
PROCEEDINGS Open Access

SeqWare Query Engine: storing and searching
sequence data in the cloud
Brian D O’Connor1, Barry Merriman2, Stanley F Nelson2*

From The 11th Annual Bioinformatics Open Source Conference (BOSC) 2010
Boston, MA, USA. 9-10 July 2010

Abstract

Background: Since the introduction of next-generation DNA sequencers the rapid increase in sequencer
throughput, and associated drop in costs, has resulted in more than a dozen human genomes being resequenced
over the last few years. These efforts are merely a prelude for a future in which genome resequencing will be
commonplace for both biomedical research and clinical applications. The dramatic increase in sequencer output
strains all facets of computational infrastructure, especially databases and query interfaces. The advent of cloud
computing, and a variety of powerful tools designed to process petascale datasets, provide a compelling solution
to these ever increasing demands.

Results: In this work, we present the SeqWare Query Engine which has been created using modern cloud
computing technologies and designed to support databasing information from thousands of genomes. Our
backend implementation was built using the highly scalable, NoSQL HBase database from the Hadoop project. We
also created a web-based frontend that provides both a programmatic and interactive query interface and
integrates with widely used genome browsers and tools. Using the query engine, users can load and query
variants (SNVs, indels, translocations, etc) with a rich level of annotations including coverage and functional
consequences. As a proof of concept we loaded several whole genome datasets including the U87MG cell line. We
also used a glioblastoma multiforme tumor/normal pair to both profile performance and provide an example of
using the Hadoop MapReduce framework within the query engine. This software is open source and freely
available from the SeqWare project (http://seqware.sourceforge.net).

Conclusions: The SeqWare Query Engine provided an easy way to make the U87MG genome accessible to
programmers and non-programmers alike. This enabled a faster and more open exploration of results, quicker
tuning of parameters for heuristic variant calling filters, and a common data interface to simplify development of
analytical tools. The range of data types supported, the ease of querying and integrating with existing tools, and
the robust scalability of the underlying cloud-based technologies make SeqWare Query Engine a nature fit for
storing and searching ever-growing genome sequence datasets.

Background
Recent advances in sequencing technologies have led to
a greatly reduced cost and increased throughput [1].
The dramatic reductions in both time and financial
costs have shaped the experiments scientists are able to
perform and have opened up the possibility of whole

human genome resequencing becoming commonplace.
Currently over a dozen human genomes have been com-
pleted, most using one of the short read, high-through-
put technologies that are responsible for this growth in
sequencing [2-16]. The datatypes produced by these
projects are varied, but most report single nucleotide
variants (SNVs), small insertions/deletions (indels, typi-
cally <10 bases), structural variants (SVs), and may
include additional information such as haplotype phas-
ing and novel sequence assemblies. Paired tumor/

* Correspondence: snelson@ucla.edu
2Department of Human Genetics, University of California, Los Angeles, CA,
90095, USA
Full list of author information is available at the end of the article

O’Connor et al. BMC Bioinformatics 2010, 11(Suppl 12):S2
http://www.biomedcentral.com/1471-2105/11/S12/S2

© 2010 O’Connor et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://seqware.sourceforge.net
mailto:snelson@ucla.edu
http://creativecommons.org/licenses/by/2.0


normal samples can additionally be used to identify
somatic mutation events by filtering for those variants
present in the tumor but not the normal.
Full genome sequencing, while increasingly common,

is just one of many experimental designs that are cur-
rently used with this generation of sequencing plat-
forms. Targeted resequencing, whole-exome sequencing,
RNA sequencing (RNA-Seq), Chromatin Immunopreci-
pitation sequencing (ChIP-Seq), and bisulfite sequencing
for methylation detection are examples of other impor-
tant analysis types that require large scale databasing
capabilities. Efforts such as the 1000 Genomes project
(http://www.1000genomes.org), the Cancer Genome
Atlas (TCGA, http://cancergenome.nih.gov), and the
International Cancer Genome Consortium (http://www.
icgc.org) are each generating a wide variety of such data
across hundreds to thousands of samples. The diversity
and number of sequencing datasets already produced, in
production, or being planned present huge infrastruc-
ture challenges for the research community.
Primary data, if available, are typically huge, difficult

to transfer over public networks, and cumbersome to
analyze without significant local computational infra-
structure. These include large compute clusters, exten-
sive data storage facilities, dedicated system
administrators, and bioinformaticians adept at low-level
programming. Highly annotated datasets, such as fin-
ished variant calls, are more commonly available, parti-
cularly for human datasets. These present a more
compact representation of the most salient information,
but are typically only available as flat text files in a vari-
ety of quasi-standard file formats that require reformat-
ting and processing. This effort is substantial,
particularly as the number of datasets grow, and, as a
result, is typically undertaken by a small number of
researchers that have a personal stake in the data rather
than being more widely and easily accessible. In many
cases, essential source information has been eliminated
for the sake of data reduction, making recalculation
impossible. These challenges, in terms of file sizes,
diverse formats, limited data retention, and computa-
tional requirements, can make writing generic analysis
tools complex and difficult. Efforts such as the Variant
Call Format (VCF) from the 1000 Genomes Project pro-
vide a standard to exchange variant data. But to facili-
tate the integration of multiple experimental types and
increase tool reuse, a common mechanism to both store
and query variant calls and other key information from
sequencing experiments is highly desirable. Properly
databasing this information enables both a common
underlying data structure and a search interface to sup-
port powerful data mining of sequence-derived
information.

To date most biological database projects have focused
on the storage of heavily annotated model organism
reference sequences. For example, efforts such as the
UCSC genome databases [17], the Generic Model
Organism Database’s Chado schema [18], and the
Ensembl database [19] all solve the problem of storing
reference genome annotations in a complete and com-
prehensive way. The focus for these databases is the
proper representation of biological data types and gen-
ome annotations, but not storing many thousands of
genomes worth of variants relative to a given reference.
While many biological database schemas currently in
wide use could support tens or even hundreds of gen-
omes worth of variant calls, ultimately these systems are
limited by the resources of a single database instance.
Since they focus on relatively modest amounts of anno-
tation storage, loading hundreds of genomes worth of
multi-terabyte sequencing coverage information, for
example, would likely overwhelm these traditional data-
base approaches. Yet the appeal of databasing next gen-
eration sequence data is clear since it would simplify
tool development and allow for useful queries across
samples and projects.
In this work we introduce the SeqWare Query Engine,

a scalable database system intended to represent the full
range of data types common to whole genome and
other experimental designs for next generation sequence
data. HBase was chosen as the underlying backend
because of its robust querying abilities using the
Hadoop MapReduce environment and its auto-sharding
of data across a commodity cluster based on the
Hadoop HDFS distributed filesystem (http://hadoop.
apache.org). We also present a web service that wraps
the use of MapReduce to allow for sophisticated queries
of the database through a simple web interface. The
web service can be used interactively or programmati-
cally and makes it possible to easily integrate with gen-
ome browsers, such as the UCSC Browser [20],
GBrowse [21], or IGV (http://www.broadinstitute.org/
igv), and with data analysis tools, such as the UCSC
table browser [22], GALAXY [23], and others. The
backend and web service can be used together to create
databases containing varying levels of annotations, from
raw variant calls and coverage to highly annotated and
filtered SNV predictions. This flexibility allows the Seq-
Ware Query Engine to scale from raw data analysis and
algorithm tuning through highly annotated data disse-
mination and hosting. The design decision to move
away from traditional relational databases in favor of
the NoSQL-style of limited, but highly scalable, data-
bases allowed us to support tens of genomes now and
thousands of genomes in the future, limited only by the
underlying cloud resources.

O’Connor et al. BMC Bioinformatics 2010, 11(Suppl 12):S2
http://www.biomedcentral.com/1471-2105/11/S12/S2

Page 2 of 9

http://www.1000genomes.org
http://cancergenome.nih.gov
http://www.icgc.org
http://www.icgc.org
http://hadoop.apache.org
http://hadoop.apache.org
http://www.broadinstitute.org/igv
http://www.broadinstitute.org/igv


Methods
Design approach
The HBase backend for SeqWare Query Engine is based
on the increasingly popular design paradigm that
focuses on scalability at the expense of full ACID com-
pliance, relational database schemas, and the Structured
Query Language (SQL, as reflected in the name
“NoSQL”). The result is that, while scalable to thou-
sands of compute nodes, the overall operations per-
mitted on the database are limited. Each records
consists of a key and the value, which consists of one or
more “column families” that are fixed at table creation
time. Each column family can have many “labels” which
can be added at any time, and each of these labels can
have one or more “timestamps” (versions). For the
query engine database, the genomic start position of
each feature was used as the key while four column
families served to represent the core data types: variants
(SNVs, indels, SVs, and translocations), coverage, fea-
tures (any location-based annotations on the genome),
and coding consequences which link back to the var-
iants entries they report on. The coverage object stores
individual base coverages in a hash and covers a user-
defined range of bases to minimize storage requirements
for this data type. New column families can be added to
the database to support new data types beyond those
described here. Additional column family labels are cre-
ated as new genomes are loaded into the database, and
timestamps are used to distinguish variants in the same
genome at identical locations. Figure 1 shows an exam-
ple row with two genomes’ data loaded. This design was
chosen because it meant identical variants in different
genomes are stored within the same row, making com-
parisons between genomes extremely fast using MapRe-
duce or similar simple, uniform operators (Figure 1a).
The diagram also shows how secondary indexes are
handled in the HBase backend (Figure 1b). Tags are a
convenient mechanism to associate arbitrary key-value
pairs with any variant object and support lookup for the
object using the key (tag). When variants or other data
types are written to the database, the persistence code
identifies tags and adds them to a second table where
the key is the tag plus variant ID and the value is the
reference genomic table and location. This enables var-
iants with certain tags to be identified without having to
walk the entire contents of the main table.

Datasets
Fourteen human genome datasets were chosen for load-
ing into a common SeqWare Query Engine backend, see
Table 1 for the complete list. Most datasets included
just SNV, small indel, and a limited number of SV pre-
dictions. The U87MG human cancer cell line genome
was used to test the load of large-scale, raw variant

analysis data types. For this genome, SNVs, small indels,
large deletions, translocation events, and base-by-base
coverage were all loaded. For the SNV and small indels,
any variant observed once or more in the underlying
short read data were loaded, which resulted in large
numbers of spurious variants (i.e. sequencing errors)
being loaded in the database. This was done purpose-
fully for two reasons: for this study, to facilitate stress
testing the HBase backend, and for the U87MG sequen-
cing project, to facilitate analysis algorithm development
by giving practical access to the greatest potential uni-
verse of candidate variants. In particular, the fast query-
ing abilities of the SeqWare Query Engine enabled rapid
heuristic tuning of the variant calling pipeline para-
meters through many cycles of filtering and subsequent
assessment.
A secondary dataset generated in our lab, the “1102

GBM” tumor/normal whole genome sequence pair, was
used to compare the performance between the Berke-
leyDB and HBase Query Engine backend types. This
dataset, like the U87MG genome, included loading raw
variant calls seen once or more in both backends in
order to profile the load and query mechanisms.

Programmatic access
The SeqWare Query Engine provides a common data-
base store interface that supports both the BerkleyDB
and HBase backend types. This store object provides
generic methods to read and write the full range of
data types into and out of the underlying database. It
handles the persistence and retrieval of keys and
objects to and from the database using a flexible object
mapping layer. Simple to write bindings are created
when new data types are added to the database. The
underlying schema-less nature of key/value stores like
BerkeleyDB and HBase make this process very straight-
forward. The store also supports queries that lookup
all variants and filter by specific fields, such as cover-
age or variant call p-value, and it can also query based
on secondary indexes, typically a tag lookup (key-value
pair). The underlying implementation for each store
type (BerkeleyDB or HBase) is quite different but the
generic store interface masks the difference from the
various import and export tools available in the pro-
ject. The store interface was used whenever possible in
order to maximize the portability of the query engine
and to make it possible to switch backends in the
future.
Two lower-level APIs are available for querying the

HBase database directly. The first is the HBase API,
which the store object uses for most of its operations
including filtering variants by tags. This API is very
similar to other database interfaces and lets the calling
client iterate and filter result sets. HBase also support

O’Connor et al. BMC Bioinformatics 2010, 11(Suppl 12):S2
http://www.biomedcentral.com/1471-2105/11/S12/S2

Page 3 of 9



the use of a MapReduce source and sink, which allow
for database traversal and load respectively. This was
used to iterate over all variants in the database as
quickly as possible and to perform basic analysis tasks
such as variant type counting. The speed and flexibility
of the MapReduce interface to HBase make it an
attractive mechanism to implement future
functionality.

Web service access
The web service is built on top of the programmatic,
generic store object and uses the Restlet Java API
(http://www.restlet.org). This provides a RESTful [24]
web service interface for the query methods available
through the store. When loaded from a web browser,
the web service uses XSLT and CSS to display a naviga-
table web interface with user-friendly web forms for

Figure 1 SeqWare Query Engine schema. The HBase database is a generic key-value, column oriented database that pairs well with the
inherent sparse matrix nature of variant annotations. (a) The primary table stores multiple genomes worth of generic features, variants,
coverages, and variant consequences using genomic location within a particular reference genome as the key. Each genome is represented by a
particular column family label (such as “variant:genome7”). For locations with more than one called variant the HBase timestamp is used to
distinguish each. (b) Secondary indexing is accomplished using a secondary table per genome indexed. The key is the tag being indexed plus
the ID of the object of interest, the value is the row key for the original table. This makes lookup by secondary indexes, “tags” for example,
possible without having to iterate over all contents of the primary table.

Table 1 Datasets

Dataset Technology SNVs & Indels SV Translocations Reference

European-Venter Sanger Y Y N Levy et al. 2007 [3]

European-Watson 454 Y Y N Wheeler et al. 2008 [4]

European- Quake Helicos Y Y N Pushkarev et al. 2009 [5]

Asian Illumina Y Y N Wang et al. 2008 [6]

Yoruban 18507 Illumina Y Y N Bentley et al. 2008 [7]

Yoruban 18507 SOLiD Y Y N McKernan et al. 2009 [8]

Korean Illumina Y Y N Ahn et al. 2009 [9]

Korean-AKI Illumina Y Y N Kim et al. 2009 [10]

3 human genomes Complete Genomics Y Y N Drmanac et al. 2009 [11]

AML T/N Illumina Y Y N Ley et al. 2008 [12]

AML genome Illumina Y Y N Mardis et al. 2009 [13]

Melanoma Illumina Y Y N Pleasance et al. 2010 [15]

Lung cancer SOLiD Y Y N Pleasance et al. 2010 [14]

U87MG SOLiD Y Y Y Clark et al. 2010 [16]

Fourteen whole genome datasets were loaded into the database, including the U87MG genome, with the March 2006 assembly of the human genome used as
reference (NCBI36/hg18). Variant types (SNVs, small/large indels, SVs, etc) loaded and publication references are noted for each respective dataset. This table was
adapted from Snyder et al. 2010.

O’Connor et al. BMC Bioinformatics 2010, 11(Suppl 12):S2
http://www.biomedcentral.com/1471-2105/11/S12/S2

Page 4 of 9

http://www.restlet.org


searching the database. Queries on three data types are
supported: variants, coding consequence reports, and
per-base coverage. Variants can be searched by tag and
also a wide variety of fields such as their depth of cover-
age. The tag field is used to store a variety of annota-
tions and, in the U87MG database, this includes dbSNP
status, mutational consequence predictions, and names
of overlapping genes, among others. For the variant
reports, the standard BED file type (http://genome.ucsc.
edu/FAQ/FAQformat) is supported and users can alter-
natively select to load the query result directly in the
UCSC browser, the IGV browser, or generate a list of
non-redundant tags associated with the variant query
results. Coverage information can be queried only by
location, and the result can be generated in WIG format
(http://genome.ucsc.edu/FAQ/FAQformat), WIG with
coverage averaged by each block, or loadable links for
the UCSC and IGV browsers.
When queried programmatically, the web service

returns XML result documents. These contain enough
metadata to construct URLs accessible from a wide vari-
ety of programming languages which can then be used
to return query results in standardized formats (BED,
WIG, etc). Since every query is just a URL, they can be
created from within a web browser using the user-
friendly form fields and cut-and-pasted into another
tool or script. These URLs can then be shared over
email, linked to in a publication, and bookmarked for
later use, thereby providing a convenient, stateless, and
universally interpretable reference to the results.

Data load tools
Most of the genome datasets used in this project where
limited to SNV, indel, and SV predictions. For those
genomes, the variant information files that were avail-
able were loaded into the query engine using either
standard file type loaders (GFF, key-value files, etc) or
using custom annotation file parsers. The pileup file for-
mat (produced by SAMtools [25]) was used to load both
the U87MG and “1102 GBM” tumor/normal genome
variants and coverage information. The variant loading
tool supports a plugin interface so new annotation file
types can be easily supported. This import tool is avail-
able in the query engine package and uses the generic
store interface for loading information in database back-
end (see “Programmatic Access” for more information).
The HBase store currently uses an API very similar to
other database connection APIs, and is therefore not
inherently parallel, although multiple loads can occur
simultaneously.

Analysis tools
Two prototype analysis tools were created for use with
the U87MG and “1102 GBM” tumor/normal databases.

First, a MapReduce variant query tool was written to
directly compare the performance of the retrieval of var-
iants from HBase using the API versus using MapReduce.
This simple tool used the HBase TableInputFormat
object and a MapReduce job to traverse all database
rows. The second analysis tool created was a simple
somatic mutation detector for use with the “1102 GBM”
tumor/normal genome database. Again, the HBase Table-
InputFormat object was used to iterate over the variants
from the tumor genome, evaluating each variant by user-
specified quality criteria in the map step and identifying
those that were present in the cancer but not in the nor-
mal. In the reduce phase the coverage at each putative
somatic mutation location was checked and only those
where the coverage was good and no normal sample var-
iant was called where reported as putative somatic
mutations.

Performance measurement
Backend performance was measured for both the Berke-
leyDB and HBase stores using both data import and
export times as metrics. The “1102 GBM” tumor/normal
genome was used in this testing, which included enough
variant calls (both true and spurious) to stress test both
backends. A single threaded, API-based approach was
taken for the load test with both the BerkeleyDB and
HBase backends. Each chromosome was loaded in turn
and the time taken to import these variants into the
database was recorded. A similar approach was taken
for the retrieval test except in this case the BerkeleyDB
backend continued to use an API approach whereas the
HBase backend used both an API and MapReduced
approach. The export test was interleaved with the
import test, wherein after a chromosome was loaded the
variants where exported and both processes were timed.
In that way we monitored both the import and export
time as a function of overall database size.
The HBase tests were conducted on a 6 node HBase

cluster where each node contained 8 2.4GHz Xeon
CPUs, 24GB of RAM, and 6TB of hard drive space.
Each node contained 16 map task slots and 4 reducer
task slots. The BerkeleyDB tests were conducted on a
single node, since it does not support server clustering,
but with hardware identical to that used in the HBase
tests.

Results
U87MG genome database
For our original U87MG human genome cell line
sequencing project, we created the SeqWare Query
Engine database, first built on BerkeleyDB (http://www.
oracle.com/technetwork/database/berkeleydb) and then
later ported to HBase (http://hbase.apache.org). For the
work presented here, the U87MG database was

O’Connor et al. BMC Bioinformatics 2010, 11(Suppl 12):S2
http://www.biomedcentral.com/1471-2105/11/S12/S2

Page 5 of 9

http://genome.ucsc.edu/FAQ/FAQformat
http://genome.ucsc.edu/FAQ/FAQformat
http://genome.ucsc.edu/FAQ/FAQformat
http://www.oracle.com/technetwork/database/berkeleydb
http://www.oracle.com/technetwork/database/berkeleydb
http://hbase.apache.org


enhanced with the addition of the 13 other human gen-
ome datasets that were publicly available when this
effort commenced. To further enhance the query engine,
we also added new query strategies and utilities, such as
a MapReduce-based variant search tool. Unlike the
U87MG genome, which included all variant calls regard-
less of quality, the other genomes included only post
quality filtered variants. Still, they offer a proof of con-
cept that the HBase backend can represent multiple
genomes worth of sequence variants and associated
annotation data. This sample query engine is hosted at
http://genome.ucla.edu/U87 and can be used for both
programmatic and interactive queries through the web
service interface. A database snapshot is not available
for download (due to its large size) but all the source
datasets are publicly available and the database can be
reconstituted in another location using either the Berke-
leyDB or HBase backends along with the provided query
engine load tools.

Performance
Figure 2 shows a comparison between the BerkeleyDB
and HBase backends for both variant load and variant
export functions. BerkeleyDB was chosen as the original
backend for multiple reasons: it did not require a data-
base daemon to run, it provided a key-value store simi-
lar to the distributed key-value NoSQL stores we
intended to move towards, it had a well-designed API,
and it was known to be widely used and robust. In the
load tests both BerkeleyDB and HBase performed com-
parably (Figure 2a), with both tests using a single thread
with a similar client API (rather than a MapReduce loa-
der which would be possible only with HBase). Berke-
leyDB is slightly faster until about 6 million (6M)
variants are loaded but HBase is faster after that point
and eventually takes about 15 minutes less to load all
7M variants in this test. The test for variant export had
a significantly different outcome (Figure 2b). Both
MapReduce and standard single-thread API retrieval of
variants from HBase were extremely efficient, with the
MapReduce exporter completing in 45 seconds and the
single-thread in 386 seconds. This is in sharp contrast
with the BerkeleyDB backend which took 6,281 seconds
to export the 7M variant records. When the BerkeleyDB
database reached approximately 3.5M variants the run
time to export ballooned quickly. This was likely due to
memory limitations on the single node serving the
BerkeleyDB, resulted in greatly degraded query perfor-
mance once the index could no longer fit in memory. In
contrast, the HBase cluster nodes were each responsible
for storing and querying only a fraction of the data and
this data sharding resulting in much more robust query
performance. Rather than making a statement about the
inherent merits of the database systems themselves, this

results underscores the point that the distributed
HBase/Hadoop implementation (in this case spread
across 6 nodes) has clear scalability advantages com-
pared to daemons or processes like BerkeleyDB that are
limited to a single server.

Software availability
The SeqWare Query Engine is a sub-project of the
SeqWare toolset for next generation sequence analysis.
SeqWare includes a LIMS, pipeline based on Pegasus
[26], and metadata schema in addition to the query
engine. Like the rest of the SeqWare project, SeqWare
Query Engine is fully open source and is distributed
under the terms of the GNU General Public License
v3 (http://www.gnu.org/licenses/licenses.html). The
software can be downloaded from version control on
the project’s SourceForge.net site (http://seqware.sour-
ceforge.net). Visitors to the site can also post questions
on the mailing list, view documentation on wiki pages,
and download a pre-configured SeqWare Pipeline and
Query Engine as a virtual machine, suitable for run-
ning in a wide array of environments. The present
authors are very interested in working with other
developers on this project and welcome any
contributions.

Discussion
Recent innovations from search-oriented companies
such as Google, Yahoo, Facebook, and LinkedIn provide
compelling technologies that could potentially enable
computation on petascale sequence data. Projects such
as Hadoop and HBase, open source implementations of
Google’s MapReduce framework [27] and BigTable
database [28] respectively, can be converted to powerful
frameworks for analyzing next generation sequencing
data. For example, MapReduce is based on a functional
programming style where the basic methods available to
perform analysis are a map phase, where data is trans-
formed from one form to another, and a reduce phase,
where data is sorted and condensed. This fits well to
fundamental sequence analysis computations such as
alignment and variant calling. Already there are versions
of analysis algorithms such as Crossbow (alignment,
[29]) and GATK (variant calling and other tools, [30])
that make use of the MapReduce paradigm. The
approach is not fundamentally different from other
functional programming languages that have come
before, but in this case the approach is combined in
Hadoop with both a distributed filesystem (HDFS) and
tightly coupled execution engine. These tools, in turn,
form the basis of the HBase database system. Unlike
traditional grid technologies—for example a sun grid
engine computation cluster—the Hadoop environment
automatically partitions large data files across the

O’Connor et al. BMC Bioinformatics 2010, 11(Suppl 12):S2
http://www.biomedcentral.com/1471-2105/11/S12/S2

Page 6 of 9

http://genome.ucla.edu/U87
http://www.gnu.org/licenses/licenses.html
http://seqware.sourceforge.net
http://seqware.sourceforge.net


underlying cluster, and computations can then be dis-
tributed across the individual data pieces without
requiring the analysis program to know where the data
resides, or manage such information. The HBase data-
base system—one of the most mature of the NoSQL
database projects—takes advantage of this sharding fea-
ture and allows a database to be broken into distinct
pieces across the underlying computer cluster. This
enables the creation of much larger databases than can
be supported in traditional relational implementations
which are constrained to run on a single database ser-
ver, up to the scale of billions of rows (e.g. bases in a
genome) and millions of columns (e.g. individual gen-
omes). This is considerably larger than most database
systems typically support, but is the correct scale
needed to represent heavily annotated whole genome
sequence data for future large scale biomedical research
studies and clinical deployment to the broadest patient
populations.

Conclusions
Here we have introduced the open source SeqWare
Query Engine that uses an HBase backend and the
MapReduce/Hadoop infrastructure to provide robust
databasing of sequence data types for the SeqWare pro-
ject. The results show the scaling benefits that result
from these highly distributable technologies even when
creating a database of genomic variants for just 14
human genome datasets. The basic database functions,
such as importing and exporting, are one to two orders
of magnitude faster with HBase compared to BerkelyDB.
Moreover, the highly nonlinear improvement in scaling
is readily demonstrated at the critical point where the
standard database server becomes saturated, whereas the
HBase server maintains a proper distributed load as the
data burden is increased. This fully cloud-oriented data-
base framework is ideal for the creation of whole gen-
ome sequence/variant databases. It is capable of
supporting large scale genome sequencing research

Figure 2 Load and query performance. Comparisons of load and query times between the HBase and BerkeleyDB backend. (a) Load times for
the “1102 GBM” tumor/normal genomes where compared between HBase and BerkeleyDB. Both used a single-threaded approach to better
compare relative performance. Both perform similarly but over time the load times for BerkeleyDB increase faster than with HBase. (b)
Comparison of querying the 1102 genome database between BerkeleyDB, HBase single threaded, and HBase using MapReduce. Beyond 3M
variants BerkeleyDB query times increase dramatically while both query types for HBase perform linearly, with MapReduce consistently exhibiting
the best performance.

O’Connor et al. BMC Bioinformatics 2010, 11(Suppl 12):S2
http://www.biomedcentral.com/1471-2105/11/S12/S2

Page 7 of 9



projects involving hundreds to thousands of genomes as
well as future large scale clinical deployments utilizing
advanced sequencer technology that will soon involve
tens to hundreds of thousands of genomes.

List of abbreviations
ACID: atomicity, consistency, isolation, and durability; API: Application
Programming Interface; BED: Browser Extensible Data (encodes variants);
ChIP-Seq: Chromatin Immunoprecipitation sequencing; CSS: Cascading Style
Sheets; GATK: Genome Analysis Toolkit; GBM: Glioblastoma Multiforme; GFF:
General Feature Format (encodes genomic features); HDFS: Hadoop
Distributed File System; IGV: Integrative Genomics Viewer; indel: small
(typically <10bp) insertion or deletion; REST: Representational State Transfer;
RNA-Seq: RNA sequencing; SNP: Single Nucleotide Polymorphism; SNV:
Single Nucleotide Variant; SQL: Structured Query Language; SV: Structural
Variants; TCGA: the Cancer Genome Atlas; URL: Uniform Resource Locator;
VCF: Variant Call Format; XML: Extensible Markup Language; XSLT: XSL
Transformations

Acknowledgments
This work was supported by grants from the NINDS (U24NS), the Dani Saleh
Brain Tumor Fund, and the Henry Singleton Brain Tumor Fund. The authors
would like to acknowledge Jordan Mendler for his contributions to the
SeqWare Pipeline project and Hane Lee for her feedback on the SeqWare
Query Engine tools.
This article has been published as part of BMC Bioinformatics Volume 11
Supplement 12, 2010: Proceedings of the 11th Annual Bioinformatics Open
Source Conference (BOSC) 2010. The full contents of the supplement are
available online at http://www.biomedcentral.com/1471-2105/11?issue=S12.

Author details
1UNC Lineberger Comprehensive Cancer Center, University of North Carolina,
Chapel Hill, NC, 27599, USA. 2Department of Human Genetics, University of
California, Los Angeles, CA, 90095, USA.

Authors’ contributions
BDO designed and implemented the SeqWare Query Engine. BM provided
guidance on project goals, applications, selection of annotation databases,
and choice of analysis algorithms used. SFN is the principal investigator for
the U87MG genome sequencing project which supported the development
of the SeqWare project including the query engine.

Competing interests
The authors have declared no competing interests.

Published: 21 December 2010

References
1. Snyder M, Du J, Gerstein M: Personal genome sequencing: current

approaches and challenges. Genes & development 2010, 24(5):423.
2. Lander E, Linton L, Birren B, Nusbaum C, Zody M, Baldwin J, Devon K,

Dewar K, Doyle M, FitzHugh W, et al: Initial sequencing and analysis of
the human genome. Nature 2001, 409(6822):860-921.

3. Levy S, Sutton G, Ng P, Feuk L, Halpern A, Walenz B, Axelrod N, Huang J,
Kirkness E, Denisov G, et al: The diploid genome sequence of an
individual human. PLoS Biol 2007, 5(10):e254.

4. Wheeler D, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W,
Chen Y, Makhijani V, Roth G, et al: The complete genome of an individual
by massively parallel DNA sequencing. Nature 2008, 452(7189):872-876.

5. Pushkarev D, Neff N, Quake S: Single-molecule sequencing of an
individual human genome. Nature biotechnology 2009, 27(9):847-850.

6. Wang J, Wang W, Li R, Li Y, Tian G, Goodman L, Fan W, Zhang J, Li J,
Zhang J, et al: The diploid genome sequence of an Asian individual.
Nature 2008, 456(7218):60-65.

7. Bentley D, Balasubramanian S, Swerdlow H, Smith G, Milton J, Brown C,
Hall K, Evers D, Barnes C, Bignell H, et al: Accurate whole human genome

sequencing using reversible terminator chemistry. Nature 2008,
456(7218):53-59.

8. McKernan K, Peckham H, Costa G, McLaughlin S, Fu Y, Tsung E, Clouser C,
Duncan C, Ichikawa J, Lee C, et al: Sequence and structural variation in a
human genome uncovered by short-read, massively parallel ligation
sequencing using two-base encoding. Genome research 2009, 19(9):1527.

9. Ahn S, Kim T, Lee S, Kim D, Ghang H, Kim D, Kim B, Kim S, Kim W, Kim C,
et al: The first Korean genome sequence and analysis: full genome
sequencing for a socio-ethnic group. Genome research 2009, 19(9):1622.

10. Kim J, Ju Y, Park H, Kim S, Lee S, Yi J, Mudge J, Miller N, Hong D, Bell C,
et al: A highly annotated whole-genome sequence of a Korean
individual. Nature 2009, 460(7258):1011-1015.

11. Drmanac R, Sparks A, Callow M, Halpern A, Burns N, Kermani B, Carnevali P,
Nazarenko I, Nilsen G, Yeung G, et al: Human genome sequencing using
unchained base reads on self-assembling DNA nanoarrays. Science 2010,
327(5961):78.

12. Ley T, Mardis E, Ding L, Fulton B, McLellan M, Chen K, Dooling D, Dunford-
Shore B, McGrath S, Hickenbotham M, et al: DNA sequencing of a
cytogenetically normal acute myeloid leukaemia genome. Nature 2008,
456(7218):66-72.

13. Mardis E, Ding L, Dooling D, Larson D, McLellan M, Chen K, Koboldt D,
Fulton R, Delehaunty K, McGrath S, et al: Recurring mutations found by
sequencing an acute myeloid leukemia genome. New England Journal of
Medicine 2009, 361(11):1058.

14. Pleasance E, Stephens P, O’Meara S, McBride D, Meynert A, Jones D, Lin M,
Beare D, Lau K, Greenman C, et al: A small-cell lung cancer genome with
complex signatures of tobacco exposure. Nature 2010, 463:184-190.

15. Pleasance E, Cheetham R, Stephens P, McBride D, Humphray S,
Greenman C, Varela I, Lin M, Ordóñez G, Bignell G, et al: A comprehensive
catalogue of somatic mutations from a human cancer genome. Nature
2010, 463:191-196.

16. Clark M, Homer N, O’Connor B, Chen Z, Eskin A, Lee H, Merriman B,
Nelson S: U87MG decoded: the genomic sequence of a cytogenetically
aberrant human cancer cell line. PLoS Genet 2010, 6:e1000832.

17. Rhead B, Karolchik D, Kuhn R, Hinrichs A, Zweig A, Fujita P, Diekhans M,
Smith K, Rosenbloom K, Raney B, et al: The UCSC genome browser
database: update 2010. Nucleic Acids Res 2010, 38(Database issue):
D613-D619.

18. Mungall C, Emmert D, et al: A Chado case study: an ontology-based
modular schema for representing genome-associated biological
information. Bioinformatics 2007, 23(13):i337.

19. Hubbard T, Aken B, Beal K, Ballester B, Caccamo M, Chen Y, Clarke L,
Coates G, Cunningham F, Cutts T, et al: Ensembl 2007. Nucleic acids
research 2006.

20. Kent W, Sugnet C, Furey T, Roskin K, Pringle T, Zahler A, et al: The human
genome browser at UCSC. Genome research 2002, 12(6):996.

21. Stein L, Mungall C, Shu S, Caudy M, Mangone M, Day A, Nickerson E,
Stajich J, Harris T, Arva A, et al: The generic genome browser: a building
block for a model organism system database. Genome research 2002,
12(10):1599.

22. Karolchik D, Hinrichs A, Furey T, Roskin K, Sugnet C, Haussler D, Kent W:
The UCSC Table Browser data retrieval tool. Nucleic acids research 2004,
32(Database Issue):D493.

23. Giardine B, Riemer C, Hardison R, Burhans R, Elnitski L, Shah P, Zhang Y,
Blankenberg D, Albert I, Taylor J, et al: Galaxy: a platform for interactive
large-scale genome analysis. Genome research 2005, 15(10):1451.

24. Fielding R: Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis University of California; 2000.

25. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R: The sequence alignment/map format and
SAMtools. Bioinformatics 2009, 25(16):2078.

26. Deelman E, Singh G, Su M, Blythe J, Gil Y, Kesselman C, Mehta G, Vahi K,
Berriman G, Good J, et al: Pegasus: A framework for mapping complex
scientific workflows onto distributed systems. Scientific Programming
2005, 13(3):219-237.

27. Dean J, Ghemawat S: MapReduce: Simplified data processing on large
clusters. Communications of the ACM 2008, 51:107-113.

O’Connor et al. BMC Bioinformatics 2010, 11(Suppl 12):S2
http://www.biomedcentral.com/1471-2105/11/S12/S2

Page 8 of 9

http://www.biomedcentral.com/1471-2105/11?issue=S12
http://www.ncbi.nlm.nih.gov/pubmed/20194435?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20194435?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11237011?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11237011?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17803354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17803354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18421352?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18421352?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19668243?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19668243?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18987735?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18987734?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18987734?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19546169?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19546169?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19546169?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19470904?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19470904?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19587683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19587683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19892942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19892942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18987736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18987736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19657110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19657110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20016488?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20016488?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20016485?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20016485?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20126413?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20126413?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19906737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19906737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17646315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17646315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17646315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12045153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12045153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12368253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12368253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681465?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16169926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16169926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19505943?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19505943?dopt=Abstract


28. Chang F, Dean J, Ghemawat S, Hsieh W, Wallach D, Burrows M, Chandra T,
Fikes A, Gruber R: Bigtable: A distributed storage system for structured
data. ACM Transactions on Computer Systems (TOCS) 2008, 26(2):4.

29. Langmead B, Schatz M, Lin J, Pop M, Salzberg S: Searching for SNPs with
cloud computing. Genome Biology 2009, 10(11):R134.

30. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
Garimella K, Altshuler D, Gabriel S, Daly M, et al: The Genome Analysis
Toolkit: A MapReduce framework for analyzing next-generation DNA
sequencing data. Genome Research 2010.

doi:10.1186/1471-2105-11-S12-S2
Cite this article as: O’Connor et al.: SeqWare Query Engine: storing and
searching sequence data in the cloud. BMC Bioinformatics 2010 11(Suppl
12):S2.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

O’Connor et al. BMC Bioinformatics 2010, 11(Suppl 12):S2
http://www.biomedcentral.com/1471-2105/11/S12/S2

Page 9 of 9

http://www.ncbi.nlm.nih.gov/pubmed/19930550?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19930550?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20644199?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20644199?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20644199?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Design approach
	Datasets
	Programmatic access
	Web service access
	Data load tools
	Analysis tools
	Performance measurement

	Results
	U87MG genome database
	Performance
	Software availability

	Discussion
	Conclusions
	List of abbreviations
	Acknowledgments
	Author details
	Authors' contributions
	Competing interests
	References

