
PROCEEDINGS Open Access

Analysis of density based and fuzzy c-means
clustering methods on lesion border extraction
in dermoscopy images
Sinan Kockara1*, Mutlu Mete2*, Bernard Chen1, Kemal Aydin3

From Seventh Annual MCBIOS Conference. Bioinformatics: Systems, Biology, Informatics and Computation
Jonesboro, AR, USA. 19-20 February 2010

Abstract

Background: Computer-aided segmentation and border detection in dermoscopic images is one of the core
components of diagnostic procedures and therapeutic interventions for skin cancer. Automated assessment tools
for dermoscopy images have become an important research field mainly because of inter- and intra-observer
variations in human interpretation. In this study, we compare two approaches for automatic border detection in
dermoscopy images: density based clustering (DBSCAN) and Fuzzy C-Means (FCM) clustering algorithms. In the first
approach, if there exists enough density –greater than certain number of points- around a point, then either a new
cluster is formed around the point or an existing cluster grows by including the point and its neighbors. In the
second approach FCM clustering is used. This approach has the ability to assign one data point into more than
one cluster.

Results: Each approach is examined on a set of 100 dermoscopy images whose manually drawn borders by a
dermatologist are used as the ground truth. Error rates; false positives and false negatives along with true positives
and true negatives are quantified by comparing results with manually determined borders from a dermatologist.
The assessments obtained from both methods are quantitatively analyzed over three accuracy measures: border
error, precision, and recall.

Conclusion: As well as low border error, high precision and recall, visual outcome showed that the DBSCAN
effectively delineated targeted lesion, and has bright future; however, the FCM had poor performance especially in
border error metric.

Introduction
Melanoma is the fifth most common malignancy in the
United States and has rapidly become one of the leading
cancers in the world. Malignant melanoma is the most
deadly form of skin cancer and the fastest growing skin
cancer type in the human body. 8,441 deaths out of
68,720 incidences are estimated numbers in the United
States in 2009 [1]. If it is detected early, melanoma can
often be cured with a simple excision operation.

Dermoscopy is the major non-invasive skin imaging
technique that is extensively used in the diagnosis of
melanoma and other skin lesions. Dermoscopy improves
upon simple photography by revealing more of the sub-
surface structures underneath the skin, and is now
widely used by dermatologists. The contact dermoscopy
technique consists of placing fluid such as mineral oil,
water, or alcohol on the skin lesion that is subsequently
inspected using a digital camera and a hand-held der-
moscopy attachment such as Dermlite. The fluid placed
on the lesion eliminates surface reflection and renders
the cornified layer translucent; thus, allowing a better
visualization of pigmented structures within the
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epidermis, the dermoepidermal junction and the superfi-
cial dermis.
For early detection of melanoma, finding lesion bor-

ders is the first and key step of the diagnosis since the
border structure provides life saving information for
accurate diagnosis. Currently, dermatologists draw bor-
ders manually which is described as tedious and time
consuming. That is where computer-aided border detec-
tion of dermoscopy images comes in to the picture.
Detecting melanoma early is critical because the mela-
noma not detected early can be fatal. Also, speed is cri-
tical because of a lack of dermatologists to screen all the
images. Thus, physician error increases with rapid eva-
luation of cases [2]. For these very reasons, automated
systems would be a significant help for dermotologists.
The proposed method in this study is a fully automated
system. By fully automated authors mean that prior to
and during the processing there is no human interven-
tion in the system. The purpose with this system is to
increase dermotologist’s comfort level with his/her deci-
sion; however, a dermatologist always constitutes the
final decision on the subject.

Background
Differentiating or partitioning objects from background
or other objects on an image is called image segmenta-
tion. Solutions to the image segmentation have wide-
spread applications in various fields; including medical
diagnosis and treatment. Plenty of methods have been
generated for grayscale and color image segmentations
[3-6]. Four popular approaches [7] for image segmenta-
tion are: edge-based methods, threshold techniques [8],
neighborhood-based techniques, graph-based methods
[9,10], and cluster-based methods. Edge based techni-
ques investigate discontinuities in image whereas neigh-
borhood-based methods examine the similarity
(neighborhoods) among different regions. Threshold
methods identify different parts of an image by combin-
ing peaks and valleys of 1D or 3D histograms (RGB).
Also, there exists numerous innovative graph-based
image segmentation approaches in the literature. Shi et
al. 1997-1998 [9,10] treated segmentation as a graph
partitioning problem, and proposed a novel unbiased
measure for segregating subgroups of a graph, known as
the Normalized Cut criterion. More recently, Felzensz-
walb et al. [11] developed another segmentation techni-
que by defining a predicate for the existence of
boundaries between regions, utilizing graph-based repre-
sentations of images. In this study; however, we focus
on cluster-based segmentation methods. In cluster-
based methods, individual image pixels are considered
as general data samples and assumed correspondence
between homogeneous image regions and clusters in the
spectral domain.

Dermoscopy involves optical magnification of the
region-of-interest, which makes subsurface structures
more easily visible when compared to conventional
macroscopic images [12]. This in turn improves screen-
ing characteristics and provides greater differentiation
between difficult lesions such as pigmented Spitz nevi
and small, clinically equivocal lesions [13]. However, it
has also been demonstrated that dermoscopy may actu-
ally lower the diagnostic accuracy in the hands of an
inexperienced dermatologists [14]. Therefore, novel
computerized image understanding frameworks are
needed to minimize the diagnostic errors that result
from the difficulty and subjectivity of visual interpreta-
tions [15,16].
For melanoma investigation, delineation of region-of-

interest is the key step in the computerized analysis of
skin lesion images for many reasons. First of all, the
border structure provides important information for
accurate diagnosis. Asymmetry, border irregularity, and
abrupt border cutoff are a few of many clinical features
calculated based on the lesion border. Furthermore, the
extraction of other important clinical indicators such as
atypical pigment networks, globules, and blue-white vein
areas critically depends on the border detection [17].
The blue-white veil is described as an irregular area
with blended blue pigment with a ground glass haze
(white), as if the image were out of focus.
At the first stage for analysis of dermoscopy images,

automated border detection is usually being applied
[16]. There are many factors that make automated bor-
der detection challenging e.g. low contrast between the
surrounding skin and the lesion, fuzzy and irregular
lesion border, intrinsic artifacts such as cutaneous fea-
tures (air bubbles, blood vessels, hairs, and black frames)
to name a few [17]. According to Celebi et al. 2009 [17],
automated border detection can be divided into four
sections: pre-processing, segmentation, post-processing,
and evaluation. Pre-processing step involves color space
transformations [18], [19], contrast enhancement [20]
[21], and artifacts removal [22], [23], [24-28]. Segmenta-
tion step involves partitioning of an image into disjoint
regions [29], [28],[23]. Post-processing step is used to
obtain the lesion border [16], [30]. Evaluation step
involves dermatologists’ evaluations on the border detec-
tion results.
Regarding boundary of clusters, Lee and Castro [31]

introduced a new algorithm of polygonization based on
boundary of resulting point clusters. Recently Nosovskiy
et al. [32] used another theoretical approach to find
boundary of clusters in order to infer accurate boundary
between close neighboring clusters. These two works
principally study boundaries of finalized data groups
(clusters). Schmid et al. [23] proposed an algorithm
based on color clustering. First, a two-dimensional
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histogram is calculated from the first two principal com-
ponents of the CIE L*u*v* color space. The histogram is
then smoothed and initial cluster centers are obtained
from the peaks using a perceptron classifier. At the final
step, the lesion image is segmented.
In this study for computer-aided border detection we

use two clustering algorithms density based clustering
(DBSCAN) [33] and multi level fuzzy C means cluster-
ing (FCM) and compare their performances over dermo-
scopy images for border detection. In the context of
dermoscopic images, clustering corresponds to finding
whether each pixel in an image belongs to skin lesion
border or not. Automatic border detection makes der-
matologist’s tedious manual border drawing procedure
faster and easier.

DBSCAN
With the aim of separating background from skin lesion
to target possible melanoma, we cluster pixels of thre-
sholded images by using DBSCAN. It takes a binary
(segmented) image, and delineates only significantly
important regions by clustering. The expected outcome
of this framework is desired boundary of the lesion in a
dermoscopy image.
Technically, it is appropriate to tailor density based

algorithm in which cluster definition guarantees that the
number of positive pixels is equal to or greater than
minimum number of pixels (MinPxl) in certain neighbor-
hood of core points. The core point is that the neighbor-
hood of a given radius (Eps) has to contain at least a
minimum number of positive pixels (MinPxl), i.e., the
density in the neighborhood should exceed pre-defined
threshold (MinPxl). The definition of a neighborhood is
determined by the choice of a distance function for two
pixels p and q, denoted by dist(p,q). For instance, when
the Manhattan distance is used in 2D space, the shape of
the neighborhood would be rectangular. Note that
DBSCAN works with any distance function so that an
appropriate function can be designed for some other spe-
cific applications. DBSCAN is significantly more effective
in discovering clusters of arbitrary shapes. It was success-
fully used for synthetic dataset as well as earth science,
and protein dataset. Theoretical details of DBSCAN are
given in [33]. Once the two parameters Eps and MinPxl
are defined, DBSCAN starts to cluster data points (pixels)
from an arbitrary point q as illustrated in Figure 1.
Let I be a subimage that is of dimension N × N. For a

pixel p, let px and py denote its position where top-left
corner is (0, 0) of I. Let cxy represent the color at (px,
py). The Eps-neighborhood of a pixel p, denoted by
NEps(p), is defined by NEps(p) = {q Î I | dist(p, q) ≤
Eps} where dist is Euclidean distance. There can be
found two kinds of pixels in a cluster: 1) pixels inside of
the cluster (core pixels) and 2) pixels on the border of

the cluster (border pixels). As expected, a neighborhood
query for a border pixel returns notably less points than
a neighborhood query of a core pixel. Thus, in order to
include all points belonging to the same segment, we
should set the minimum number of pixels (MinPxl) to a
comparatively low value. This value, however, would not
be characteristic for the respective cluster - particularly
in the presence of negative pixels (non-cluster). There-
fore, we require that for every pixel p in a cluster C
there is a pixel q in C so that p is inside of the Eps-
neighborhood of q and NEps(q) contains at least MinPxl
pixels: | NEps(p) | ≥ MinPxl and dist(p, q) ≤ Eps. A pixel
p is called density-reachable from a pixel q when there
is a chain of pixels p1, p2, .., pn, where p1 = q, pn = p.
This is illustrated in Figure 1. A cluster C (segment) in
image is a non-empty subset of pixels and given as:

C = {p ∩ q | | NEps(p) | ≥ MinPxl,

where q is density reachable from p. DBSCAN centers
around the key idea: to form a new cluster or grow an
existing cluster the Eps-neighborhood of a point should
contain at least a minimum number of points (MinPxl).
Algorithm 1 DBSCAN
DBSCAN (SubImage, Eps, Minpxl)

ClusterId:=nextId(NOISE);
FOR I FROM 1 To SubImage.height DO

FOR I FROM 1 To SubImage.width DO
Point := SubImage.get(i,j);
IF point.Cid = UNCLASSIFIED AND
Point.positive() = TRUE
THEN
IF ExpandCluster(SubImage, Point,
ClusterId, Eps, MinPxl)
THEN
ClusterId:=nextId(ClusterId)
END IF;
END IF;

END FOR;
END FOR;

END DBSCAN;

Figure 1 Direct density reachable (left) and density reachable
property of DBSCAN (right).
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Algorithm 1 summarizes DBSCAN for image seg-
mentation. Once the two parameters Eps and MinPxl
are defined, DBSCAN starts to cluster data points
from an arbitrary point q. It begins by finding the
neighborhood of point q, i.e., all points that are
directly density reachable from point q. This neighbor-
hood search is called region query. For an image, we
start with left-top pixel (not necessarily a corner pixel,
any arbitrary pixel can be chosen for first iteration) as
our first point in the dataset (subimage). We look for
first pixel satisfying the core pixel condition as a start-
ing (seed) point. If the neighborhood is sparsely popu-
lated, i.e. it has fewer than MinPxl points, then point q
is labeled as a noise. Otherwise, a cluster is initiated
and all points in neighborhood of point q are marked
by new cluster’s ID. Next the neighborhoods of all q’s
neighbors are examined iteratively to check if they can
be added into the cluster. If a cluster cannot be
expanded any more, DBSCAN chooses another arbi-
trary unlabeled point and repeats processes to form
another cluster. This procedure is iterated until all
data points in the dataset have been labeled as noise
or with a cluster ID. Figure 2 illustrates example clus-
ter expansion.

Fuzzy c-means clustering
Clustering, a major area of study in the scope of unsu-
pervised learning, deals with recognizing meaningful
groups of similar items. Under the influence of fuzzy
logic, fuzzy clustering assigns each point with a degree
of belonging to clusters, instead of belonging to exactly
one cluster.
In fuzzy event modeling, pixel colors in a dermo-

scopy image can be viewed as probability space where

the pixels with some colors can belong partially to the
background class and/or the skin lesion. The main
advantage of this method is that, it does not require a
priori knowledge about number of objects in the
image.
Fuzzy C-Means (FCM) clustering algorithm [34,35] is

one of the most popular fuzzy clustering algorithms.
FCM is based on minimization of the objective function
Fm(u, c) [35]:
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where m, the fuzzification factor which is a weighting
exponent on each fuzzy membership, is any real number
greater than 1, uij is the degree of membership of xi in
the cluster j, xi is the ith of d-dimensional measured
data, cj is the dimension center of the cluster, d2(xk,ci) is
a distance measure between object xk and cluster center
ci, and ||*|| is any norm expressing the similarity
between any measured data and the center.

Figure 2 Example Cluster Expanding: New points (green ones in circle) are expanding cluster.
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The FCM algorithm involves the following steps:

1. Set values for c and m
2. Initial membership matrix U= [uij], which is U(0)

(|i| = number of members, |j| = number of clusters)
3. At k-step: calculate the centroids for each cluster
through equation (2) if k ≠ 0. (If k=0, initial cen-
troids location by random)
4. For each member, calculate membership degree
by equation (1) and store the information in U(k)

5. If the difference between U(k) and U(k+1) less than
a certain threshold, then STOP; otherwise, return to
step 3.

In the FCM, the number of classes (c in equation 1) is
a user input. We tried to find the number of unclassified
data points is greater than some threshold (T) values
(30, 40, 50, 60, and 70) in our experiments. Since the
number of classes is a user input in FCM, there is a risk
of over segmentation. For instance when the number of
segments in a skin image is 3 and we force the number
of clusters to be found by FCM to be 6, the FCM over
segments the image. This was one of the principal chal-
lenges we encountered with FCM. Thus, we ran FCM
for different number of clusters and different threshold
values and found that for the value of five initial clusters
and threshold value of 30, FCM gave good accuracy in
segmentation. Therefore, we used these values in all of
our experiments. Moreover, in all of our experiments

fuzzification factor m is taken as 2. Figure 3 shows how
FCM detected area (red region) is changed by the
change in threshold.

Experiments and results
The proposed methods are tested on a set of 100 der-
moscopy images obtained from the EDRA Interactive
Atlas of Dermoscopy [12]. These are 24-bit RGB color
images with dimensions ranging from 577 × 397 pixels
to 1921 × 1285 pixels. The benign lesions include nevo-
cellular nevi and dysplastic nevi. The distance function
used is Euclidean distance between pixels p and q, and

given as d p q p x q x p y q y( , ) . . . .= −( ) + −( )2 2 where p.x

and p.y denote position of pixel p at xth column and
yth row with respect to top-left corner (0, 0) of image.
We run DBSCAN on each image with the eps of 5 and
MinPts of 60.
We evaluated the border detection errors of the

DBSCAN and FCM by comparing our results with
physician-drawn boundaries as a ground truth. Manual
borders were obtained by selecting a number of points
on the lesion border, connecting these points by a sec-
ond-order B-spline and finally filling the resulting
closed curve [22]. Using the dermatologist-determined
borders, the automatic borders obtained from the
DBSCAN and FCM are compared using three quanti-
tative error metrics: border error, precision, and recall.
Border error is developed by Hance et al. [18] and

Figure 3 Overlay images of FCM with different threshold values a) 30, b) 40, c) 50, d) 60, e) 70.
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currently the most important metric for assessing qual-
ity of any automatic border detection algorithm, and
given by:

Border Error
Area AutomaticBorder ManualBorder

Area Manua
=

⊕( )
llBorder( )

×100,

where AutomaticBorder is the binary image obtained
from DBSCAN or FCM, ManualBorder is the binary
image obtained from a dermatologist (see Figure 4 right
side). Exclusive OR operator,⊕, essentially emphasizes
disagreement between target (ManualBorder) and pre-
dicted (AutomaticBorder) regions. Referring to informa-
tion retrieval terminology, numerator of the border
error means summation of False Positive (FP) and False
Negative (FN). The denominator is obtained by adding
True Positive (TP) to False Negatives (FN). An illustra-
tive example is given in Figure 5.
Regarding the image in Figure 5, assume that red is

drawn by a dermatologist and blue is the automated
line, respectively. TP indicates correct lesion region
found automatically. Similarly, TN shows healthy region
(background) both manual and computer assessment

agree on. FN and FP are labels for missed lesion and
erroneous positive regions, respectively. Addition to bor-
der error, we also reported precision (positive predictive
value) and recall (sensitivity) for each experimental
image in Table 1 and Table 2 for results generated with
DBSCAN and FCM respectively. Precision and recall are

defined as
TP

TP FP
and

TP
TP FN+ +

respectively.

Note that all definitions runs for the number of pixels
in the particular region. Analogously, Area() function
returns the number of active pixels in a binary image.
Table 1 gives border error, precision and recall rates
generated from the DBSCAN for each image whereas
Table 2 represents border error, precision and recall
rates generated from the FCM. It can be seen that the
results vary significantly across the images.
In Figure 4, an exemplary dermoscopy image, which is

determined as melanoma, and its corresponding derma-
tologist drawn border are illustrated. Figure 6 illustrates
the DBSCAN generated result in red color for the same
image. The DBSCAN generated result is overlaid on top
of the dermatologist drawn border image in black color.
As seen from the figure, hair is detected as false positive.
Figure 3 shows results generated from the FCM with
different fuzzification factors.
For example for the melanoma image given in Figure

4, FCM’s precision, recall, and border error rates are
99.4%, 75.4%, and 100.4% respectively; however,
DBSCAN’s precision, recall, and border error rates for
the same image are 94%, 84%, and 2.2% respectively.
Following tables show results generated with the
DBSCAN and the FCM for 100 image dataset
respectively.
Since the most important metric to evaluate perfor-

mance of a lesion detection algorithm is border error
metric, border errors for DBSCAN and FCM are illu-
strated in Figure 7. In the figure, X-axis show image IDs
in random order. As seen from Figure 7, DBSCAN out-
performs FCM for lesion border detection on dermo-
scopy images: for DBSCAN overall average border error
ratio is 6.94% whereas overall average border error ratio
for FCM is 100%. As for recall and precision, DBSCAN
and FCM averaged out 76.66% and 99.26%; 55% and
100% , respectively.
Automatically drawn boundaries usually found at

more intense regions of a lesion (see Figure 8a, 8b, 8c,
8e, 8f) having promising assessment with DBSCAN. In
Figure 8(d) , the DBSCAN marked also outer regions.
Obviously, the gradient region between blue and red
boundaries seems to be a major problem for the
DBSCAN. We believe that even though inter-dermatolo-
gist agreement on manual borders is not perfect, most

Figure 4 An exemplary dermoscopy image (left) and corresponding
dermatologist drawn border (right)

Figure 5 Illustration of components used in accuracy and error
quantification.
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Table 1 DBSCAN border error, precision, and recall measures for each image in the dataset

Img. ID Border Error Precision Recall Img. ID Border Error Precision Recall

1 8.2% 0.98 0.79 51 5.1% 1.00 0.81

2 8.0% 0.93 0.86 52 6.9% 1.00 0.80

3 4.9% 0.89 0.85 53 7.4% 1.00 0.78

4 6.2% 1.00 0.82 54 1.5% 1.00 0.95

5 5.4% 1.00 0.88 55 4.2% 1.00 0.88

6 4.6% 1.00 0.83 56 14.9% 1.00 0.60

7 3.9% 0.96 0.91 57 9.4% 1.00 0.77

8 3.2% 1.00 0.87 58 5.9% 1.00 0.82

9 3.4% 1.00 0.82 59 4.6% 1.00 0.75

10 2.2% 1.00 0.91 60 2.9% 1.00 0.81

11 0.9% 1.00 0.91 61 6.5% 0.90 0.74

12 6.5% 1.00 0.61 62 5.8% 1.00 0.74

13 10.0% 1.00 0.70 63 5.6% 1.00 0.77

14 14.8% 1.00 0.70 64 2.9% 1.00 0.82

15 5.9% 1.00 0.67 65 2.2% 0.94 0.84

16 6.8% 1.00 0.76 66 8.3% 0.89 0.79

17 6.0% 1.00 0.67 67 6.3% 0.98 0.83

18 4.0% 1.00 0.86 68 3.2% 1.00 0.79

19 6.4% 1.00 0.71 69 2.4% 1.00 0.79

20 8.0% 1.00 0.80 70 4.6% 1.00 0.74

21 8.8% 1.00 0.78 71 8.8% 1.00 0.71

22 12.6% 1.00 0.73 72 3.5% 0.94 0.84

23 8.6% 1.00 0.76 73 1.8% 0.99 0.86

24 9.0% 1.00 0.72 74 2.9% 1.00 0.90

25 5.7% 1.00 0.79 75 5.9% 1.00 0.71

26 33.9% 1.00 0.51 76 9.2% 1.00 0.74

27 9.0% 1.00 0.74 77 3.3% 1.00 0.72

28 8.0% 1.00 0.65 78 13.6% 1.00 0.61

29 10.6% 1.00 0.75 79 10.4% 1.00 0.71

30 11.3% 1.00 0.74 80 6.7% 1.00 0.65

31 9.7% 1.00 0.72 81 1.8% 1.00 0.65

32 10.8% 1.00 0.77 82 7.5% 1.00 0.82

33 3.3% 1.00 0.86 83 9.9% 1.00 0.54

34 4.2% 1.00 0.88 84 3.1% 1.00 0.74

35 2.7% 1.00 0.88 85 6.4% 1.00 0.79

36 6.0% 1.00 0.79 86 7.5% 0.98 0.79

37 4.0% 1.00 0.85 87 7.2% 1.00 0.73

38 8.0% 1.00 0.71 88 5.1% 1.00 0.59

39 3.4% 1.00 0.76 89 5.5% 0.91 0.82

40 3.6% 1.00 0.82 90 17.0% 1.00 0.56

41 8.0% 1.00 0.73 91 8.1% 1.00 0.61

42 3.2% 1.00 0.85 92 4.3% 1.00 0.89

43 7.3% 1.00 0.74 93 1.7% 1.00 0.93

44 17.7% 1.00 0.70 94 14.6% 1.00 0.66

45 3.6% 1.00 0.84 95 3.0% 1.00 0.68

46 5.2% 1.00 0.88 96 7.8% 1.00 0.75

47 2.5% 1.00 0.91 97 21.8% 1.00 0.66

48 3.0% 1.00 0.87 98 4.0% 1.00 0.85

49 10.9% 1.00 0.68 99 11.5% 1.00 0.65

50 12.0% 1.00 0.68 100 3.1% 1.00 0.66
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Table 2 FCM border error, precision, and recall measures for each image in the dataset

Img. ID Border Error Precision Recall Img. ID Border Error Precision Recall

1 99% 1 0.635 51 99.9% 0.99 0.66

2 99.98% 1 0.65 52 132.5% 1 0.5

3 100% 1 0.62 53 69.93% 1 0.45

4 101% 1 0.54 54 100% 1 0.56

5 98% 1 0.66 55 89.47% 1 0.45

6 96% 1 0.55 56 108.13% 1 0.52

7 105% 1 0.645 57 96% 0.99 0.65

8 100% 1 0.66 58 105% 1 0.62

9 89% 1 0.7 59 100% 1 0.56

10 106% 1 0.7 60 78.32% 1 0.51

11 100% 1 0.79 61 96.82% 1 0.53

12 98% 1 0.35 62 106.83% 1 0.34

13 97% 1 0.45 63 100% 1 0.71

14 99% 1 0.76 64 103.33% 0.98 0.56

15 103% 1 0.23 65 101% 1 0.47

16 98% 1 0.63 66 96.86% 0.95 0.52

17 100% 1 0.2 67 100% 1 0.65

18 89% 1 0.54 68 106.83% 1 0.62

19 99% 1 0.33 69 99% 1 0.34

20 99.9% 1 0.67 70 106.67% 1 0.49

21 92.9% 1 0.65 71 102.3% 1 0.65

22 98% 1 0.71 72 99.9% 1 0.71

23 78.3% 1 0.56 73 123% 1 0.48

24 96.8% 1 0.45 74 105.3% 1 0.53

25 106% 1 0.5 75 103.6% 1 0.5

26 123% 1 0.65 76 98% 1 0.58

27 105.4% 1 0.56 77 106.8% 1 0.45

28 104.7% 1 0.59 78 107% 1 0.76

29 98% 0.99 0.501 79 89.3% 1 0.69

30 95% 1 0.63 80 96.8% 1 0.59

31 93.7% 1 0.34 81 100% 1 0.63

32 96.8% 1 0.49 82 102.3% 1 0.34

33 100% 1 0.53 83 103.3% 1 0.56

34 101% 1 0.43 84 100% 1 0.32

35 98% 1 0.39 85 100% 1 0.67

36 103% 1 0.65 86 89% 1 0.65

37 98% 1 0.62 87 106.6% 1 0.71

38 100% 1 0.6 88 99% 1 0.56

39 89% 1 0.46 89 106.8% 0.97 0.5

40 106.6% 1 0.48 90 118.4% 1 0.48

41 93.6% 1 0.54 91 98.3% 1 0.65

42 96.8% 1 0.59 92 99.6% 1 0.62

43 100% 1 0.57 93 122.4% 1 0.45

44 89% 1 0.63 94 100% 1 0.48

45 107% 1 0.76 95 106.6% 1 0.56

46 89.3% 1 0.64 96 93.6% 1 0.43

47 96.8% 1 0.45 97 96.8% 0.99 0.51

48 106.7% 1 0.48 98 100% 1 0.53

49 99% 1 0.56 99 89% 1 0.49

50 99.9% 1 0.59 100 107% 1 0.53
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dermatologists will draw borders approximately the red
borders as shown in images of Figure 8. This is because
the reddish area just outside the obvious tumor border
is part of the lesion.
We also made a rough comparison of the DBSCAN

with prior state of the art lesion border detection meth-
ods proposed by Celebi et. al 2008 [22] and 2009 [17].
Comparisons showed that the mean error of DBSCAN
(6.94%) is obviously less than their results. However, we
cannot make image by image comparison since they

used a subset of 100 dermoscopy image dataset (90
images). Their image IDs might be different than our
image IDs even for the same image. Therefore, for now
the mean error rate is only indication we have as a
proof that DBSCAN is better than studies given in [17]
and [22].

Conclusion
In this study, we introduced two approaches for auto-
matic detection of skin lesions. First, a fast density based
algorithm DBSCAN is introduced for dermoscopy ima-
ging. Second, the FCM is used for lesion border detec-
tion. The assessments obtained from both methods are
quantitatively analyzed over three accuracy measures:
border error, precision, and recall. As well as low border
error, high precision and recall, visual outcome showed
that the DBSCAN effectively delineated targeted lesion,
and has bright future; however, the FCM had poor per-
formance especially in border error metric. The next
step, we will focus on at more details on intra-variability
and post-assessment during performance analysis of the
intelligent systems. Additionally, performance of
DBSCAN will be evaluated over different polygon-union-
ing algorithms. In terms of border errors, we plan to
develop model that are more sensitive to melanoma
lesion. A thresholding method which is well-integrated
with clustering rationale, such as the one described in
[36], will be preferred in the future because of unex-
pected difference between precision and recall rates.

Figure 6 Overlay image of DBSCAN.

Figure 7 Border errors generated by DBSCAN (red) and FCM (green)
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