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Abstract

Background: One of the major challenges in biology is the correct identification of promoter regions.

Computational methods based on motif searching have been the traditional approach taken. Recent studies have
shown that DNA structural properties, such as curvature, stacking energy, and stress-induced duplex destabilization
(SIDD) are useful in promoter prediction, as well. In this paper, the currently used SIDD energy threshold method is
compared to the proposed artificial neural network (ANN) approach for finding promoters based on SIDD profile
data.

Results: When compared to the SIDD threshold prediction method, artificial neural networks showed noticeable
improvements for precision, recall, and F-score over a range of values. The maximal F-score for the ANN classifier
was 62.3 and 56.8 for the threshold-based classifier.

Conclusions: Artificial neural networks were used to predict promoters based on SIDD profile data. Results using
this technique were an improvement over the previous SIDD threshold approach. Over a wide range of precision-

regions than threshold based methods.

recall values, artificial neural networks were more capable of identifying distinctive characteristics of promoter

Background

Identification of promoters is an important issue in biol-
ogy, given that they are central in understanding the
process by which genes are regulated. Wet-lab methods
for promoter identification provide accuracy but suffer
from being time-consuming. In order to facilitate faster
processing, computational methods are required.
Although far from perfect, they do provide a means for
quickly identifying potential targets for experimental
validation.

Several computational methods for promoter predic-
tion have been proposed. Most include some analysis of
patterns commonly found in promoter regions, such as
-10 and -35 motifs [1,2]. However, these patterns are
not always sufficiently conserved to allow for adequate
prediction. Furthermore, there are clearly other factors
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not directly related to sequence motifs that are closely
associated with promoter regions.

Recent studies have reported impressive results using
DNA structural properties as predictors of promoter
regions [3]. These methods include DNA curvature [4],
relative stability [5], and stress-induced duplex destabili-
zation (SIDD) [6,7]. Of interest in this paper is promoter
prediction using SIDD properties. In [7], some of the
most impressive results to date are reported for E. coli
K12. These were achieved simply using a minimum
SIDD threshold value for distinguishing promoters from
non-promoters. The current study proposes a more
sophisticated approach, involving the use of artificial
neural networks (ANNs), along with SIDD profiles, for
promoter prediction.

Results and discussion

A comparison of threshold and ANN methods for
SIDD-based promoter prediction was assessed using
E. coli K12. First, the SIDD profile for the E. coli K12
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genome was obtained from Benham [6]. For this dataset,
each base pair (bp) is represented by its destabilization
free energy, G(x). G(x) corresponds to the incremental
free energy needed for the base pair at position x to
always remain open.

Training and testing sets construction

The training/testing dataset was constructed from the
SIDD profile. Positive instances (promoters) were
defined as the 250 bp region from -200 to +50, with
respect to known transcription start sites (TSSs). This
range covers the areas of lowest SIDD energy levels sur-
rounding promoters regions, as shown in Figure 1. The
negative instances were randomly selected 250 bp
regions, excluding any located within the previously
defined promoter regions. This dataset was composed
on 1648 positive instances and 4944 negative instances.
A randomly selected two-third and one-third split was
used for training and testing sets, respectively.

Comparison of prediction methods

Promoters are strongly associated with regions of low
SIDD energy (see Figure 1). This forms the basis for
prediction by thresholds. For this method, the sum of
the SIDD energies, sum@, for each of the 250 bp testing
set instance was calculated. Instances with sumG less
than or equal to a selected threshold, 7, were tagged
promoters. For predictions using the ANNSs, classifiers
were built from the training set and evaluated on the
testing set.

Comparison of ANN promoter prediction with that of
prediction using sumG thresholds was based on preci-
sion and recall. The first evaluation made use of preci-
sion-recall curves (PRCs), which plot recall against
precision over a range of values. The PRC for sumG was
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Figure 1 Average G(x) for E. coli K12 The average G(x) in the

range -500 to +501, relative to known transcription start sites, for E.
coli K12.

Page 2 of 4

derived from predictions at varying thresholds. Generat-
ing a series of precision-recall pairs for the ANNs was
not as straightforward, as there was no single variable
that could be adjusted in order to produce somewhat
predictable precision-recall results. The ANN applica-
tion that was used did, however, provide a means of
specifying costs for true positive, true negative, false
positive, and false negative predictions. By varying the
costs for these measures, several artificial neural net-
works were produced and corresponding precision-recall
pairs were used to produce the PRC shown in Figure 2,
along with that of sumG. Note that recall distances on
the x-axis are not equal due to the difficulty in produ-
cing exact recall values from classifiers, particularly
neural networks.

Predictions were impressive for both classifiers and
show that SIDD can be useful in distinguishing promo-
ter and non-promoter regions. With exceptions for con-
ditions of high precision where the two classifiers were
nearly equal, predictions for ANNs outperformed sumG
over a wide range. For example, at equal precision of
61% for both classifiers, the recall of the ANN was at
60%, while sumG was at 50%. This represents 305 cor-
rectly predicted promoters for the ANN and 255 for
sumG.

In order to compare predictions using a one-dimen-
sional performance measure, the weighted average (or
more specifically, the harmonic mean) over all preci-
sion-recall pairs was computed for the ANN and sumG
methods. This measure is known as the F-score. The
maximal F-score score for all precisions-recall pairs was
identified. The resulting values were 62.3 (precision 59,
recall 66) for the ANN and 56.8 (precision 54, recall 60)
for sumG. Again, the ANN classifier showed a notice-
able improvement over sumG.
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Figure 2 PRC curves for ANN and sumG methods The precision-
recall curves for the ANN and sumG methods.
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A comparison was also made for a combined ANN-
sum@ classifier. Using F-scores of 60 and 57 for the
ANN and sumG classifiers, respectively, a decision tree
was built from their combined predictions using the
Weka data mining suite’s J48 algorithm [8]. The F-score
of the resulting classifier was 60. Because a large percen-
tage of the correct predictions made by sumG were also
made by the ANN, there was no significant
improvement.

The differences in the prediction ability of the ANN and
sumG methods result from the way they recognize promo-
ter regions. The sumG method is only able to identify
SIDD regions whose summations fall above or below a
specified threshold. This differs from ANNs, which are
known for their ability to detect patterns. For example,
Figure 1 shows the average G(x) at each position in the
range from -500 to +500, relative to TSSs. It can be seen
that a particular pattern emerges. The lowest energy
values are present near the TSSs and gradually increase
with distance; more so in the downstream direction. Other
noticeable patterns also appear near the TSSs. ANNs were
able to recognize differences in SIDD energy levels, as
with sumG. But, it is likely that their additional ability to
recognize patterns such as in Figure 1, that gives them the
advantage over the threshold method.

Conclusions

DNA structural features are increasingly being recog-
nized as an important tool for detecting promoters. Pro-
moter prediction based on SIDD information has shown
promising results. However, the current prediction
method used is based simply on determining if the
energy values of particular SIDD regions fall below a
threshold. Artificial neural networks were used to pre-
dict promoters based on SIDD profile data. Results
using this technique showed noticeable improvements
over the current threshold method.

Future research will involve combining SIDD-based
ANN promoter predictors with other methods. In [7] it
was shown that SIDD was not directly related to pri-
mary sequences or unique motifs, and not positively
correlated with DNA curvature. Thus, using SIDD with
other predictive sequence and structural properties, par-
ticularly those not strongly correlated, may be gainful.
This was the approach taken in [7].

In addition, it may be useful to determine whether
neural networks trained on one genome predict well on
others. Wang and Benham [7] noted nearly identical
thresholds for SIDD summation parameters for E. coli
K12 and B. subtilis predictions, when illustrating how
SIDD properties could be used for estimating the prob-
ability that a DNA fragment contained a promoter. This
will become practical as SIDD profiles for other gen-
omes become more readily available.
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Methods

Sequence data

The whole genome of E. coli K12, which contains
4,639,675 nucleotides, was downloaded from NCBI
[GenBank: NC_000913.2]. Experimentally verified tran-
scription start sites for E. coli K12 were obtained from
the Regulon database (Release: 6.4, updated on 10"
August, 2009) [9]. This database release provided a
compilation of 1771 promoter sequences. The dataset
was filtered for unique promoters with known TSS
locations, resulting in 1648 records. The SIDD profile
for E. coli was obtained from Benham [6] and used for
constructing training and testing sets, as described
below.

Details of training and testing sets construction

The training/testing dataset was constructed from the
E. coli K12 SIDD profile. Positive instances (promoters)
were defined as the 250 bp region from -200 to +50,
with respect to filtered TSSs and with no bp at position
0. This range covers the areas of lowest SIDD energy
levels surrounding promoters regions, as shown in Fig-
ure 1. The negative instances were randomly selected
250 bp regions, with restrictions on proximity to TSSs.
Negative instances used for the threshold method
excluded any located within 250 bases of TSSs. How-
ever, instances used for ANNs excluded only those
located within 50 bases. Allowing the neural networks
to train on non-promoters that were similar to actual
promoters slightly improved their ability to distinguish
the two. This dataset was composed on 1648 positive
instances and 4944 negative instances, which represents
a 3:1 ratio of negatives and positives. A randomly
selected two-third and one-third split was used for
training and testing data, respectively.

Details of artificial neural network promoter prediction
ANN:Ss, included in the Tiberius v5.5.0 data mining
software [10], were used to build predictive models for
promoters, based on SIDD energy values. Each network
was composed of three layers: input, hidden, and output.
The input layer consisted of 250 input nodes. This cor-
responds to the number of SIDD energy values from the
training and testing instances. The hidden layer was
composed of two neurons, and the output layer one
neuron. The neural networks were trained on the
training set, and the generated networks were exported
outside of Tiberius for testing.

Details of SIDD-based promoter prediction

Prediction by the threshold method was done by first
calculating the sum of the destabilization free energies,
sum@, for each of the 250 bp testing set instances.
sumG@G is defined as follows
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250
sum@G = ZG(x)
x=1

where G(x) corresponds to the destabilization free
energy at position x. Instances with sumG less than or
equal to a selected threshold, T, were tagged promoters.
Otherwise they were tagged non-promoters.

Precision, recall, and F-score
Precision, recall, and F-score were defined as follows,

s P P
precision = ——— , recall = ———— , F-score =
TP + FP TP+ FN
2 * precision * recall
precision + recall

where TP, TN, and FP are the numbers of true posi-
tives, true negatives, and false positives, respectively.
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