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Abstract

Background: Lipoxygenases (LOX) play pivotal roles in the biosynthesis of leukotrienes and other biologically
active potent signalling compounds. Developing inhibitors for LOX is of high interest to researchers. Modelling the
interactions between LOX and its substrate arachidonic acid is critical for developing LOX specific inhibitors.
Currently, there are no LOX-substrate structures. Recently, the structure of a coral LOX, 8R-LOX, which is 41%
sequence identical to the human 5-LOX was solved to 1.85A resolution. This structure provides a foundation for
modelling enzyme-substrate interactions.

Methods: In this research, we applied a computational method, Internal Coordinate Mechanics (ICM), to model the
interactions between 8R-LOX and its substrate arachidonic acid. Docking arachidonic acid to 8R-LOX was
performed. The most favoured docked ligand conformations were retained. We compared the results of our
simulation with a proposed model and concluded that the binding pocket identified in this study agrees with the
proposed model partially.

Results: The results showed that the conformation of arachidonic acid docked into the ICM-identified docking site
has less energy than that docked into the manually defined docking site for pseudo wild type 8R-LOX. The
mutation at 1805 resulted in no docking pocket found near Fe atom. The energy of the arachidonic acid
conformation docked into the manually defined docking site is higher in mutant 8R-LOX than in wild type 8R-LOX.
The arachidonic acid conformations are not productive conformations.

Conclusions: We concluded that, for the wild type 8R-LOX, the conformation of arachidonic acid docked into the
ICM-identified docking site is more stable than that docked into the manually defined docking site. Mutation
affects the structure of the putative active site pocket of 8R-LOX, and leads no docking pockets around the
catalytic Fe atom. The docking simulation in a mutant 8R-LOX demonstrated that the structural change due to the
mutation impacts the enzyme activity. Further research and analysis is required to obtain the 8R-LOX-substrate
model.

Background

Lipoxygenases (LOX) are non-heme iron dioxygenases
that catalyze the stereo- and regio- specific formation of
fatty acid hydroperoxides from polyunsaturated fatty
acids, which are commonly found in plants and animals
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[1,2]. Human lipoxygenases play pivotal roles in the bio-
synthesis of leukotrienes and other biologically active
potent signalling compounds in the inflammatory
response [3]. Due to this, human lipoxygenases are tar-
gets for developing inhibitors to modulate the effects of
the potent signalling compounds [4,5]. Leukotrienes are
derived from arachidonic acid, which is the substrate of
lipoxygenase [6]. An understanding of substrate arachi-
donic acid recognition is helpful in the design of
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enzyme-specific inhibitors [7]. However, there are no
animal LOX structures available to provide a model for
how the substrate binds in the active site. The structure
of a coral lipoxygenase, 8R-LOX, from Plexaura homo-
malla, with 41% identical to a human lipoxygenase, 5-
LOX, was recently solved to 1.85 A [7]. There is no
human isozyme with better than 40% sequence identity
to human 5-LOX. The high resolution structure of 8R-
LOX can provide a strong foundation for modelling
enzyme-substrate interactions.

Many computational methods have been used to
model the interactions between enzyme and substrate.
Internal Coordinate Mechanics (ICM) is one of the
computational methods used by researchers to predict
enzyme-substrate interactions. ICM is a stochastic global
optimization methodology with biased probability
Monte Carlo procedure which can be used to effectively
model substrate docking and predict structure [8-17]. It
has been used to identify the active site of enzyme and
acknowledged to be an accurate predictive tool of bind-
ing geometry today [13,18].

In this research, we will use the high resolution struc-
ture of 8R-LOX as the model protein and apply ICM to
model how the substrate arachidonic acid, interacts with
8R-LOX. This research will lead us to develop sub-
strate-LOX models for the lipoxygenase superfamily and
facilitate the development of specific anti-LOX
inhibitors.

Methods

Retrieval of high resolution structure of 8R-LOX and
pre-processing

The high resolution 1.85A structure of pseudo-wild type
8R-LOX (psWT) and 1.9A structure of a deletion
mutant of psWT 8R-LOX (I805W:psWT) were obtained
from RCSB Protein Data Bank with access code 3FG1
and 3FG3, respectively [19]. ICM Pro version 3.6 was
used for docking arachidonic acid into the protein.

First, the pdb files of psWT and I805W:psWT were
converted into ICM objects, by optimizing hydrogens,
optimizing side-chains and deleting water molecules.
Since there are four identical molecules in psWT and
I1805W:psWT and we would need only one to per-
form the docking, we removed three of them to avoid
the noises and inconveniences caused by the exis-
tence of the other three molecules. For the same pur-
pose, the unrelated small molecules were also
removed from the ICM objects of psWT and I805W:
psWT (Figure 1).

Docking arachidonic acid into 8R-LOX

ICM Pro version 3.6 was used to perform docking the
substrate, arachidonic acid into psWT and I805W:
psWT. We first set psWT and I805W:psW'T as the
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Figure 1 The 1.85A resolution crystal structure of pseudo-wild
type 8R-LOX and the 1.9A resolution crystal structure of the
mutant I805W:psWT 8R-LOX used in docking simulation. The
structure of 1805W:psWT superimposes on the structure of psWT 8R-
LOX. Their structure is nearly identical except that in the area of the
mutation. W805 is marked out in the figure. The catalytic Fe atom is
in blue.

receptors and found the potential ligand binding pockets
in psWT and I805W:psWT. Tolerance value we used
was 3 to avoid missing any docking pockets (the default
value is 5).

Of the potential ligand binding pockets found, the one
which is closest to the catalytic Fe was selected to per-
form the docking. We also manually defined a docking
site for psWT and I805W:psWT based on the binding
site proposed by Neau [7]. This manually defined dock-
ing site includes 13 residues (Table 1).

Reviewing and adjusting docking site was done. Then
the receptor map was generated. This step was to con-
struct energy map of the environment within the dock-
ing area box. Interactive docking was performed for the
chosen docking pocket and manually defined docking
pocket. The thoroughness which represents the length
of simulation was set as 1 as suggested by ICM Pro.
Properties of conformations were saved for viewing and
analysis.

Results

Docking of arachidonic acid into psWT 8R-LOX

With tolerance value 3, we found 26 potential ligand
binding pockets (Figure 2). Of the 26 potential ligand
binding pockets, the one which was closest to Fe atom
and located in the target area was chosen to dock ara-
chidonic acid into psWT 8R-LOX (Figure 2). All other
binding pockets were not considered for doing docking
because either they were too far from the catalytic Fe
atom or the volume was too big to properly accommo-
date the small ligand, arachidonic acid. The volume of
the selected binding pocket is 171.162 A®, and the
radius of it is 3.4A. This pocket is composed of 15
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Table 1 Residues of the ICM-identified docking site for
psWT and residues of the manually defined docking site
for psWT and I805W:psWT 8R-LOX

No. psWT 1805W:psWT psWT
(Manually defined) (Manually defined) (ICM-identified)
1 R555 R555 Q753
2 L758 L758 L754
3 L763 L763 H757
4 E766 E766 L758
5 1796 1796 H762
6 1799 1799 1796
7 G800 G800 D797
8 R801 R801 G800
9 L8o4 804 804
10 1805 ws8o5 1810
11 1999 1999 V811
12 L1000 L1000 L815
13 11066 11066 799
14 L1000
15 11066

There are 13 residues for both manually defined docking sites in psWT and
1805W:psWT 8R-LOX. The mutation residue is bolded and italicized. In psWT
8R-LOX, the 10" residue is 1805 while the mutant has W805. There are 15
residues for the ICM-identified docking site in psWT. The 6 common residues
for the ICM-identified docking site and the manually defined docking site are
underlined.

residues plus Fe atom. The 15 residues are Q753, L754,
H757, L758, H762, 1796, D797, G800, L804, 1810, V811,
L815, T996, L1000 and 11066 (Table 1).

The docking simulation resulted in seventy-three con-
formations of arachidonic acid docked in the psWT 8R-
LOX. The conformation of arachidonic acid with the low-
est energy (-63.623kcal/mol) is shown in Figure 3. From
the conformation, we can see arachidonic acid is docked
into the binding pocket with carboxyl terminal pointing
inside of psWT 8R-LOX. However, there are other

Figure 2 Distribution of the 26 potential ligand binding
pockets of psWT 8R-LOX. The pockets are marked in different
colours. The pocket for simulating the substrate docking is marked
in pink. The catalytic Fe atom is in blue.
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Figure 3 The conformation of arachidonic acid docked into
the ICM-identified docking site of psWT 8R-LOX with lowest
energy. Upper: An overall view of the conformation of arachidonic
acid. Lower: A close up view of the conformation of acrachidonic
acid. The arachidonic acid is in yellow, the carboxyl terminal of it is
in red. The catalytic Fe atom is in blue. The energy for this
conformation is -63.623kcal/mol.

conformations with the carboxyl terminal pointing to the
outside of psWT 8R-LOX although the energy is high.

Interactive docking of arachidonic acid into the manu-
ally defined docking site (Table 1) resulted in seventy-
six conformations of arachidonic acid docked into the
psWT 8R-LOX. We found that the conformation of ara-
chidonic acid with the lowest energy is not located
around the Fe atom. Putting together information about
location, energy, and feasibility, we identified one con-
formation as the most favoured conformation (Figure 4).
This conformation is located near the Fe and with low
energy (2.706kcal/mol). In this conformation, the car-
boxyl terminal of arachidonic acid points to outside of
8R-LOX, and the methyl C terminal is located inside of
the psWT 8R-LOX.

Docking of arachidonic acid to mutant 1805W:psWT
8R-LOX

We found twenty-five potential ligand binding pockets
in 1805W:psWT 8R-LOX (Figure 5). There are none of
these pockets enclosing the catalytic Fe atom. Data
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Figure 4 The conformation of arachidonic acid docked into
the manually defined docking site of psWT 8R-LOX. Upper: An
overall view of the conformation of arachidonic acid. Lower:

A close up view of the conformation of acrachidonic acid. The
arachidonic acid is in yellow, the carboxyl terminal of it is in red.
The catalytic Fe atom is in blue. The energy for this conformation
is 2.706kcal/mol.

shows that the closest pocket to Fe atom is as far as
4.5A from the catalytic Fe atom, not containing Fe
atom. Since no pocket sits around Fe atom, no ICM
docking was performed for any of these 25 pockets.
However, we did run ICM docking using the manually
defined docking site for I805W:psWT (Table 1). Interac-
tive docking simulation for the manually defined dock-
ing site resulted in 73 conformations of arachidonic acid
docked to I805W:psWT 8R-LOX. The most favoured
arachidonic acid conformation is near the Fe atom, 3.1
A, and has the lowest energy, 39.947kcal/mol (Figure 6).

Discussion

Conformations of arachidonic acid docked into

psWT 8R-LOX

Comparison of the conformations of arachidonic acid
docked into the ICM-identified docking site and that
docked into the manually defined docking site shows
that the location of arachidonic acid for both

Figure 5 The 25 potential ligand binding pockets of I805WT:
psWT 8R-LOX. Pockets are patches in various colours. No pocket is
located around the catalytic Fe atom. The catalytic Fe atom is in
blue.

Figure 6 The conformation of arachidonic acid docked into
the manually defined docking site of I805WT:psWT 8R-LOX.
Upper: An overall view of the conformation of arachidonic acid.
Lower: A close up view of the conformation of acrachidonic acid.
The arachidonic acid is in yellow, the carboxyl terminal of it is in
red. The catalytic Fe atom is in blue. The energy for this
conformation is 39.947kcal/mol.
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conformations is overlapped. However, there is differ-
ence between the two conformations. In the conforma-
tion of arachidonic acid docked into the ICM-identified
docking site, the carboxyl terminal of arachidonic acid
points inside of 8R-LOX, while in the conformation of
arachidonic acid docked into the manually defined dock-
ing site, the carboxyl terminal of arachidonic acid points
outside of 8R-LOX (Figures 3 and 4).

The conformation of arachidonic acid in Figure 4
implies a possible access for arachidonic acid to Fe atom
from ambience. However, if we compare the energy for
the two conformations, the conformation of arachidonic
acid in Figure 3 is much lower than that in Figure 4,
indicating the conformation of arachidonic acid in Fig-
ure 3 is more stable and favoured. We realized that
there are 6 residues in common for ICM-identified
docking pocket and the manually defined docking
pocket. They are L758, 1796, G800, L804, L1000, and
11066. These common residues explain why the loca-
tions of the two conformations are overlapped. The
common residues for the two docking pockets indicate
that the binding site proposed by Neau et al [7] makes
sense. Our simulation confirmed the proposed binding
site partially. Further simulation has been designed to
verify/modify the proposed binding site in 8R-LOX.

Conformations of arachidonic acid docked into

psWT 8R-LOX and 1805W:psWT 8R-LOX

We found that 25 potential docking pockets were identi-
fied in I805W:psWT (Figure 5), which is 1 less than that
in psWT 8R-LOX (Figure 2). We can find that the
pockets in Figure 2 and Figure 5 are basically the same
except the area around Fe atom, indicating that the
mutation at 1805 changed the 3-D structure of the area
around the catalytic Fe atom in 8R-LOX. The interest-
ing thing is that there is none of the 25 pockets contain-
ing the catalytic Fe atom. This tells us that the mutation
made at 1805 caused a fundamental change in the bind-
ing site of 8R-LOX, leaving no docking pocket around
Fe atom.

The docking results for the manually defined docking
site show that the energy of the arachidonic acid confor-
mation in I805W:psWT, 39.947kcal/mol (Figure 6) is
much greater than that in the psWT 8R-LOX,
2.706kcal/mol (Figure 4). This tells us that the arachido-
nic acid conformation docked into the mutant 8R-LOX
is much less stable than that docked into the wild-type
8R-LOX. The structure of the manually defined binding
pocket is changed by the mutation, causing the binding
ability of 8R-LOX for arachidonic acid weakened, the
binding of arachidonic acid to 8R-LOX not stable, and
therefore the activity of the enzyme reduced. This con-
sists with the experimental data that mutations signifi-
cantly impact enzyme activity [7].
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Productivity of arachidonic acid conformations

We analyzed the arachidonic acid conformations for all
the docking simulations. We found that no docking
simulation produces productive conformation consider-
ing the stereo- and region- specificity of the product
and the process of catalysis. The 10th carbon atom in
all arachidonic acid conformations does not position
against the catalytic Fe atom (Figures 3, 4, 6). In the cat-
alysis, the first step of the reaction is hydrogen abstrac-
tion at the 10th carbon of a pentadiene moiety of
arachidonic acid by the activated Fe?*[14] to produce a
free radical intermediate, which requires the 10th car-
bon to face to Fe atom. All our arachidonic acid confor-
mations do not show this. The reason could be that we
removed all the water molecules before doing the dock-
ing. However, in the hydrogen abstraction at the 10"
carbon of arachidonic acid, a water molecule is required
[1,6]. We will perform the docking simulation with the
water molecule present and hope to obtain productive
conformations.

Conclusions

We applied the computational method “Internal Coordi-
nate Mechanics” in docking arachidonic acid to 8R-
LOX. The results showed that, for the wild type 8R-
LOX, the conformation of arachidonic acid docked into
ICM-identified docking site is more stable than that
docked into the manually defined docking site. Mutation
at 1805 affects the structure of the putative binding site
of 8R-LOX, which leads no docking pockets around Fe
atom. The docking simulation in I805W:psWT 8R-LOX
explains and consists with the experimental data pre-
sented by Neau [7]. Further research and analysis is
required to obtain productive conformations, identify
the binding site of 8R-LOX and model the interactions
between arachidonic acid and 8R-LOX.
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