bucket holds a significant number of
projected substrings, a Position Weight Matrix (PWM) is
formed using the related substrings. With such PWMs,
it is expected that EM has a higher chance to find the
true motif. PROJECTION successfully tackled the exten-
sions of MCP such as (16, 5) and (18, 6). However, the
performance of PROJECTION decreases as the sequence
length n is increased [4].
DPCFG is a sample-driven approach that finds cliques

of the motif instances in graphs [9]. According to each
of the l-mer substrings (reference substring) from one
random reference sequence, it sifts out all the substrings
within 2d distance in the remaining sequences and con-
structs lists for each of the substrings. A dynamic strat-
egy is used in the construction: lists on substrings of
sequence i will be constructed only using lists on sub-
strings of sequence i-1. DPCFG has been shown to be
efficient compared with several popular motif discovery
algorithms. However, DPCFG has difficulty in handling
highly degenerate motifs such as (24, 8). It requires sub-
stantial memory resources when dealing with weaker
motifs because of the many intermediate lists of small
sizes it needs to maintain.
PMSprune is a pattern-driven algorithm developed

from PMS series (Planted Motif Search) [5-7]. It gener-
ates and checks the d-neighbors of each substring of
length l sampled from a reference sequence. For each
generated l-mer string, if it can find at least one sub-
string from each of the other sequences such that their
hamming distance is not more than d, the string can be
output as a true motif. PMSprune puts the d-neighbors
of a l-mer string in a tree structure. With a branch and
bound strategy, it avoids checking all of the d-neighbors
in the tree, which reduces the running time. For motifs
with short l, PMSprune works well. However, it has dif-
ficulty in dealing with longer and weaker motifs.
iTriplet is also a pattern-driven algorithm [8]. In iTri-

plet, two random sequences are selected as the reference
sequences. Then all combinations of two l-mer sub-
strings respectively from the two reference sequences
are used together with each of the substrings from each
of the remaining sequences to form all possible triplets.
For a triplet, the hamming distance between any two
substrings is not more than 2d. From the triplets, candi-
date motifs are generated and inserted into hash tables
associated with the corresponding sequence information.
Finally, if a candidate motif has been associated to all
the sequences in the data set, it can be output as a true

motif. Due to the generation of candidate motifs and
the hashing process, iTriplet requires a large amount of
memory to store information when dealing with longer
and weaker motifs.
Other motif discovery algorithms have also been pro-

posed, see for example: [10-26] etc. In this paper, we
introduce a novel algorithm, RecMotif, using the con-
cepts of reference sequence and reference vertex/sub-
string/word. That is, if there are m sequences in the
data set, we use the first x sequences as the reference
sequences for the remaining m-x sequences, with x
increased from 1 to m. For each substring in sequence x
+1, to be a reference vertex for the next m-x-1
sequences, it must satisfy some measure, such as ham-
ming distances with all current reference vertices from
the first x sequences. If the reference vertex selection
operation can reach the last sequence, a clique of motif
instances of size m has been found. From the clique, the
true motif can be obtained by alignments.

Earlier work
Notations
Let the DNA alphabet Ω={A, C, G, T}, the length of the
motif to be discovered is l and the number of mutations
allowed is d. Let S={Si|i=0, 1, ..., m-1} be a set of m
DNA sequences with Si having length ni>l. Sequence
Si=(si,0, si,1, ..., si,ni-1), where si,jÎâ„¦.
A sliding window of length l is used to obtain all the

possible l-mer vertices (or substrings) of sequence Si.
Put all the vertices from Si in the set P0,i={vi,j|j=0, 1, ...,
ni-l}. Let |P0,i| denote the number of vertices in P0,i.
Each vertex is identified according to its starting posi-

tion j in sequence Si, i.e. vi,j=(si,j, si,j+1, ..., si,j+l-1).
Let D(vi1,j1,vi2,j2) denote the hamming distance of two

length l vertices vi1,j1 and vi2,j2. We have:
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Moreover, the type of the data sets we consider is
OOPS. That is, in such data sets, there will be exactly
One Occurrence of the motif instance Per Sequence for
the true motif.

Background and inspiration
The concepts of reference sequence and reference word/
vertex/substring have been used in DPCFG, PMSprune,
iTriplet and MULTIPROFILER [17] etc.
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These algorithms usually select one or two sequences
as the reference(s). DPCFG uses the vertices selected
according to the reference vertices to construct lists of
motif instances. PMSprune uses the substrings in the
reference sequence to generate new strings (candidate
motif) in its neighborhood. iTriplet uses the reference
substrings to generate candidate motifs with another
selected substring. MULTIPROFILER uses the reference
word to select substrings from the other sequences and
try to recover the structure of the true motif using
them.
Specifically in DPCFG, a reference sequence is

selected at random and all the non-reference vertices
from S are divided into different sets according to each
of the reference vertices. Suppose S0 is selected as the
reference sequence. The sets are obtained as follows.
Firstly, for each reference vertex v0,r0 in S0 (i.e. P0,0),

define P1,k as the set of the selected vertices from P0,k,
where k=1, 2, ..., m-1, r0Î{0, 1, ..., n0-l}.
Initially, for each v0,r0, P1,k is set as null. Then for each

vk,jk from P0,k, put it in P1,k if D(v0,r0,vk,jk)≤2d, where jk=0,
1, ..., nk-l. (Note that if the maximum distance allowed
between a motif instance and the true motif is d, the
maximum distance between any two motif instances can
be 2d. Therefore, if the reference vertex is a motif
instance, all the other motif instances will appear in the
corresponding sets: P1,k for 1≤k≤m-1.)
With these sets at hand, DPCFG initializes a list of

size 1 with the current reference vertex in P0,0. Then it
constructs lists for each of the vertices in P1,k using lists
constructed for the vertices in P1,k-1, k=1, 2, ..., m-1. In
detail, a list Lvk,jk for a vertex vk,jk from P1,k will be cre-
ated using Lvk-1,jk-1 if D( vk,jk,vk-1,jk-1)≤2d. A further check-
ing process will be applied to determine if there is a
need to maintain Lvk,jk. Finally, any list of size m consists
of a clique of motif instances of the same size. In the
clique, all pair-wise elements have hamming distance
not more than 2d.
It can be seen that a reference sequence or a few

reference sequences together with a motif construction
strategy has shown success. Based on this observation,
we proposed the algorithm RecMotif, which is intro-
duced in following section.

Method
RecMotif
If the motif instance in P0,0 is selected as the reference
vertex, all the other motif instances must appear in the
corresponding P1,k, k=1, 2, ..., m-1. As we do not know
which vertex is the motif instance in advance, we will
have to test all of the vertices in P0,0.
RecMotif further extends the idea of reference

sequence and reference vertex. That is, it uses each of
the vertices in P1,1 as the reference vertex to select

vertices from P1,k into correspondingly defined sets: P2,k,
k=2, 3, ..., m-1. Again, if the selected reference vertex in
P1,1 is a motif instance, all the remaining motif instances
must appear in P2,k. Then it uses vertices in P2,2 as the
reference vertices to select vertices from P2,k, k=3, 4, ...,
m-1. The algorithm continues in this way until the sec-
ond last sequence.
During the selection process, all currently selected

reference vertices will form a search path. The path con-
tinuation condition is: if and only if all the remaining
sequences have at least one vertex that is within 2d with
all the current reference vertices. Otherwise, the algo-
rithm substitutes the last reference vertex with another
one from the same set with it to form a new path. If
there are no more new vertices in the corresponding
set, the algorithm deletes the last reference vertex and
backtracks to the last second reference vertex and finds
a substitute for it. The deletion, backtracking and substi-
tution process is repeated until the path continuation
condition is satisfied.
Now we explain the details about RecMotif. RecMotif

takes all the l-mer substrings from S as input. In a gen-
eral way, we define Pi+1,k as the set of the selected ver-
tices from Pi,k according to reference vertices in Pi,i, i=0,
1, ..., m-2, k=i+1, i+2, ..., m-1. Note that as RecMotif
deals with each reference vertex sequentially, the set Pi,k
can be used repeatedly, which reduces the memory
requirement.
For each vi,ri in Pi,i, Pi+1,k is set as null. Then for each

vk,jk from Pi,k, put it in Pi+1,k if D (vi,ri, vk,jk)≤2d. The
pseudo-code for the RecMotif algorithm is shown in
Algorithm 1. The RecMotif algorithm works in a recur-
sive way to complete the selection process. In the pro-
cess, the selected reference vertex/veritces will be
inserted into the set: INSTANCE. If i=m, the path
formed by elements in INSTANCE indicates a m-clique.
From the clique, the consensus motif can be obtained
by alignment.
With the initial sets: P0,k, k=0, 1, ..., m-1, RecMotif

starts from i=0. That is, RecMotif(0), i.e. the first refer-
ence sequence is S0. When RecMotif(m) is processed, it
indicates that a clique of size m have been found.
An example about how RecMotif works is shown in

Figure 1 with m=4. Assume P0,0={A, B, C}, P0,1={Z, E, F,
G}, P0,2={H, I, J, K, L}, P0,3={M, N, O, Q, R, T}. Each of
the capital letters stands for a vertex (substring) of
length l.
Moreover, assume the following relationships on pair-

wise hamming distances of vertices involved in the
explanation of the example. Let A2d={Z, E, G, H, J, M,
O, R, T} indicates that vertex A has hamming distances
not more than 2d with vertices Z, E, G, H, J, M, O, R,
T and more than 2d with the other vertices not
mentioned. Similarly, we assume Z2d={A, H, J, M, T};
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E2d={A}; G2d={A, T}; H2d={A, Z}; J2d={A, Z, M, T}; M2d=
{A, Z, J}; O2d={A}; R2d={A, H}; T2d={A, Z, G, J}.

Algorithm 1 RecMotif (i), i≥0
1: boolis Valid;
2: ifi<mthen
3: for each vi,riÎPi,ido
4: is Valid = TRUE;
5: for each Pi+1,k, i+1≤k≤m-1 do
6: Pi+1,k¬NULL;
7: for each vk,jkÎPi,kdo
8: if D (vi,ri,vk,jk)≤2dthen
9: Pi+1,k¬vk,jk;
10: end if
11: end for
12: if |Pi+1,k|=0 then
13: is Valid=FALSE;
14: break;
15: end if
16: end for
17: ifis Validthen
18: INSTANCE[i]=vi,ri;
19: RecMotif (i+1);
20: end if
21: end for
22: else
23: output the clique: INSTANCE[j], j=0, 1, ..., m-1;
24: end if
With the above assumptions, we begin to proceed in

RecMotif(i) with i=0. Firstly, vertex A from P0,0 is
selected as the reference vertex. P1,1 is set as null.
All vertices in P0,1 as shown in Figure 1 will be checked if

they are within 2d with A. According to the assumptions,
vertex A is within 2d with Z, E, G from P0,1 (connected by

dotted lines in Figure 1). Thus we can obtain P1,1={Z, E,
G}. Similarly, we can obtain P1,2={H, J} and P1,3={M, O, R,
T} as has been shown in Figure 2(a).
As can be seen, for vertex A, we can find vertices that

have hamming distance not more than 2d with it from
all other sets: P0,1, P0,2 and P0,3, therefore it could be a
motif instance. We set INSTANCE[0]=A and begin to
proceed in RecMotif(i) with i=1. (RecMotif(0) is sus-
pended temporarily. Moreover, note that for each Pi+1,k,
i=0, 1, ..., m-1, k=i+1, i +2, ..., m-1, it must be set as null
each time before selecting vertices from the correspond-
ing Pi,k. In the following explanation, we will not repeat
the descriptions on such operations.)
Next, vertex Z from P1,1 is selected as the reference

vertex. All vertices in P1,k, k=2, 3, will be checked.
Vertex Z is within 2d with H, J from P1,2 and M, T

from P1,3, as shown by the links in Figure 2(a). That is,
we can obtain P2,2={H, J} and P2,3={M, T}, as shown in
Figure 2(b). Also, it is possible for vertex Z to be a
motif instance. We set INSTANCE[1]=Z and begin to
proceed in RecMotif(i) with i being 2 (RecMotif(1) is
suspended temporarily).
Next, vertex H from P2,2 is selected as the reference

vertex. All vertices in P2,k, k=3, will be checked. As H
has no vertex from P2,3 that has hamming distance not
more than 2d with it, current P3,3 is null. Thus
INSTANCE[2] will not be set as H. In other words,
there will be no path to form a m-clique involving ver-
tex H with the current elements in INSTANCE, as
shown in Figure 2(c). We have to continue the process
in RecMotif(2) with another vertex from P2,2.
Next, vertex J, which is the next vertex to be checked

in the same set P2,2 as H, is selected as the reference
vertex. All vertices in P2,k, k=3, will be checked. As D(J,

Figure 1 RecMotif example. This figure gives an example for explaining the process of RecMotif.
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M)≤2d and D(J,T)≤2d, P3,3 is obtained as {M, T}. As it is
possible for vertex J to be a motif instance, we set
INSTANCE[2]=J and begin to proceed in RecMotif(i)
with i=3 (RecMotif(2) is suspended temporarily).
Next, vertex M from P3,3 is selected as the reference

vertex. As i=m-1, indicating vertex M is a vertex in the
last sequence thus there are no more vertices to be
checked for vertex M. We directly set INSTANCE[3]=M
and begin to proceed in RecMotif(i) with i=4 (RecMotif
(3) is suspended temporarily). Now, i is equal to m. This
means that a path to form a m-clique is formed, as
shown in Figure 2(d). The elements to form the clique
have been stored in INSTANCE as: A, Z, J, M.
At this point, the process for vertex M has been

completed (i.e. current RecMotif(4) completed). We
return to proceed in RecMotif(3). The process that was
carried out for vertex M is repeated for vertex T
from P3,3. Using this process we can obtain another
clique as: A, Z, J, T from INSTANCE according to the
assumptions.

As vertex T is the last vertex in P3,3, the RecMotif(3)
process is completed. Thus we return to RecMotif(2).
As vertex J is the last vertex in P2,2, the RecMotif(2)
process is completed. Thus we return to the RecMotif
(1) process. Hitherto, the whole process for vertex Z
from P1,1 has been completed.
As there are still vertices E, G in P1,1, we repeat simi-

lar processes (to that for Z) for E and G respectively.
When the process for vertex G is completed, it means
that the process of RecMotif(1) has been completed.
Thus we finally return to the process of RecMotif(0).
At this point, the process for vertex A has been com-

pleted. As there are still vertices B, C in P0,0, we repeat
similar processes (to that for A) for B and C respec-
tively. When the process for vertex C is completed, it
means that the RecMotif(0) process has been completed.
That is, the whole algorithm is completed with all possi-
ble cliques found (if any).
Next, we will give the analysis on time and space com-

plexities, as discussed in the following section.

Figure 2 Example for processing vertex A.This figure gives an example for processing a vertex A in the example of Figure 1.
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Running time and space analysis
Time complexity
Assume the sequence length is n and there are m i.i.d
sequences in total. Define p as the probability that the
hamming distance between two random vertices of
length l from the data is not more than 2d. p is calcu-
lated by Equation 3. Note that p reflects the weakness of
the motifs to be discovered [4,8].

p
l

i
i

d
i l i=

⎛

⎝
⎜

⎞

⎠
⎟ ( ) ( )

=

−∑
0

2

3 4 1 4/ / (3)

We now analyze the time complexity of RecMotif by
estimating the number of hamming distance calculations.
For a data set of m sequences, |P0,k0|=n-l+1, where

0≤k0≤m-1; correspondingly, for the sets to store selected
vertices, |Pi,ki|=(n-l+1)p with 1≤k1≤m-1, ..., |Pm-1,km-1

|=
(n-l+1)pm-1 with m-1≤km-1≤m-1.
Suppose xi, 0≤i≤m-2, is the number of hamming dis-

tance calculations that are expected for using all vertices
in each Pi,i to select vertices in Pi,k, i+1≤k≤m-1.
Specifically, for each vertex in P0,0, we have to check all

vertices in P0,k0, 1≤k0≤m-1. Thus there can be (m - 1)
(n - l + 1) calculations. As there are n-l+1 such vertices
appearing in P0,0, x0=(m - 1)(n - l + 1)2.
For each vertex in P1,1, we have to check all vertices in

Pi,ki, 2≤k1≤m-1. Thus there can be (m - 2)(n - l + 1)p
calculations. As there are (n - l + 1)(n - l + 1)p such
vertices appearing in P1,1, x1=(m-2)(n-l+1)3p2.
Generally, for each vertex in Pi,i, i=0, 1, ..., m-2, we

have to check all vertices in Pi,ki, i+1≤ki≤m-1. Thus
there can be (m - i - 1)(n - l + 1)pi calculations. As

there are n l j
i

p j

i
− +( ) +
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0
such vertices appearing

in P x m i n l pi i i
i i j
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i
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=∑1 1
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Thus the total number of calculations can be: xii

m

=
−∑ 0

2 .
Approximately the time complexities of RecMotif with
different relationships between p and n are shown in
Table 1 (for more details, please refer to the additional
materials). The time and space complexities of RecMotif
and several related algorithms are shown in Table 2 (the
analysis of RecMotif’s space complexity is given in the
next section).

When p<0.12 (with n=800), the dominating factor of
DPCFG is mn3p2. This is approximately the same as
RecMotif. However, as the time of DPCFG is contributed
by list maintenance and hamming distance calculation,
there is more overhead involved (by list maintenance) in
practice. When p>0.12, the dominating factor of DPCFG
is nmp3m-6 which is larger than RecMotif. For PMSprune,
its running time grows with n2 for small N(l, d), which is
better than RecMotif. However, for large l and d which
involves large N(l, d), the running time of PMSprune
grows exponentially (even when the corresponding p is
small). iTriplet is also affected by l and d with the same
reason as PMSprune.
Space complexity
As has been discussed, we have |P0,k0|=n - l + 1 vertices
for each k0 with 0≤k0≤m - 1, |P1,k1|=(n - l + 1)p vertices
for each k1 with 1≤k1≤m - 1, ..., (n - l + 1)pm-1 vertices
for Pm-1,m-1 and m vertices for INSTANCE.
Generally, for Pi,i, 0≤i≤m - 1, there are (m - i)(n - l + 1)

pi vertices to be stored. Thus the total space needed is:

m i n l p m
i

m i−( ) − +( ) +
=

−∑ 0

1
1 As pi is less than 1,

thus the total space should be less than

n l m i m
i

m
− +( ) −( ) +

=

−∑1
0

1
. Thus the approximate

space complexity is O(nm2).
From Table 2 it can be seen that RecMotif consumes

much smaller space than other algorithms. The space
complexity of iTriplet increases exponentially as l or d
increases. DPCFG consumes much larger space than
RecMotif. This will result in DPCFG having difficulties
in dealing with motifs such as (24, 8). While PMSprune
requires less memory than DPCFG, it is still larger than
RecMotif (as n»m).
Next, we will carry out experiments to compare the

performances of the above algorithms in practice.

Results and discussions
As the parameters n and p will influence the weakness
of a motif, we will therefore first discuss experiments
with synthetic data generated with different values of n

Table 1 Time complexities of RecMotif

Range of p O(•) Range of p O(•)

(0,0.035] mn2 (0.32,0.38] mn5p6

(0.035,0.10] mn3p2 (0.38,0.43] mn5p3

(0.10,0.18] mn3p (0.43,0.47] mn6p8

(0.18,0.26] mn4p4 (0.47,0.51] mn6p4

(0.26,0.32] mn4p2 (0.51,0.54] mn7p10

This table shows the complexities of RecMotif with different p and n.

Table 2 Algorithm complexities

Algorithm Complexity

Time Space

PMSprune O(mn2N(l, d)) O(mn2)

iTriplet O(mn3pl3d2) O(N(l, d))

DPCFG O(mn3p2 + nmp3m-6) O(mn4p3)

RecMotif See Table 1 O(m2n)

This table shows time and space complexities of PMSprune, iTriplet, DPCFG
and RecMotif.

*note, N l d Ci
l i

i

d
,( ) =

=∑ 3
0
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and p. Then we will apply RecMotif to real biological
data set to show its feasibility in practice. All the follow-
ing experiments are carried out on a PC with a 2.66
GHz processor and 3 GB RAM.

Synthetic data
For synthetic data, the sample sequences are generated
as independent and identically distributed (i.i.d) [1]. And
the positions (0, 1, ..., n-l) where the motif instances are
planted in the sequences are also selected at random.
Recall Rate Rr are used as the indicator, defined in
Equation 4.

R K P Kr n d n= ∩ / (4)

where Kn (|Kn|=ml) is the set of the known base posi-
tions and Pd is the set of the predicted base positions
for the motif. Rr indicates how many of the planted
positions have been discovered. If Rr=1, it means that all
the planted positions have been discovered.
Comparisons on increased sequence length
In this section, we fixed the motif (l, d) as (15, 4) and
increased the sequence length n from 600 to 2000.
For each setting, 10 i.i.d. data sets are generated, each

containing 20 sequences. All the algorithms discovered
the motif with Rr=1. Thus we compare their perfor-
mances in terms of execution time, as shown in Figure 3.
Note: as iTriplet consumes much more time than the

other algorithms when n>900, only a part of execution
times is shown.
Figure 3 shows that when n<1800, RecMotif can

achieve the best execution time over all the other algo-
rithms. RecMotif consumes less than half the execution
time of DPCFG for data sets with sequences longer than
1300. For longer sequences such as 2000, RecMotif con-
sumes only one-fourth the execution time of DPCFG.
One of the reasons why DPCFG runs much slower

than RecMotif is that the lists construction is dynamic
which involved many memory operations. Comparatively,
RecMotif just proceeds to find a path and requires the
recording of not more than m elements only. With less
overhead in maintaining intermediate information,
RecMotif is able to achieve better time performance.
For fixed (l, d), as n increases, PMSprune exhibits lin-

ear increase in execution time. When sequence length is
longer than 1800, PMSprune shows the best execution
time. But the execution time of RecMotif is still com-
parable to PMSprune. The difference is less than one
minute.
PMSprune performs better than RecMotif and the

other algorithms under this setting because the value of
l is relatively short, that is, the neighborhood N(l, d) of
the sample substrings are very small. In other words,
the small search space for the current settings makes
PMSprune faster. As l increases, however, the execution
time of PMSprune will grow exponentially, as will be
shown in the next section.
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Figure 3 Effects of sequence length n on execution time on model (15, 4). This figure shows for MCP, how the execution times of
PMSprune, iTriplet, DPCFG and RecMotif change with increasing n.
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Comparisons on fixed probability p
In this section, we carried out comparisons on the prob-
ability p calculated using Equation 3, as it can reflect
the weakness of the true motif.
We fixed the value of p around 0.05, which is approxi-

mately the same as the (15, 4) settings. The experimen-
tal results are shown in Table 3. All execution times are
averaged from 10 i.i.d. data sets with n=600, m=20.
From Table 3, it can be seen that the performances of

PMSprune and iTriplet are very sensitive to the motif
length l. When l increases, the execution times of
PMSprune and iTriplet increase exponentially. In addi-
tion, iTriplet may encounter memory allocation error
when handling longer motifs such as (44, 14).
This happens because when l becomes longer, the

neighborhood N(l, d) of the sample substrings grows
exponentially. That is: for PMSprune, it needs to check
more strings; for iTriplet, it has to maintain many can-
didate motifs in the hash table.
Meanwhile, it can be seen that RecMotif and DPCFG

exhibit stable and comparable execution times, which
are little affected by the motif length and significantly
better than those of PMSprune and iTriplet.
Comparisons on different probability p
In this section, we set the value of p from 0.029 to 0.285
by varying the values of l and d as shown in Table 4 and
carry out experiments on different algorithms with
them. The results are shown in Figure 4. All the execu-
tion times are averaged from 10 i.i.d. data sets with
n=600, m=20.
From Figure 4, it can be seen that as p increases, the

execution times of RecMotif and DPCFG become longer

with relatively smooth trends. At the same time, the
execution times of PMSprune and iTriplet also become
longer. The execution times of iTriplet are much longer
than RecMotif.
PMSprune is sensitive to the motif length l as well as

the probability p. If the difference in the values of p of
the two models is small, the performance is determined
by the motif length. However, when the difference
in the values of p is large, p will determine the
performance.
For example, when p=0.112 for models (14, 4) and

(37, 12), PMSprune consumes more than 5 hours on the
latter model compared to 20 seconds on the former.
This is the same as the comparisons in the last section.
For models (24, 8) and (25, 8) where their values of p

show a relatively larger difference, PMSprune spent
much more time on the weaker one (24, 8) although the
motif length of the latter is longer.
Moreover, PMSprune requires over 5 hours when

handling motifs with l≥30 and p>0.1. This reflects that
it is unable to handle longer motifs of more degenerate
models.
Different from PMSprune, the longer the motif the

less time is required by RecMotif when the values of p
for the two models are large but the relative difference
of the two p values is small. Taking models (22, 7) and
(50, 17) as an example, RecMotif shows a lower compu-
tational time on the latter model (90 seconds for the
former and 40 seconds for the latter).
The difference happens because PMSprune has to

check all the strings in the neighborhood N(l, d) of a
reference substring from a reference sequence. When l
increases, more strings have to be generated and
checked, which incurs more execution time.
As RecMotif is a sample-driven algorithm, it only has

to manipulate substrings in the data set, i.e. (n - l + 1)m

Table 3 Effects of (l, d) on execution time

(l, d): p Algorithm

DPC-FG PMS-Prune iTr-iplet Rec-Motif

(12, 3): 0.054 0.825 1.63 173.6 0.630

(15, 4): 0.057 0.673 5.22 189.2 0.703

(18, 5): 0.057 0.596 16.9 230.4 0.700

(21, 6): 0.056 0.532 46.5 250.0 0.677

(24, 7): 0.055 0.475 80.2 291.5 0.585

(27, 8): 0.053 0.432 137.1 354.4 0.633

(30, 9): 0.051 0.394 242.9 443.6 0.629

(33, 10): 0.048 0.365 405.2 553.8 0.556

(36, 11): 0.046 0.329 651.8 1419 0.484

(39, 12): 0.044 0.311 1056 2779 0.500

(42, 13): 0.042 0.286 1842 2895 0.483

(44, 14): 0.063 0.674 -o -e 0.971

(47, 15): 0.059 0.577 -o -e 0.921

(50, 16): 0.055 0.520 -o -e 0.832

This table shows how the execution times of algorithms, including PMSprune,
iTriplet, DPCFG and RecMotif are influenced by the values of l and d with
approximately fixed p.

*note, -o: over 5 hours; -e: error on memory allocation. Time unit: seconds.

Table 4 Different motifs for increasing p

ID p (l, d) ID p (l, d)

1 0.029 (28, 8) 15 0.163 (50, 17)

2 0.086 (29, 9) 16 0.167 (36, 12)

3 0.096 (23, 7) 17 0.175 (19, 6)

4 0.101 (20, 6) 18 0.181 (33, 11)

5 0.103 (40, 13) 19 0.190 (16, 5)

6 0.107 (17, 5) 20 0.197 (30, 10)

7 0.112 (14, 4) 21 0.206 (41, 14)

8 0.112 (37, 12) 22 0.214 (27, 9)

9 0.119 (34, 11) 23 0.223 (38, 13)

10 0.128 (31, 10) 24 0.234 (24, 8)

11 0.139 (28, 9) 25 0.242 (35, 12)

12 0.149 (25, 8) 26 0.260 (54, 19)

13 0.155 (39, 13) 27 0.283 (18, 6)

14 0.162 (22, 7) 28 0.285 (40, 14)

This table shows the values of l and d with increasing p.
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substrings. For a data set with fixed n and m: when l is
short, two length l substrings have a higher chance to
be 2d-neighbors; when l is long, two length l substrings
have a lower chance to be 2d-neighbors.
This is because the number of different strings of

length l is determined by 4l and thus the longer the
string the lower is the chance for it to be repeated
exactly in a data set with a finite number of substrings.
Likewise, the 2d-neighbors of a string also have a lower
chance to be included in the data set when l is larger.
Thus less random cliques of small sizes will be

formed. This is why RecMotif requires a lower execu-
tion time on such models.
Figure 4 also shows that when p is below 0.167 (corre-

sponding to ID 16), DPCFG requires comparable execu-
tion time with RecMotif. However, when p>0.167,
DPCFG runs much slower than RecMotif (more than 4
times the execution time of RecMotif). In addition,
when p>0.23, DPCFG runs out of memory because of
the need to maintain many random cliques in the inter-
mediate steps.

RecMotif is capable of handling weaker and longer
motifs than other algorithms, such as (24, 8) and (40,
14). For model (24, 8), RecMotif requires only one-
fourth the execution time of PMSprune (while DPCFG
encounters memory allocation errors and iTriplet
requires more than 5 hours to produce the results). For
model (40, 14), RecMotif can produce the results within
5 hours while all the other algorithms failed because of
memory error or failing to produce a result within the
execution time limit of 5 hours.
However, for model (18, 6) with p as 0.283 which is

less than that of the model (40, 14), only PMSprune can
produce the results within reasonable time while
RecMotif and the other algorithms failed. iTriplet can
produce results on this model with an execution time of
more than 10 hours. DPCFG has memory allocation
errors while RecMotif takes several days to produce the
results. RecMotif failed due to the reason that there are
too many random substrings for shorter and weaker
models to check in the sample data as analyzed pre-
viously. Therefore, the capability of RecMotif to deal
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Figure 4 Effects of increasing p (with related (l, d)) on execution time This figure shows how the execution times of algorithms, including
PMSprune, iTriplet, DPCFG and RecMotif, change with the parameter p.
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with shorter and weaker motifs (such as (13, 4), (15, 5)
etc) still needs to be improved.
The general view of Figure 4 shows that the two pat-

tern-driven algorithms PMSprune and iTriplet show
similar performances trends as p increases. Besides p,
their performances are also sensitive to motif lengths.
Meanwhile, RecMotif and DPCFG, driven by sample
substrings, also show similar performance trends as p
increases except that DPCFG has memory allocation
errors for large values of p. Overall, RecMotif is more
scalable on both the value p and the motif length l com-
pared to the other algorithms.

Biological data
To verify if RecMotif can be used to discover motifs in
biological data, we tested it on several TFBS data sets.
These data sets are E.coli CRP[10], Pre-proinsolin, DHFR
and c-fos[17], and LexA[14].
To carry out experiments, we assume these data sets

are with the OOPS condition. In practice, as we do not
have any information about the model (l, d) of the true
motif in the data, we change the value of l starting
from 6 for RecMotif. For each l, we tested different
values of d (d < l/2) to check if any cliques can be dis-
covered. By aligning the cliques, we check if the target
motif (i.e. the published motif in that data set) had been
discovered. The motifs discovered by RecMotif are
shown in Table 5.
Table 5 shows that RecMotif is applicable in real DNA

sequences. Among the data, E.coli CRP includes 18
sequences of length 105 with each containing at least
one motif instance. The motif it contains is weaker (that
five positions on it cannot obtain dominant bases). By
setting the (l, d) as (18, 6), RecMotif discovered the pub-
lished motif in less than 1 second. While with the same
setting to find the motif, iTriplet requires about 4 min-
utes, DPCFG requires about 30 seconds and PMSprune
requires about 10 seconds. RecMotif has shown rela-
tively better performance compared to these algorithms.

Conclusions
DNA motif discovery is a fundamental problem in com-
putational biology. Although many deterministic algo-
rithms have been proposed for it, these algorithms
usually become time-prohibitive when searching for
longer and weaker motifs or consume substantial mem-
ory resources (even running out of memory). In this
paper, we proposed an algorithm, RecMotif, which exhi-
bits time and memory efficiency and guarantees that all
motifs can be discovered for specific (l, d) settings.
RecMotif uses the tenet of constructing cliques recur-
sively using the sample substrings in the data based on
the concept of reference sequence/vertex. The process
of RecMotif is that it uses the selected reference vertices
from the first x reference sequences to select new refer-
ence vertices in the remaining sequences. With x gradu-
ally increased, if new reference vertices can be selected
from all the remaining sequences, the selection is con-
tinued. Finally if x equals m, it means a clique of motif
instances has been discovered.
RecMotif requires only a space complexity of O(nm2)

for processing. As m and n are fixed for each run on a
certain data set, the whole process of RecMotif con-
sumes almost constant memory. Not only can this
reduce execution time on memory operations but it also
can prevent memory allocation errors for weaker motifs.
The performance of RecMotif is affected by the back-

ground sequence n and the probability p. For a fixed p,
the longer the sequences the more execution time
RecMotif requires. This is the same with all the other
algorithms compared. Meanwhile, if l and d are changed
but p is preserved, it will not lead to longer execution
time for RecMotif. This distinguishes it from pattern-
driven algorithms such as PMSprune. As p increases,
the execution time of RecMotif grows slower than that
of DPCFG and it exhibits better performance in hand-
ling longer and weaker motifs than DPCFG, iTriplet and
PMSprune.
Increasing the values of n and p will lead to a longer

execution time for RecMotif. This is because when n
and p become larger, more random vertices in each
sequence are selected as candidate reference vertices.
This results in many more combinations of random
selection paths, i.e. intermediate cliques of small sizes.
Therefore, to eliminate these random cliques, more
comparisons (incurring execution time) are needed to
make between the real motif instances and the random
vertices.
Overall, RecMotif has been shown to exhibit better per-

formance compared to the other algorithms tested. How-
ever, for shorter and weaker (l, d) motifs such as (18, 6)
with n=600 and m=20 that can be solved by PMSprune,
RecMotif has difficulty in producing results within

Table 5 Results of RecMotif on biological data

Data Discovered Model Published

c-fos ccatattaggacatct (16, 3) ccatattaggacatct

DHFR ttcgcgccaaact (13, 2) ttcgcgccaaact

E.coli CRP. tgtgaaxxagxtcacatt (18, 6) tgtgaxxxxgxtcaca

LexA tactgtatataxatacagta (20, 5) tactgtatatatatacagta

Pre-proinsulin cctcagcccc (10, 2) cctcagcccc,

agacccagca agacccagca,

ccctaatgggcca (13, 2) ccctaatgggcca

This table shows the results of RecMotif on real biological data.

*note: ’x’ in the consensus means all bases appear with opportunity less than
50 percent
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reasonable execution time. Thus future work is still
needed to improve RecMotif on solving such problems.

Availability
Source code of RecMotif can be requested by emails.
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As discussed in [20], for (14, 4) with p=0.112 when n>800, too many random
cliques occur in the data. For the following analysis, we assume when
p>0.112 (i.e. for relatively weaker motifs), n≤800. As derived, xi=(m - i - 1)(n -

l + 1)i+2pi(i+3)/2, 0≤i≤m-2. The total number of calculations is xii
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If the sequence length n and the weakness p can approximately satisfy
Bpk≤1, i.e. p≤B-1/k, for some integer k≥2, the term Bpk in the summation
formula can be replaced with 1 approximately. That is, we can obtain an
approximate upper bound of the summation. Examples are shown as follows.
IfBp2≤1 (i.e. 0<p≤0.035),
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2 can be approximately obtained as O(mB2).

IfBp2>1 and Bp3≤1 (i.e. 0.35<p≤0.10. This is the case satisfied by the (15, 4)
problem even with B ≈ n = 2000.),
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can be approximately obtained as O(mB3p2).

As B≈n, B in the time complexities can be replaced with n approximately.
Similarly, for p<0.55 which is the case usually holds for the weak motif
discovery problem, we have time complexities of RecMotif as shown in
Table 1.
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