Kumar and Ranganathan BMC Bioinformatics 2010, 11(Suppl 7):59
http://www.biomedcentral.com/1471-2105/11/57/S9

BMC
Bioinformatics

Network analysis of human protein location

Gaurav Kumar', Shoba Ranganathan'*

From Asia Pacific Bioinformatics Network (APBioNet) Ninth International Conference on Bioinformatics
(InCoB2010)
Tokyo, Japan. 26-28 September 2010

Abstract

Background: Understanding cellular systems requires the knowledge of a protein’s subcellular localization (SCL).
Although experimental and predicted data for protein SCL are archived in various databases, SCL prediction
remains a non-trivial problem in genome annotation. Current SCL prediction tools use amino-acid sequence
features and text mining approaches. A comprehensive analysis of protein SCL in human PPl and metabolic
networks for various subcellular compartments is necessary for developing a robust SCL prediction methodology.

Results: Based on protein-protein interaction (PPl) and metabolite-linked protein interaction (MLPI) networks of
proteins, we have compared, contrasted and analysed the statistical properties across different subcellular
compartments. We integrated PPl and metabolic datasets with SCL information of human proteins from LOCATE
and GOA (Gene Ontology Annotation) and estimated three statistical properties: Chi-square 2 test, Paired
Localisation Correlation Profile (PLCP) and network topological measures. For the PPl network, Pearson’s chi-square
test shows that for the same SCL category, twice as many interacting protein pairs are observed than estimated
when compared to non-interacting protein pairs (X> = 1270.19, P-value < 2.2 x 10™'°), whereas for MLPI,
metabolite-linked protein pairs having the same SCL are observed 20% more than expected, compared to non-
metabolite linked proteins (X* = 110.02, P-value < 2.2 x10°). To address the issue of proteins with multiple SCLs,
we have specifically used the PLCP (Pair Localization Correlation Profile) measure. PLCP analysis revealed that
protein interactions are majorly restricted to the same SCL, though significant cross-compartment interactions are
seen for nuclear proteins. Metabolite-linked protein pairs are restricted to specific compartments such as the
mitochondrion (P-value < 6.0e-07), the lysosome (P-value < 4.7e-05) and the Golgi apparatus (P-value < 1.0e-15).
These findings indicate that the metabolic network adds value to the information in the PPl network for the
localisation process of proteins in human subcellular compartments.

Conclusions: The MLPI network differs significantly from the PPI network in its SCL distribution. The PPI network
shows passive protein interaction, possibly due to its high false positive rate, across different subcellular
compartments, which seem to be absent in the MLPI network, as the MLPI network has evolved to maintain high
substrate specificity for proteins.

Background

The eukaryotic cell consists of many different subcellu-
lar compartments or organelles. Most of the cellular
functions critical to the cell’s survival are performed by
proteins inside the cell. A typical cell thus contains a
large number of protein molecules that are resident in
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specific compartments or organelles, referred to as “sub-
cellular locations” (SCL). The major compartments,
according to the Gene Ontology Consortium, are: cell
surface, chromosome, cytoplasm, cytoskeleton, cytosol,
endosome, endoplasmic reticulum, extracellular region,
Golgi apparatus, membrane, mitochondria, nucleus, spli-
ceosome, ribosome, vacuoles and organelle lumen [1].
These subcellular compartments are further refined into
more specific compartments.
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The functions of proteins are determined by specific
physico-chemical environment present inside various
compartments or organelles. Therefore, it is important
to identify the SCL of each protein, for understanding
its functional and cellular role. While protein SCL can
be determined by biochemical experimentation, with the
growing number of new protein sequences in the post-
genomic era, experimental characterization of SCL is
available for only 11.1% of the total protein sequences
present in the UniProt Knowledge Base (version 57.9)
[2]. For human proteins, the number is slightly better,
with 34.1% having SCL annotations (Table 1). There is
thus a huge gap between protein sequences with and
without SCL annotation, necessitating computational
approaches to predict the SCL from sequence
information.

Early computational methods were restricted to speci-
fic subcellular compartments and depended on sequence
information alone [3]. Protein sequence information
comprises amino-acid composition, their physico-chemi-
cal properties (such as molecular weight, hydrophobi-
city, side-chain mass and amino-acid propensity),
protein motifs, signal peptides and functional domain
composition. However, given the variety of accepted
subcellular locations that are functionally essential to
completely characterize a protein, novel approaches
such as machine learning and text mining have
improved SCL predictability [3,4]. A machine-learning
method relies on the recognition of patterns that are
best characterized on the set of proteins whose localisa-
tion are known. A few studies use a systems biology
approach for the prediction of a protein’s SCL [5],
adopting an integrated methodology of high-throughput
proteomic data such as protein-protein interaction (PPI)
networks and protein motifs to understand and predict
the SCL of a eukaryotic protein [5,6].

The use of PPI network to predict function relies on
the principal assumption that the interacting protein
pairs are likely to collaborate for a common purpose
and have to be in close proximity in order to interact.
Schwikowski et al. [7] were the first to show that the

Table 1 Summary of SCL annotation in UniProtKB.
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Saccharomyces cerevisiae PPI network could be used to
classify protein SCL based on the idea of “guilt by asso-
ciation or neighbouring count method”. Their approach
correctly identifies 76% of the interacting protein pairs
as occurring within the same SCL. A similar approach
was used in a comparative study to show that 52% of
the interacting protein pairs in humans tend to have
same SCL [8]. Lee et al. [9] extended the network-based
approach by complementing the classification with a
‘Divide and Conquer k-Nearest Neighbour’ (DC-kNN)
approach, with increased SCL predictive ability in yeast.
Previous researchers have shown the importance of
highly connected metabolites in the evolution of bio-
chemical pathways which govern the flow of mass and
energy in an organism [10,11]. To the best of our
knowledge, the metabolite-linked network has only been
used by Wagner and Fell [11] to report a positive corre-
lation between the evolutionary age of metabolites and
their degree of connectivity. Oron et. al [12] used con-
straint-based modelling on the metabolic network for
predicting enzyme SCL, specifically considering the
cross-membrane metabolite transporters (i.e. proteins).
Thus, metabolic network information has not been
implemented for predicting protein SCL, compared to
data from PPI networks. As a first step towards develop-
ing such a prediction methodology, we have carried out
large-scale statistical analysis of the SCL information
contained in PPI and metabolite-linked networks.

The availability of a large number of protein interac-
tion and metabolic datasets from multiple databases has
motivated us to conduct a statistical study to benchmark
the predictive ability of localisation of human proteins,
with respect to the various subcellular compartments. In
this study, we collated PPI interaction and metabolite-
linked protein interaction (metabolic information) from
seven major databases and integrated these with the
high quality SCL information present in the LOCATE
database [13] (Figure 1; see Materials and Methods for
details), to critically analyze the PPI and metabolic data-
sets for the SCL assignment of human proteins. Using
experimentally validated physical interaction and

Items Description No. of Protein Sequences Dataset Size %
A Proteins with SCL annotation in UniProt database 274730 494762 5552
B Proteins in A with experimentally known SCL 55079 494762 11.13
C Proteins in A with uncertain terms such as potential/probable/similarity 219651 494762 44.39
D Proteins with GO annotation 461365 494762 93.24
E Protein with SCL annotation in GO database 337762 494762 68.26
F UniProt human entries with experimentally known SCL 6923 20274 34.14
G UniProt human entries with uncertain terms such as potential/probable/similarity 7486 20274 36.92

Distribution of 494762 protein entries from UniProtKB/Swiss-Prot* database (version 57.9) according to their SCL annotation and GO database reference.
* The original number of UniProt protein entries was 510076. Of these, 15314 were annotated as “fragment” or contained less than 50 amino acids residues,
hence, were removed from further consideration, i.e. 494762. Similarly, we considered only 20274 human protein entries out of 20334 sequences.
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Figure 1 Schematic representation of data integration. Schematic representation of data integration. SCL information of LOCATE database
integrated with that of interaction and metabolic data. The resulting integrated data is represented in XML format.

SCL data

metabolic datasets archived in various databases, we
compared SCL annotations assigned by LOCATE with
that of the Gene Ontology (GO) assignment for major
subcellular compartments: cytoplasm (GO:0005737),
cytoplasmic vesicle (G0:0016023), extracellular
(G0:0005576), endoplasmic reticulum (GO:0005783),
endosomes (GO:0005767),  Golgi  apparatus
(GO:0005794), lysosomes (GO:0005764), mitochondria
(G0O:0005739), nucleus (GO:0005634), plasma mem-
brane (GO:0005886) and tight junction (GO:0005923).
Our results provide an estimate of the reliability of SCL
predictive ability of human proteins in the absence of
sequence and structural features using the high-
throughput protein interaction and metabolic dataset.

Results

As there is no specific database which combines protein
interaction, metabolic and SCL information, we inte-
grated data from independent individual databases con-
taining pertinent information. The SCL data from
LOCATE [13], PPI data from five interaction databases
and metabolic data from two databases (Figure 1; details
in materials and methods section) were integrated.
LOCATE contains literature-curated SCL information
for about 6900 human proteins (Figure 2) in various
subcellular compartments. The distribution of proteins
is not homogeneous across the various subcellular com-
partments, with proteins from some compartments such
as the nucleus and the plasma membrane being over-
represented. Therefore, we have carefully normalized
the dataset, while measuring the statistical properties of

our networks, to remove any bias toward specific SCL
compartments.

Overall, 1,718 and 1036 proteins, respectively from the
LOCATE dataset contain PPI and metabolic interac-
tions. These reduced datasets were used for further ana-
lysis by considering the consistency of proteins across
different databases and removal of the duplicate and
redundant entries. For comparing the SCL assignment,
we carefully merged low-level SCL annotation with that
of the high-level SCL annotation mentioned in the GO
hierarchy (see Additional file 1 for the merged GO-IDs).
We used the same hierarchical level of SCL annotation
for comparing LOCATE and GO annotations. Also, we
will refer to the metabolite-linked protein interaction
network as the metabolic network or MLPI, and the
gene ontology annotation as GOA.

Categorical analysis of protein pairs

In order to test, how protein pairs are localized within
the same subcellular compartments, Pearson’s %2 (chi-
square) test was performed. This statistical test shows
that X% = 1270.19, P-value < 2.2 x 107 for physically
interacting protein pairs and X = 110.02, P-value < 2.2
x107'¢ for metabolite-linked protein pairs (Tables 2
and 3). Thus, the incorporation of PPI and metabolic
data dramatically improve the significance of SCL pre-
diction, while the confidence level in SCL predictions
with PPI information is much higher than that with
metabolic information. The contingency table for
metabolic interaction revealed that the observed fre-
quency of metabolite-linked protein pairs with the
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CP(9.13%);
CV(2.08%):
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ER(4.71%):
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GA(6.29%):

(nucleus), PM (plasma membrane), and TJ (tight junction).
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Figure 2 Distribution of 6900 LOCATE proteins for various subcellular compartments. The subcellular compartments are CP (cytoplasm),
CV (cytoplasmic vesicle), EC (extracellular), ER (endoplasmic reticulum), ES (endosome), GA (Golgi apparatus), LS (lysosome), MC (mitochondria), N

PM

LS(3.11%);
MC(4.02%):

N(37.68%),
PM(23.3%):

TJ(0.42%);

same SCL is 20.94% more compared to the expected
value, whereas the same observation seem to be twice
as much (93.35%) for physically interacting protein
pairs. The number of interacting protein pairs having
the same or different SCL is observed to be nearly the
same as in the PPI network. However, the metabolic
network has fewer metabolite-linked protein pairs with
the same SCL compared to that with different SCL.
From Tables 2 and 3, we have extracted 4136 physi-
cally interacting protein pairs from 1156 proteins and
4551 metabolically linked pairs from 509 proteins for
network analysis.

Interaction between various subcellular compartments

We measured the statistical significance of SCL correla-
tion profile based on the Paired-Localisation Conditional
Probability (PLCP; see Methods section for details), for
both the LOCATE (manually curated from the litera-
ture) data as well as the GOA assigned SCL (excluding
electronic annotation, which is automatically-assigned
evidence code). Figure 3 shows significant correlation
along the diagonals suggesting that the interacting pro-
tein pairs tend to co-localize in the same compartment.
Comparing the LOCATE-assigned SCL (Figure 3A), we
observe a strong correlation for physically interacting

Table 2 Chi-square test for physically interacting protein pairs.

Pairs with same SCL Pairs with different SCL Row total
Physical interaction present 2081 2055 4136
(1076.26) (3059.74)
Physical interaction absent 381716 1089051 1470767
(382720.74) (1088046.26)
Column total 383797 1091106 1474903

Chi-square (x?) Value: 1270.192

P-Value: < 2.2 x 107'®

A 2 x 2 contingency table, showing the distribution of direct physical interaction of protein-pairs, as the observed number of pairs and the expected values

(assuming independence) shown in parenthesis.
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Table 3 Chi-square test for the metabolite-linked protein pairs.
Pairs with same SCL Pairs with different SCL Row total
Metabolite-linked Pairs 1465 3086 4551
(1158.12) (3392.88)
Non-metabolite-linked Pairs 132345 388929 521274
(132651.88) (388622.12)
Column total 133810 392015 525825

Chi-square (x2)- Value: 110.02

P-Value: < 2.2 x 10-16

A 2 x 2 contingency table, showing the distribution of metabolite-linked protein pairs, as the observed number of pairs and the expected values (assuming

independence) in parenthesis.

protein pairs to occupy the same compartment in the
cytoplasm (CP), cytoplasmic vesicles (CV), extracellular
(EC), endosomes (ES), Golgi apparatus (GA), lysosome
(LS), mitochondrion (MC), nucleus (N) and plasma
membrane (PM). The same comparison on the GOA
SCL (Figure 3C) shows conservation for EC, ES, GA,
MC, N, PM and TJ. We also observed significantly
strong correlation of nuclear proteins (Figures 3A and

3C) to interact with proteins found in cytoplasm, ER
and Golgi for the LOCATE dataset and the cytoplasm,
ER and mitochondrion for the GOA dataset. Similarly,
plasma membrane proteins show significant interaction
with the proteins in the several other subcellular com-
partments (Figures 3A and 3C).

The MLPI profile shows strong correlation of interact-
ing protein pairs to have same SCL for GA, LS and MC.

A. LOCATE PLCP for physically interacting protein-pairs

CP CV EC ER E5 GA LS MC N PM T

C. GOA PLCP for physically interacting Protein pairs

CP CV EC ER ES GA LS MC N PM T

B. LOCATE PLCP for metabolite-linked protein pairs

CP CV EC ER ES GA LS MC N PN T

D. GOA PLCP for metabolite-linked Protein pairs

CP CV EC ER ES GA LS MC N PM T

Figure 3 Protein paired localisation correlation profile. Paired Localisation Correlation Profile (PLCP) for LOCATE and GOA SCLs for major
subcellular compartments for the physically interacting or metabolite-linked protein pairs. The subcellular compartments are CP (cytoplasm), CV
(cytoplasmic vesicle), EC (extracellular), ER (endoplasmic reticulum), ES (endosome), GA (Golgi apparatus), LS (lysosome), MC (mitochondrion), N
(nucleus), PM (plasma membrane), and TJ (tight junction). A and B are LOCATE SCL correlation profiles, whereas C and D are GOA correlation

profiles.
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LOCATE data suggests significant correlation of meta-
bolite-linked interaction of PM proteins with those in
other compartments. Overall, the GOA dataset shows
significant interaction across compartments in compari-
son to that of the LOCATE dataset (Figures 3B and 3D).

We further tested the hypothesis of whether the net-
work of interacting protein pairs is different from a
random network, by calculating the Z-score between
the given compartments (described in the Methods
section). The random network was simulated by rewir-
ing the network such that the degree associated with
each node in the real network remains the same [14].
The P-value can then be obtained by comparing the Z-
score to a standard normal distribution. Comparing
with a “properly” randomized network ensemble (1000
in our case) allows us to concentrate on those statisti-
cally significant localisation patterns of these complex
interaction networks that are likely to reflect the con-
served interaction pairs across different subcellular
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compartments. The statistical significance of correla-
tion profiles were calculated for PPI and metabolic
networks for each paired compartments. The Z-score
profile scales differently for the physically interacting
and metabolite-linked protein pairs (Figure 4). The PPI
network Z-score (Figures 4A, C) suggest that com-
pared to random networks, the number of interacting
protein pairs co-locating in the same compartment is
significant for EC (P-value < 9.8 e-10), MC (P-value <
3.7 e-05), LS (P-value < 4.5 e-12), ES (P-value < 1.8 e-
09) and CV (P-value < 1.9 e-35) for the LOCATE
dataset (Figure 4A and Additional file 2). We also
observed a significant correlation for CV proteins to
interact with EC proteins (P-value < 5.4 e-06) but not
otherwise i.e. EC proteins do not interact with CV
proteins at a significant P-value < 0.01. Similarly, TJ
proteins are more likely to interact with that of the
PM proteins (P-value < 4.3e-05), whereas the likeli-
hood of PM proteins to interact with T] proteins is

A. LOCATE Physically interacting protein pairs

8588258 2%

-
-~

CP CV EC ER ES GA LS MC N PN T

C. GOA Physically interacting protein pairs

CP CY EC ER ES GA LS MC N PM T

\

Figure 4 Z-score correlation profile. The Z-score correlation for LOCATE and GOA SCLs in the major subcellular compartments (see Additional
file 1 for details) for the physically interacting and metabolite-linked protein pairs. A and B are LOCATE SCL correlation profiles, whereas C and D
are GOA correlation profiles. Refer to Additional file 2 for Z-score values.

B. LOCATE Metabolite-linked protein pairs

Ec8 838828

-
[ 4

CP CY EC ER ES GA LS MC N PM T

D. GOA Metabolite-linked protein pairs

w0

B 28 28

i z856°8

-
[

CP CY EC ER ES GA LS MC N PM T
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less significant (P-value ~ 0.01). GOA SCL assignment
(Figures 4C) suggests that statistically significant pro-
tein pair interactions occur within TJ (P-value ~ 0)
and EC (P-value < 1.36e-07). Proteins pairs within the
ES compartment seems to have a weak interaction (P-
value ~ 0.0007). Similar weak interactions have been
noticed between the proteins in the ER compartment
with those of the GA (P-value ~ 0.007) (Additional
File 2).

The metabolic Z-score correlation profile suggests a
strong correlation of metabolite-linked protein pairs to
have the same SCL within MC (P-value < 6.0e-07) and
LS (P-value < 4.7e-05) in the LOCATE dataset (Figure
4B), while the GOA SCL (Figure 4D) assignment sug-
gests the same for GA (P-value < 1.0e-15) and MC (P-
value < 1.3e-10). A statistically significant proportion of
EC proteins interacts with MC proteins (P-value < 1.0e-
05) for the LOCATE SCL (Figure 4B). In the GOA data-
set, LS proteins interact with EC proteins (P-value <
1.1e-26; Figures 4D). The detailed description of paired-
compartment Z-scores and calculated P-values are avail-
able from Additional File 2.

Analysis of PPl and Metabolic Networks

To track the variation in structural topology between
PPI and metabolic networks, we analyzed their topologi-
cal properties of both the networks for human proteins
in integrated dataset (Figure 1). The interaction network
used in this study consists of 4136 direct physical inter-
actions between 1156 human proteins (Table 2),
whereas the metabolic network consists of 4551
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interactions between 509 proteins (Table 3). This sug-
gests that the metabolic network is denser with more
edges between the protein nodes. Both the protein inter-
action network and the MLPI network belong to the
class of scale-free networks, suggesting that both net-
works evolved by adding new nodes to existing highly
connected nodes. In these networks, the number of
nodes with a given number of neighbours (connectivity,
K), scales as P(K) a. 1/K". The plot of the connectivity
can be fitted by a power law, where y = 1.52 and y =
1.34, respectively for the physically interacting and
metabolite-linked protein pairs (Figure 5A and 5B).

The connectivity probability of nodes and its nearest
neighbours are the same compared to the connectivity
of any of the nodes chosen randomly, in a random net-
work. On the other hand, a real network comprises an
ordered lattice which is extended as the network grows,
i.e. some order is achieved depending on how the co-
ordinates of each new node are added, with respect to
that node’s neighbours (clusters) and independent of the
total number of nodes present in the network [15].
Therefore, we have calculated the average clustering
coefficient ( < Cy >) associated with the given degree in
PPI and metabolic networks, to study the global network
topology. The PPI network shows random but gradual
decrease of larger values of < Cy >associated with the
high degree protein nodes. This simply means that the
highly connected protein nodes are not connected, i.e.
protein hubs are not connected, which is a specific sig-
nature for the non-modular nature of any real network
(Figure 6A) [16]. The metabolic network, on the other

A. PPl Network
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Metabolic network.
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hand, shows linear variation of highly connected nodes
for the lower range of < Cy >associated with the higher
degree nodes, implying the existence of hierarchical or
modular structures (Figure 6B) [16,17].

Assortativity measures the collaboration of similar
entities to achieve a single goal, whereas a disassortative
nature suggests the association of different entities to
achieve the same goal. Therefore, to observe the

assortative or disassortative nature of human PPI and
metabolic networks, we calculated the average degree of
the neighbouring proteins as a function of the each
nodes degree [18]. For the PPI network, Figure 7A
shows an increase in the neighbouring node degrees
associated with higher degree nodes. This topological
behaviour is the characteristic signature of the assorta-
tive network, thus suggesting that PPI is an assortative
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network. This observation is absent in the metabolic
network (Figure 7B), where there is a decrease in the
association with the high degree neighbours for the high
degree nodes, i.e. nodes with the high degree k tend to
be disconnected on an average, to others of lower
degree. The power-law exponents (y) for the degree
assortativity are 1.2 and 1.1 in PPI and metabolic net-
works, respectively.

We have also calculated the betweenness centrality, to
measure the load in our PPI and metabolic networks
[19]. This measurement is commonly used in sociology
to quantify the influence of a person in a society. In our
case, it helps to quantify the information carrying capa-
city of a specific protein in the network. The PPI net-
work shows a linear behaviour of the centrality measure
associated with the connectivity of a node (k), whereas
the metabolic network has a non-linear, random beha-
viour (Figure 8).

Figures 6 and 7 together indicate that the metabolic
networks can be characterized with high degree nodes
interconnecting highly connected subgraphs, but with
no or few connections among nodes in different sub-
graphs. This implies that the metabolic pathways are
inter-connected via substrates between different com-
partments. Table 4 provides data on other topological
features of the networks.

Network-based neighbours for example proteins

From the normalized datasets that we have studied, of
the many biologically relevant proteins, we have pre-
sented two specific examples. The first example is of a
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Table 4 Topological characteristics of PPl and metabolic
networks.

Protein interaction Metabolic

network network
Number of nodes 1156 509
Number of edges 4136 4551
Clustering coefficient 0.29 0.05
Average clustering 040 0.16
coefficient
Average path length 4.77 4.09
Diameter 13 14

protein which specifically interacts with proteins co-
located in the same SCL, while the second protein has
interaction partners in different SCLs.

We examined the neighbouring proteins of human
cyclin-dependent kinase inhibitor 3, CDKN3, in our
PPI and MLPI networks (Figure 9). We note that this
protein has been assigned the perinuclear region of the
cytoplasm as SCL in UniProt, for a normal cell [20]
(data available from Additional file 3). We found that
CDKNS3 is linked to double-stranded RNA-specific edi-
tase 1, RED1 and telomerase-binding protein, EST1A
in our metabolic network, both interaction partners
being located in the nucleus (Figure 9B). In the PPI
network (Figure 9A), the same protein, CDKN3 is
observed to interact with six proteins located in the
nucleus: CDK2 (cell division protein kinase 2), MS4A3
(protein modulator of G1-phase to S-phase cell cycle
transition), CDK3 (cell division protein kinase 3),
MPIP1 (phosphatase protein inducer of mitotic
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Figure 8 Correlation between connectivity of nodes and betweenness centrality. Plots showing the correlation of the betweenness
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o @

CDKN3

C
Figure 9 Examples showing the neighbouring proteins of CDKN3 (located in the perinuclear region of cytoplasm) and PARP2 (nuclear

protein) in the PPl and MLPI networks. Proteins located in the nucleus, perinuclear region of the cytoplasm and plasma membrane are
coloured in magenta, light yellow and light green respectively. Additional file 3 shows the differences in LOCATE and UniProt assigned SCL.

\

progression), CEBPA (DNA-binding protein) and
CDK1 (cell division protein kinase 1, required for the
progression of S-phase and mitosis). As early as 1993,
Gyuris et al. [21] have reported that CDKN3 is
expressed at the G1-phase to S-phase transition during
the cell division process and is known to form a stable
complex with CDK2. Our network analysis clearly sup-
ports CDKN3 being located in the periplasmic space
and interacting with neighbouring proteins in the
nucleus due to the porous nature of the nuclear mem-
brane (Figure 9A and 9B) and is consistent with our
PLCP analysis results on the interaction, which show
that the nuclear proteins seem to interact with pro-
teins of the cytoplasm (Figure 3).

Subsequently, we examined the neighbouring proteins
of human poly [ADP-ribose] polymerase 2 (PARP2)
(Figure 9C and 9D). In the MLPI (Figure 9D), one of
the interacting partners of PARP2 is TGF-beta receptor
type-1 (TGFR1), which is a signalling molecule located
in the plasma membrane. The other interacting neigh-
bour is PARP1 (poly [ADP-ribose] polymerase 1) located
inside the nucleus, which interaction alone is preserved
in the PPI network (Figure 9C). Considering the inte-
grated network approach of combining different net-
works, we can thus infer not only the SCL of the

interacting proteins but also the biochemical signal via
the plasma membrane, to identify the exact biological
function of this polymerase, which is in accord with the
earlier findings of Sharan and Ideker [22].

We have analyzed the SCL annotation of the 15 pro-
teins in the above interacting pairs to determine the cor-
relation of SCL assignment between LOCATE and
UniProt databases (available in Additional file 3). We
note that UniProt has no annotation for four proteins
(27%), while two (13%) of the proteins have SCL assign-
ments different from those in LOCATE. The remaining
nine proteins have the same SCL assignments in both
databases. These results support the use of experimen-
tally determined SCL annotations from LOCATE for
this analysis, over UniProt SCL assignments.

Discussion
Based on the topological comparison of networks, we
were able to gain more insights into the structural differ-
ences in the PPI and metabolic networks of human pro-
teins. Having shown that PPI and metabolic networks are
scale-free, we further showed that the metabolic network
is not assortative and modular (Figure 10).

The PPI network can be viewed as a network model
where proteins collaborate on the number of cellular
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A. PPI Network

grey nodes represent proteins with multiple SCL.

Figure 10 Visualization of PPl and metabolic networks. In the graphical representation of networks, the nodes and edges are represented by
circles and lines, respectively. Circles representing the interacting proteins are coloured by the SCL compartment: cytoplasm (green), cytoplasmic
vesicle (blue), endoplasmic reticulum (orange), endosome (red), extracellular (purple), Golgi apparatus (magenta), mitochondrion (violet),
lysosome (cyan), nucleus (gold), plasma membrane (brown) and Tight junction (pink). White nodes represent proteins with unknown SCL and

B. Metabolic Network

processes a single protein can handle at any time. This
network model is evident from network behaviour with
a power-law distribution P(k) ~ k¥ where y = 1.5 [23].
A similar observation is noted in the PPI network for
passive interaction across subcellular compartments
with y = 1.52, due to the high false-positive rate. PPI
data is known to have a high false-positive rate, i.e. the
reliability of the possible observed interaction is ques-
tionable as with the high coverage rate. If a given pro-
tein interacts with a large number of other proteins, it
is most likely a sticky protein and the observed interac-
tions associated with this protein do not have a real
functional association. Therefore, the passive interaction
defines the unreliability of the observed interaction,
which could happen by chance. The linear behaviour of
betweenness centrality against the connectivity of node
(k) in PPI network further suggests the presence of
non-localized behaviour of interactions across compart-
ments, compared to localized metabolite linkages
among proteins inside the same subcellular compart-
ments. This observation is also evident from the %> sta-
tistics where the number of interacting protein pairs
having the same localization is nearly the same as in
different subcellular compartments (Table 2). We com-
pared LOCATE assigned SCL with that of the GOA for
the protein pairs across the different subcellular

compartments, considering the multiple localisation for
proteins. This comparison suggests significant differ-
ences among the annotation process (Figure 3A and
3C). The correlation profile (PLCP) suggests a strong
correlation of interacting protein pairs within the same
subcellular compartments. There is statistically signifi-
cant cross-interaction among proteins in the nucleus
with those of other cellular compartments. This is
attributed to the fact that the nucleus has a porous cell
membrane, which facilitates free diffusion and interac-
tion between proteins across compartments. Subcellular
compartments such as the Golgi apparatus, the endo-
plasmic reticulum and the lysosome indicate weak but
significant correlation, which is in accord with the fact
that the Golgi apparatus and the endoplasmic reticulum
are inter-linked subcellular compartments for the trans-
location of proteins to various other compartments after
the translation of mRNA to protein on the ribosome.
The Z-score correlation profile for the PPI network
shows that while interactions are conserved within com-
partments (along the diagonal, Figure 4A and 4C) with
respect to the random network, there is also significant
interaction of protein pairs across other subcellular
compartments.

The metabolic network has an evolutionary constraint
where only a few proteins are linked through common
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metabolites to maintain high substrate specificity in the
higher eukaryotes [24]. Hence proteins are distributed in
various subcellular compartments unlike prokaryotic
proteins which contain co-evolving protein domains to
carry out multiple tasks. Moreover, eukaryotic metabolic
pathways are optimized via cross connections across
subcellular compartments. This is revealed in the %> sta-
tistics where few protein pairs have the same subcellular
compartments compared with pairs from different com-
partments. PLCP suggest that protein pairs are not con-
served for the compartments such as cytoplasm,
cytoplasmic vesicles, endoplasmic reticulum and endo-
some (Figure 3B and 3D). This is due to the fact that
the numbers of metabolite-linked protein-pairs are less
and secondly, there are lots of dynamics happens among
these compartments, as number of cellular pathway are
distributed across compartments, hence it makes diffi-
cult to capture from our static picture of PLCP calcula-
tion. Even though the dynamics of some compartments
are difficult to capture through the statistical measures,
it is very useful to see how cellular processes are tightly
controlled inside the subcellular systems such as mito-
chondrion and lysosome. The Z-score correlation profile
of LOCATE and GOA SCL suggests that the metabo-
lite-linked protein pairs seems to be more conserved
across diagonals compare to that of randomized net-
work and hence metabolite-linked interactions are
tightly regulated within the same compartments (Figure
4B and 4D).

Conclusions

The network analysis showed that there is significant
difference between the topological properties measured
in the human PPI and metabolic networks. Network
comparison indicates the usefulness of metabolite-linked
protein interaction (metabolic network) that can be used
for the prediction of protein’s SCL in the compartments
such as mitochondria and lysosome. Our results lead to
the observation that proteins in PPI network interact
passively, whereas metabolic network evolve under evo-
lutionary constrain to maintain substrate specificity. The
series of analysis presented in this study suggests the
applicability of metabolic (metabolite-linked protein
interaction) network to explain the empirical data. The
integrated network approach of using PPI and MLPI
data developed here will provide a robust basis for pre-
dicting SCL for higher eukaryotes, along with the com-
parative network studies across species.

Methods

Data integration and construction of database

In the absence of a specialized database combining pro-
tein interaction, metabolic and SCL information, we
have integrated data from independent individual
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databases. The LOCATE database contains SCL infor-
mation from human and mouse proteins collected from
both literature and direct experiment [13]. SCL data on
human proteins from LOCATE database were integrated
with the interaction data deposited in the PPI databases:
HPRD [25], DIP [26], MINT [27], BioGRID [28] and
IntAct [29]. Similarly, metabolic data (MD) were col-
lected from the databases, KEGG [30] and HumanCyc
[31] and integrated with the SCL data of the human
proteins with the LOCATE database. This integrated
dataset is recorded in XML format (Figure 1 and Addi-
tional file 4). LOCATE data contains 64,637 human pro-
teins with known or predicted SCL information. Our
integrated database contains 6,900 proteins with known
SCL information curated from the literature (Figure 2).
We used UniProt-ids and RefSeq-ids for consistent
mapping across the three different datasets (i.e. SCL,
PPI and MD).

Identification and removal of inconsistency and
redundancy

The LOCATE protein database [13] contains references
to sequence databases such as UniProtKB [2] and
RefSeq [32]. Protein entries with secondary accession
were mapped to their primary identifiers mentioned in
the protein sequence databases. RefSeq identifiers where
used to extract UniProt identifiers where LOCATE
entries contain RefSeq identifier but not the UniProt
accession number. This allows consistent one-to-one
mapping of protein entries across various databases.
Duplicate entries of known protein interactions men-
tioned in PPI databases were carefully removed while
analyzing interaction information in each LOCATE
entry.

The metabolic linkage between proteins was estab-
lished by considering only those compounds which
occur in less than 50 reactions per compound in a given
metabolic database. This ensures the removal of ubiqui-
tous compounds such as ATP, NADH, H,O, H" etc.
(see Additional files 5 and 6 for the lists of ubiquitous
compounds). Ambiguous metabolites where removed,
for example, HumanCyc reaction: GLUTATHION + RX
< = > |S-Substituted-Glutathione| + HX, where RX and
HX are ambiguous metabolites. Only those metabolites
which contain unique compound-ids, were further con-
sidered for linking proteins, while those with generalized
descriptions were omitted. E.g. General-Protein-Sub-
strates and General-Phos-Protein-Substrates were not
considered as linking metabolites shown in a reaction: |
General-Protein-Substrates| + ATP < = > |General-
Phos-Protein-Substrates|.

For the current study 1,718 and 1036 LOCATE pro-
teins out of 6900 (literature curated), were linked via
direct physical and metabolite-linked protein
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interactions, respectively. In the topological studies of
PPI and metabolic networks, we considered 1156 and
509 proteins with 4136 and 4551 interactions
respectively.

Construction of networks

All LOCATE protein entries were linked via interactions
(either physical or through a common metabolite) and
the data were recorded in xml format (available from
Additional file 4). This dataset was used to build the
undirected networks using the R igraph package [33].
We used degree and transitivity functions for calculating
the degree distribution and clustering coefficient in our
networks. Random networks were generated by using
the rewire function of the R igraph package.

SCL analysis of the protein pairs

Correlation profiles were created using Paired-Localisa-
tion Conditional Probability (PLCP) for both PPI and
metabolic networks [9]. This measure shows how the
interacting protein pairs are distributed across various
subcellular compartments. For a given protein in the
compartment C; having an interacting partner in com-

partment C;, PLCP is defined as
Ciji
r(c;|c;)=—2_,
( ! ] ) %C]k 1)

where C;; is the normalized number of interactions
between protein pairs spanning compartments C; and
C,. Cj is defined as:

s A(xy)
_ xeCjyeCj(x#y) N(x)+N() 2)
U N(C;)+N(C/)

where, A(x, y) is 1 if there is an interaction between
proteins x and y, otherwise, 0. N(Ci) is the number of
proteins in compartment C; and N(x) is the number of
localisations known for protein x.

The Z-score correlation profiles were analyzed
between interacting protein pairs from the real and ran-
dom networks as given by:

N(Ci,Gf) = N(CilG))
o(Ci,Gj)

7(Ci,G) = random > 3)

random

where, N(C;, C))reqr and (N(C;; C});anaom) represent
numbers of physically interacting or metabolite-linked
protein pairs in real and random networks respectively.
6(Cis C))random» represents the standard deviation in the
ensemble of a 1000 random networks.
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Statistical validation of networks

We analyzed the topological property of PPI and meta-
bolic network calculating the most significant network
features, namely clustering coefficient, betweenness cen-
trality, average path length, degree distribution and cor-
relation profile calculation. For a graph G with # and v as
two vertices, the path from u to v will pass sequentially
through vertices vy, v,...vy, with u = vy and v = v, such
that for i = 1,2.....k-1: (i) (vi, vi+1) € E(G) i.e. the edges
set and (ii) vi # vj for i = j. The path length is then said
to be (k-1). The simple geodesic distance, d(u, v) from u
to v is the length of the shortest path from u to v in the
graph G. The average path length, (I), of such a graph is
defined as the average of values taken over all the possi-
ble pairs of nodes connected by at least one path:

N
2
= m ; [ (4)

where, N is the number of nodes and /,,, is the distance
between two nodes, u# and v. The diameter of the network
is defined as the maximum distance between two nodes
of a graph G, i.e. D = max{d,, |u, ve N}, where N is the
total number of nodes in the graph or network.

The clustering coefficient is another characteristic of a
network which is unrelated to the degree distribution. It
is a quantitative measure to the proximity of the neigh-
bourhood of each node to form a complete subgraph
(clique) and thus defines a measure of the local beha-
viour of the small world network [34]. The clustering
coefficient is defined as,

2K
Ci=———— (5)
ki(ki—1)
where, K denotes the sum of the neighbouring pairs
among the k; nodes connected to the node i. Similarly,
one can define an average clustering coefficient as,

K
1 A
(C)= X ;:1 Ci (6)

Centrality is one of the key structural aspects of the
nodes in a network and is a measure of the relative
influence of each node on the network. We calculated
betweenness centrality, which is the fraction of shortest
paths between all the pairs of nodes that passes through
a given node [19].

Additional file 1: Merged list of subcellular compartments for the
LOCATE and GOA SCL. This contains the list of compartment at the
lower-level of GO hierarchy which were merged with that of the higher
level of GO cellular compartments for the analysis of major subcellular
compartments.
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