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Abstract

Background: Effectors of Type Ill Secretion System (T3SS) play a pivotal role in establishing and maintaining
pathogenicity in the host and therefore the identification of these effectors is important in understanding
virulence. However, the effectors display high level of sequence diversity, therefore making the identification a
difficult process. There is a need to collate and annotate existing effector sequences in public databases to enable
systematic analyses of these sequences for development of models for screening and selection of putative novel
effectors from bacterial genomes that can be validated by a smaller number of key experiments.

Results: Herein, we present T3SEdb http://effectors.bic.nus.edu.sg/T3SEdb, a specialized database of annotated T3SS
effector (T3SE) sequences containing 1089 records from 46 bacterial species compiled from the literature and
public protein databases. Procedures have been defined for i) comprehensive annotation of experimental status of
effectors, ii) submission and curation review of records by users of the database, and iii) the regular update of
T3SEdb existing and new records. Keyword fielded and sequence searches (BLAST, regular expression) are
supported for both experimentally verified and hypothetical T3SEs. More than 171 clusters of T3SEs were detected
based on sequence identity comparisons (intra-cluster difference up to ~60%). Owing to this high level of
sequence diversity of T3SEs, the T3SEdb provides a large number of experimentally known effector sequences with
wide species representation for creation of effector predictors. We created a reliable effector prediction tool,
integrated into the database, to demonstrate the application of the database for such endeavours.

Conclusions: T3SEdb is the first specialised database reported for T3SS effectors, enriched with manual annotations
that facilitated systematic construction of a reliable prediction model for identification of novel effectors. The
T3SEdb represents a platform for inclusion of additional annotations of metadata for future developments of
sophisticated effector prediction models for screening and selection of putative novel effectors from bacterial
genomes/proteomes that can be validated by a small number of key experiments.

Background

The Type III Secretion System (T3SS) is an essential
mechanism for host-pathogen interaction during the
infection process and is found in many gram-negative
bacteria pathogens and eukaryotic cell symbionts [1].
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Examples include Yersinia spp., Salmonella spp.,
Burkholderia, Pseudomonas and Chlamydia [2]. The
T3SS machinery is a highly conserved multi-protein
apparatus that mediates the delivery of bacterial effector
proteins into the host cell [3]. T3SS effector (T3SE) pro-
teins act as virulence factors within the host and are
able to alter and manipulate vital host cell functions,
such as signal transduction [4] and innate immune
response [5].
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Due to the key role of T3SE proteins in the establish-
ment and maintenance of bacterial pathogenicity, there is
considerable research interest in the identification of
T3SS effectors. However T3SEs display high level of
sequence diversity, due largely to horizontal gene transfer
among evolutionarily distant species and subsequent bac-
terial adaptation to different host cell environments [6].
To date, while quite a number of T3SEs have been iden-
tified by both in vitro and in silico methods, the rising
number of effector sequences being discovered each year
suggests that this represents only a small proportion of
all effectors, with many more yet to be discovered.

There is a need to collate and annotate these known
effector sequences to enable systematic analyses of these
sequences for development of models for screening and
selection of putative novel effectors from bacterial gen-
omes/proteomes that can be validated by a small num-
ber of key experiments. There is no publicly available
specialized database of T3SEs, although databases exist
for the T3SS machinery, such as the Database of Type 3
Secretion System (DTTSS) [7]. Herein, we present
T3SEdb, a specialized database of annotated T3SS effec-
tors, Web-accessible at http://effectors.bic.nus.edu.sg/
T3SEdb. By using the reported annotated repertoire of
effectors in the database, we have built a reliable T3SS
effector prediction model that may be useful for predict-
ing T3SS effectors expressed in a broad spectrum of
bacterial species.

Results and discussion

T3SEdb data

T3SEdb contains 1089 cross-referenced and manually
annotated effector records (as of April 2010), of which
504 are experimentally verified (E), 572 hypothetical (H)
and 13 unknown (U), originating from a total of 46 bac-
terial species. Nine bacterial species (Escherichia coli,
Salmonella enteric, Citrobacter rodentium, Pseudomonas
syringae, Yersinia pestis, Chlamydia trachomatis, Shi-
gella flexneri, Yersinia enterocolitica and Burkholderia
pseudomallei) had more than 10, both experimentally
verified and hypothetical effector sequences, with
Escherichia coli having the most reported.

T3SEdb records are built on effector sequence records
retrieved using various keywords from the NCBI Entrez
Protein database. The original records were manually
checked to remove irrelevant records and the retained
records were processed to customise the data for the
specialised T3SEdb by keeping only fields of interest
(list of fields is provided at: http://effectors.bic.nus.edu.
sg/T3SEdb/fielddescription.php). A T3SEdb record is
assigned a unique five character identifier, which con-
sists of a single letter “T” followed by four numeric
digits. The experimental status of each record (either E,
H or U) was defined following the comprehensive
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annotation procedure that we defined http://effectors.
bic.nus.edu.sg/T3SEdb/annotationpolicy.php, which
involved manually scanning through the literature via
PubMed [8], cross-referencing functional annotations in
corresponding records of the effectors in the UniProt/
Swiss-Prot database [9], and performing BLAST [10]
search against the non-redundant (nr) sequences
database.

Features of T3SEdb

Users can dynamically browse and string match search
the database via the dynamic AJAX/JQuery data request
calls to the server. Advanced specific queries are also
supported: users can query the database via the NCBI
accession number, perform domain or general keyword
search, which can also be restricted to the experimental
status of the sequences or to a specific field in the
sequence record (Figure 1A). Search results are presented
in a tabular form, displaying T3SEdb accession number,
effector name, hyperlinked NCBI Entrez Protein database
accession number, source organism of the effector,
sequence length, experimental status, last sequence
update, name and accession of the primary/source data-
base that the effector was retrieved from, sequence data,
literature references (hyperlinked PubMed IDs) and
T3SEdb curation comments (if any) (Figure 1B).
Sequence similarity search function against the experi-
mental and hypothetical sequences using the BLAST tool
is also provided. Users can batch retrieve sequence data
of experimentally confirmed and hypothetical effectors.
For curated input to the database by users, a web-inter-
face for submission of new T3SEs is provided with sub-
mission and curation review policy indicated http://
effectors.bic.nus.edu.sg/T3SEdb/usercurationpolicy.php.
A policy on regular update of T3SEdb existing and new
records is also defined http://effectors.bic.nus.edu.sg/
T3SEdb/updatepolicy.php. Statistics are dynamically
updated providing up-to-date general information on the
records in the T3SEdb, such as the number of records,
the rate of deposition of new effector records into the
NCBI Entrez Protein database over the years (1990 to
2010), the list of source species for the effector sequences
and the number of experimentally verified and hypotheti-
cal sequences classified according to each species.

Diversity of T3SS effectors

T3SS effector sequences have been reported to be highly
diverse [6]. The latest up-to-date collection of experi-
mentally verified effector sequences in T3SEdb enabled
assessment of the sequence diversity among them. Clus-
tering of the T3SEs by amino acid difference between
the sequences showed that there is a core set of 171
clusters/groups that remained remarkably stable
between 10% to 40% identity, as indicated by the clear
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Figure 1 T3SEdb search function and sample output page. A) The database can be queried via the NCBI accession number, domain or
general keyword search which can also be restricted to the experimental status of the sequences (experimentally validated or hypothetical) or
to a specific field in the sequence record. B) Search results display database record with T3SEdb accession number, effector name, hyperlinked
NCBI Entrez Protein database accession number, source organism of the effector, sequence length, experimental status, last sequence update,

name and accession of the primary/source database that the effector was retrieved from, sequence data, literature references (hyperlinked
PubMed IDs) and T3SEdb curation comments (if any).
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plateau in Figure 2. This means that there are as many
as 171 clusters with amino acid difference of ~60%
within clusters and at least ~91% between clusters. This
corroborates reports that T3SEs may represent a func-
tionally diverse set of effectors that have a correspond-
ingly wide range of effects on the target host cell [6].
The high level of sequence diversity among T3SS effec-
tors highlights the need for the application of other
more conserved functional metadata inherent in the
sequences for the construction of models for prediction
of novel effectors.

Prediction of effectors using machine learning algorithms
Machine learning approaches have been used to create
tools for prediction of diverse T3SS effectors based on
physico-chemical properties, such as hydrophobicity and
polarity, in their N-terminal region [11-13], suggesting
that these properties are conserved in this region and
encode key functional signals to discriminate effectors
from non-effectors. Thus the N-terminal region and the
inherent physico-chemical properties together with com-
plex machine learning approaches represent attractive
avenues for strategies to design and develop T3SS effec-
tor prediction models. T3SEdb provides a large number
of experimentally known effector sequences with wide
species representation for creation of effector predictors
which may be useful for scanning of genomes of broad
spectrum of bacterial species for discovery of novel
T3SEs. We created an effector prediction system to
demonstrate the application of the database for such
endeavours.

We focused on the 100 amino acids (aa) region of the
N-terminal of the experimentally known effectors (posi-
tive dataset of 100 sequences from 28 species in the
database) and non-effector protein sequences (negative
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dataset of 100 sequences from 10 species) for the devel-
opment of the predictor using machine learning meth-
ods in the Waikato Environment for Knowledge
Analysis (WEKA, version 3.6.2) [14]. Three physico-che-
mical properties, namely hydrophobicity [15], polarity
[16] and B-turns [17] were studied and their scores were
ascribed to the overlapping peptides of window size 9
within the 100aa region for both the positive and nega-
tive datasets. The application of the physico-chemical
property B-turn has not been reported elsewhere and
was included because proline residues, which suggest
presence of B-turns, are reported to be significantly
enriched in effectors of animal pathogens [11], and we
also observed enrichment of proline in the N-terminal
region of many of the known effectors in the database.
Proline residues represented ~5.46% of the amino acids
over the 100aa N-terminal region of experimentally vali-
dated effectors, which is higher than the UniProt/Swiss-
Prot database statistics [18] of ~4.69% for proline.

The performance of several binary classifiers (logistic
regression, support vector machines (SVM), naive Bayes
and BayesNet) available in WEKA was evaluated via
10-fold cross-validation. The Naive Bayes classifier
(Table 1) was the best among the other classifiers for
the selected feature set of the three physico-chemical
properties analysed, with an excellent cross-validation
Aroc of ~89%. Testing of the Naive Bayes model with
experimentally validated effectors (positive dataset of 68
sequences from 19 species) and non-effector protein
sequences (negative dataset of 68 sequences from 7 spe-
cies) that were not part of the training data returned an
Aroc of ~93%, demonstrating the utility of the model
for prediction of effectors. The model has been inte-
grated in T3SEdb as prediction tool http://effectors.bic.
nus.edu.sg/T3SEdb/predict.php enabling users to scan
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Figure 2 High sequence diversity of T3SS effectors. At 100% amino acid sequence identity threshold between the 504 experimentally
validated effector sequences, as many as 324 clusters were observed. When the % identity was reduced to 90%, tolerating 10% difference
between the sequences, the number of clusters dropped significantly to 206. Allowing more differences between the sequences by reducing

the identity threshold (even to as low as 10% identity) did not reduce the number of clusters significantly (171 clusters even at 10% identity).
This highlights the high level of amino acid difference between T3SS effectors.
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Table 1 Performance measure of binary classifiers in
WEKA for prediction of T3SEs.

Training Testing
(10x cross-
validation)
Binary classifier Aroc SE SP Aroc SE SP PPV

Bayesian Logistic Regression 060 0.72 049 066 0.73 060 007

Support vector machines 074 097 052 080 095 064 008
(SVM)

BayesNet 086 080 076 091 094 083 0.15

Naive Bayes 089 084 082 093 091 083 0.17

SE, SP and PPV refer to sensitivity, specificity and positive predictive value
measures, respectively. Aroc is the area under the receiver operator
characteristic curve and is commonly used as a measure to assess the quality of
a prediction model. The testing Aroc, SE and SP were done with a balanced
dataset of 68 effectors and non-effectors that were not part of the training. The
PPV was computed using an unbalanced dataset representing the approximate
proportion of effectors and non-effectors in a bacterial genome.

sequences of interest against the model for presence of
functional signals indicative of a T3SE. The predictive
ability of this model is comparable to those developed
by others in the field (Aroc of ~86-95%) [11,12].

The model was also tested for its usefulness in scan-
ning bacterial genomes for novel effectors. However, the
test against a dataset approximately proportionate to the
ratio of effectors and non-effector protein sequences in
a bacterial genome (positive dataset of 49 sequences
from 14 species and negative dataset of 929 from 16
species) returned a low positive predictive value (PPV:
proportion of true positives over the predicted positives)
of ~17%. PPV is a more relevant measure for research-
ers working in the wet-lab validating predictions because
a model with a high PPV would directly result in a sig-
nificant reduction in effector discovery cost. Though the
low PPV for our model is expected given the small pro-
portion of effectors in the bacterial genome, it highlights
the challenges facing researchers in the field to develop
more sophisticated prediction tools utilizing assemblage
of voting of combinations of additional metadata as pre-
diction features to discriminate effectors from non-effec-
tors for practical application in the scanning of bacterial
genomes for novel effectors. Examples of such metadata
for development of metapredictors may include addi-
tional features/criteria such as lower rate of evolution
and aggregation propensity, which are characteristics of
substrates of chaperones [19] (T3SEs require chaperones
for optimal delivery and/or expression [2]), clinical phe-
notype, host type (plant versus animal), quality of
experimental methods used to identify the effectors and
BLAST search score of known effectors against bacterial
genomes, among others. The T3SEdb represents an
excellent platform for inclusion of annotations of such
metadata for future developments of sophisticated effec-
tor prediction tools applicable for genome scan.
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Conclusions

We have created T3SEdD, the first reported specialised
database of T3SS effectors enriched with annotations
that facilitated systematic construction of a reliable pre-
diction model for identification of novel effectors.
It represents a platform for future developments of
sophisticated metapredictors for practical application in
the scanning of bacterial genomes for novel effectors.

Methods

T3SEdb construction

Bacterial T3SE sequences were collected from the NCBI
Entrez Protein database [20] via keyword search. Key-
word search was restricted to bacterial sequences and
several synonyms of T3SEs (such as Type Three Secre-
tion System effector, Type 3 Secretion System effector,
Type III Secretion System effector, TTSS effector, T3SS
effector, Type Three Secretion Effector, Type 3 Secre-
tion Effector, Type III Secretion Effector, Type 3
Secreted Effector, Type III Secreted Effector, Type
Three Secreted Effector, T3SE, and TTSE) were
included in the search to maximise the number of
records picked up. The records were downloaded in
XML format with the relevant annotation details in the
records extracted and tabulated using in house BASH
scripts. These were then manually assessed to remove
irrelevant records and annotated according to their
experimental validation status: E for experimentally con-
firmed, H for hypothetical or U for unknown.

The clean dataset was then imported into two tables in
the MySQL database management system for construc-
tion of T3SEdb. One table contains general information
about the effector proteins, while the other contains
information about the annotations and references. Both
tables were integrated together with their NCBI accession
number. The Web-based user interface was made with
HTML, PHP and jQuery library [21], where HTML and
PHP were used for web presentation, PHP to process
web forms, and jQuery for AJAX and other JavaScript-
based dynamic features. Both the MySQL database and
the Web interface are hosted on the cloud server at the
National University of Singapore (NUS). The cloud server
utilizes a Citrix Xen® Hypervisor running BioSLAX, an
open-source Linux Slackware LiveOS distribution devel-
oped by the Bioinformatics Centre, NUS, packaged with
a comprehensive set of bioinformatics software, Apache,
MySQL and PHP (available at [22]).

Modelling T3SS effector predictor using the annotated
data of T3SEdb

Since the prediction was focused on the 100aa N-terminal
region of the effector proteins, 8 of the 504 experimentally
verified sequences that were shorter than 100 amino acids
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were removed, resulting in 496 sequences available for
analysis. Duplicates were then removed from the remain-
ing sequences to obtain a unique set of 260 sequences.
The unique sequences were then clustered using Blastclust
[23] at 70% identity threshold, which returned a total of
168 clusters. This was done for better data generalization
and to minimize data bias in terms of over-fitting by pre-
sence of highly similar sequences and/or by over-represen-
tation of data of a particular or a few species. A sequence
from each cluster (representing the cluster) was used to
form the positive dataset for training of the predictor.
A total of 100 non-effector protein sequences, trimmed to
their N-terminal 100 amino acids, were used as the nega-
tive dataset for the model training. These negative
sequences were randomly selected from 10 bacterial
species, namely Citrobacter rodentium, Escherichia coli,
Pseudomonas syringae, Pseudomonas tolaasii, Salmonella
agona, Salmonella choleraesuis, Salmonella enterica,
Salmonella typhi, Salmonella typhimurium, and Yersinia
pestis.

Thereafter, overlapping nonamers of all the sequences
from the positive and negative datasets were scored
using Protscale [24] for three physico-chemical proper-
ties: hydrophobicity using Eisenberg et al. scale [15],
polarity using the Grantham scale [16] and B-turns
using the Levitt scale [17]. This scoring of the nona-
mers’ center position was automated and the original
score scale was standardized into a Z-score. The result-
ing output was 92 features for each individual physico-
chemical property, ascribed to each sequence in both
the positive and negative datasets.

Following this feature assignment process from Prots-
cale, the features were imported into WEKA for machine
learning analysis. WEKA is an integrated package of
machine learning algorithms and it provides users with a
variety of binary classifiers (algorithms) that can serve as
predictors, thus allowing efficient comparison of the dif-
ferent algorithms according to various performance mea-
sures after cross-validation. Prior to classification, feature
selection using a greedy stepwise algorithm [25] was used
to select a reduced feature set of the individual physico-
chemical properties. The 92 individual features generated
for hydrophobicity, polarity and B-turns were reduced to
a total of 63 combined features after feature selection.
The performance of a number of classifiers (default para-
meters setting used) was measured for their ability to
classify effectors and non-effectors using the reduced fea-
ture set. We performed 10-fold cross-validation on the
training dataset (100 effectors and 100 non-effectors) and
used the value of the Aroc to compare the performance
of the available classifiers. They were then validated using
the balanced test dataset of 68 effector and 68 non-effec-
tor protein sequences that were not part of the training
data for performance measure of Aroc, sensitivity and
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specificity. The model was also tested against a dataset
approximately proportionate to the ratio of effectors
(~5% - perhaps an over-estimate) and non-effector pro-
teins in a bacterial genome (~95% - perhaps an under-
estimate) to estimate the positive predictive value (PPV).
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