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Abstract

Background: Diagnosis and treatment of patients in the clinical setting is often driven by known symptomatic
factors that distinguish one particular condition from another. Treatment based on noticeable symptoms, however,
is limited to the types of clinical biomarkers collected, and is prone to overlooking dysfunctions in physiological
factors not easily evident to medical practitioners. We used a vector-based representation of patient clinical
biomarkers, or clinarrays, to search for latent physiological factors that underlie human diseases directly from
clinical laboratory data. Knowledge of these factors could be used to improve assessment of disease severity and
help to refine strategies for diagnosis and monitoring disease progression.

Results: Applying Independent Component Analysis on clinarrays built from patient laboratory measurements
revealed both known and novel concomitant physiological factors for asthma, types 1 and 2 diabetes, cystic
fibrosis, and Duchenne muscular dystrophy. Serum sodium was found to be the most significant factor for both
type 1 and type 2 diabetes, and was also significant in asthma. TSH3, a measure of thyroid function, and blood
urea nitrogen, indicative of kidney function, were factors unique to type 1 diabetes respective to type 2 diabetes.
Platelet count was significant across all the diseases analyzed.

Conclusions: The results demonstrate that large-scale analyses of clinical biomarkers using unsupervised methods
can offer novel insights into the pathophysiological basis of human disease, and suggest novel clinical utility of
established laboratory measurements.

Background
Factorial methods have been successfully applied to
diverse forms of multidimensional biological and clinical
data to uncover both biological and clinical phenomena.
Principal Component Analysis (PCA) and Independent
Component Analysis (ICA) have been applied to gene
expression microarrays to uncover latent factors in the
expression data related to cellular processes, transcrip-
tional control programs, and disease subtypes [1-4]. ICA

has also been successfully applied to fMRI brain imaging
data to uncover nondeterministic signals of interest [5].
ICA is a powerful extension of PCA originally devel-

oped as a solution to signal separation problems. PCA
can only impose statistical independence of components
up to the second order; therefore it can only identify
directions that are uncorrelated and orthogonal to each
other. ICA is capable of exploiting higher-order statistics
to relax the orthogonality assumption and identify com-
ponents that are mutually statistically independent from
each other, which is a stronger condition than lack of
correlation [6]. Given that ICA aims to find components
that are non-Gaussian, it has the desirable side effect of
ignoring variance resulting from noise in the data. It is
likely that this higher-order model is more reflective of
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biological phenomenon, and thus offers an explanation
for the many successful applications of ICA in the bio-
medical domain.
In previous studies, we demonstrated the utility for

patient clinical biomarker vectors, which we termed
clinarrays, in distinguishing between different severities
of disease [7]; in integrative analysis with gene expres-
sion measurements to elucidate genes related to matura-
tion and aging [8]; and to build a model of pediatric
aging [9]. Clinarrays are a vector representation of a
person’s physiological biomarker state across all visits at
a hospital. Each value in this vector represents a sum-
mary statistic of a particular biomarker across a period
of time. Aggregations of clinarrays enable the use of
methods developed for microarray analysis to gain new
insights into the clinical characteristics of disease-
affected patients.
In this study we seek to apply ICA to clinarrays to

identify latent physiological modes underlying chronic
disorders. Figure 1 demonstrates the ICA model of in
the context of clinarrays. We hypothesize that patients
present diseases as unique manifest combinations of
latent physiological factors (e.g. varying degrees of sys-
temic inflammation and hyperinsulinism), and that a
subset of highly discriminating latent factors can be
used to differentiate patients diagnosed with the same
disease.
We demonstrate that ICA can be applied to clinarrays

of patient lab measurements to uncover physiological
factors known to be concomitant in common chronic
diseases. Furthermore, we identify a novel latent physio-
logical factor for cystic fibrosis that serves as a promis-
ing lead for further investigation into diagnostic or
prognostic biomarkers for CF.

Results
Creation of disease-specific clinarrays
Patients diagnosed with one or more of 50 International
Classification of Disease (ICD-9-CM) codes representing
five chronic conditions were retrieved from Lucile Pack-
ard Children’s Hospital. In total, this consisted of 4,085
patients (Additional file 1). Five disease-specific matrices
were created with rows representing biomarkers and
columns representing individual patient clinarrays. The
value of each cell in a disease-specific matrix represents
the median biomarker value for a single individual
across all hospital visits. Patients were removed if they
did not have at least 10 different biomarkers measured.
Biomarkers were removed if they were not measured in
at least half of the remaining patients. After removing
patients and biomarkers with too few measurements, we
were left with between 56 and 1,899 patients and
between 21 and 58 biomarkers across the five diseases
(Table 1).

Independent component analysis of clinarrays
Each clinarray was subjected to iterative ICA analysis
and the significant biomarkers for each disease were
derived using the approach detailed in the methods
(Table 2). We manually assigned each biomarker a phy-
siological process descriptor that it was representative of
its clinical utility as detailed by a clinical laboratory
reference [10]. For example, an increase in ALT or AST
is generally associated with tissue injury. Serum sodium
was found to be the most significant factor for both
type 1 and type 2 diabetes, and was also significant in
asthma. TSH3, a measure of thyroid function, and blood
urea nitrogen, indicative of kidney function, were factors
unique to type 1 diabetes respective to type 2 diabetes.

Figure 1 Visual schematic of the model of ICA model of disease pathophysiology ICA identifies mutually statistically independent latent
physiological factors in the biomarker data. Each observed patient clinarray is modeled as a linear combination of the underlying factors whose
coefficients are stored in the mixing matrix.
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Lactate dehydrogenase, and indicator of tissue injury,
and triglycerides were found to be significant only in
Duchenne muscular dystrophy; whereas total IgE, a
marker of antibody response, and alkaline phosphatase
levels were significant only in cystic fibrosis. Only plate-
let count was significant across all the diseases analyzed.

Discussion
We applied ICA analysis to biomarker clinarrays in an
effort to elucidate latent physiological factors concomi-
tant in five chronic disorders. Overall we find associa-
tions that are consistent with known physiological
factors of the diseases studied, showing that the factors
extracted by the ICA algorithm are reflective of actual
physiological processes underlying each disease. It is
interesting to note that platelet count, which we use as
a marker for thrombogenesis, appears to be the only

factor shared across all of the diseases studied. Recent
studies have revealed physiological roles for platelets
that extend well beyond thrombogenesis, including roles
in innate immunity, microbial defense, and angiogenesis
[11]. Our findings suggest that platelet activation may
be a salient pathophysiological factor for a broad range
of chronic disorders.
We investigated biomarkers of patients with Cystic

Fibrosis (CF), a hereditary multi-organ inflammatory
disorder caused by mutations in the CFTR gene. The
results identify three significant physiological factors
latent in the disease pathology: IgE antibody response
(Total IgE), dephosphorylation (alkaline phosphatase)
and thrombogenesis (platelet count). Platelet activation
has been implicated as a major factor in the pathogen-
esis and progression of CF. Falco and colleagues suggest
that platelets participate in the pathogenesis of CF by
increasing levels of soluble CD40 ligand, whose secre-
tion has been linked to coagulation activity [12]. These
findings elucidate a putative role for platelet activation
in disease progression, and inform the course of treat-
ment for patients exhibiting high degrees of platelet
activation [13].
A clear pathophysiological explanation for alkaline

phosphatase (ALKP) is not immediately evident. Differ-
ential levels of ALKP in CF may be attributed to bone
disease [14] or biliary obstruction [15]. The interpreta-
tion is confounded by the fact that the data was derived
from pediatric patients who may have greater variance

Table 1 Number of patients and biomarkers remaining
after pruning

Patient count Biomarker count

Asthma 1,899 29

Type 1 diabetes 343 21

Type 2 diabetes 413 31

Duchenne muscular dystrophy 56 58

Cystic fibrosis 335 44

The number of patients remaining in the data set after applying data filters is
shown (see Methods). Biomarker count refers to the number of distinct types
of laboratory measurements available for each patient in the disease set after
filtering.

Table 2 Significant biomarkers after ICA analysis

Significant Biomarkers Physiological Processes

Asthma Platelet Count Thrombogenesis

Serum Sodium Serum sodium

ALT Tissue injury

Neutrophil Percent Acute inflammation

Type 1 Diabetes Serum Sodium Serum sodium

Blood Urea Nitrogen Kidney function

Platelet Count Thrombogenesis

TSH3 Thyroid function

Type 2 Diabetes Serum Sodium Serum sodium

ALT Tissue injury

Platelet Count Thrombogenesis

Duchenne Muscular Dystrophy Lactate Dehydrogenase Tissue injury

Triglycerides Lipogenesis

Platelet Count Thrombogenesis

AST Tissue injury

Cystic Fibrosis Total IgE IgE antibody response

Alkaline Phosphatase Dephosphorylation

Platelet Count Thrombogenesis

Significant biomarkers for each disease are shown. Each significant biomarker was identified as a significant and statistically independent physiological factor
from the patient laboratory data by ICA analysis (see Methods). Each significant biomarker was matched to a broader physiological process using a standard
reference for clinical laboratory chemistry.
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of ALKP, due to differential rates of bone growth. How-
ever, no other disease resulted in significance for ALKP,
even though the range of ages was similar for the other
diseases. ALKP remains a potentially novel finding.
One of the more interesting findings from a clinical

perspective is the identification of an Immunoglobulin E
(IgE) component in CF. IgE plays an important role in
allergic sensitivity and response [16]. IgE levels are
known to be elevated in a subset of CF patients due to
allergic bronchopulmonary aspergillosis (ABPA), an
allergic reaction to a secondary fungal infection of an
aspergillius species [17]. The prevalence ABPA in pedia-
tric CF patients is estimated to be anywhere from 2% to
15% [18]. Despite the fact that detection and treatment
of fungus has been known to improve prognosis, it is
not common practice to screen for fungus. Testing for
ABPA in CF patients is not usually conducted until the
patient fails to respond to antibiotic therapy for an
extended period. Our findings suggest that ABPA may
be more of a significant factor among patients seeking
treatment for CF symptom which suggests a more rou-
tine screening for IgE antibodies to mitigate prolonged
lung damage and improve patient prognosis.
Type 1 and type 2 diabetes, though similar in regards

to causing an abnormal increase in blood sugar, have
etiological roots in distinctly different pathophysiological
mechanisms. Both types of diabetes are known to cause
hyperglycemia, which decreases serum sodium concen-
trations due to water exiting the intracellular to the
extracellular space [19]. Hyperglycemia is known to be
associated with decreased measured serum sodium [20].
Therefore the identification of serum sodium as a signif-
icant factor for both forms of diabetes by our analysis is
concordant with expectations from established patho-
physiology. Sterner and colleagues showed that an
increased platelet count is associated with type 1 dia-
betes both with and before renal impairment [21]. Jesri
and colleagues showed that platelet counts significantly
increased as patients accrued more risk factors for meta-
bolic syndrome [22], a precursor for type 2 diabetes.
Therefore while platelet count was significant in all dis-
eases, there is an established basis for its association
with both types of diabetes analyzed.
Thyroid stimulating hormone (TSH) was found to be

significant in distinguishing patients with type 1 dia-
betes, while it was conspicuously absent from our analy-
sis of type 2 diabetes. Thyroid autoimmunity affects
approximately 20% of patients diagnosed with type 1
diabetes [23]. For patients with thyroid autoimmunity
TSH levels were found to be significantly higher. More-
over, patients with two thyroid antibodies had an even
higher TSH level [24]. As expected, we did not find this
biomarker in type 2 diabetes. Similarly, we recovered a
serum alanine aminotransferase (ALT) association with

type 2 diabetes. It has been previously shown that ele-
vated ALT was associated with insulin resistance, the
main component of the pathogenesis of type 2 diabetes
[25]. We also note that certain biomarkers with known
associations to type 1 diabetes and type 2 diabetes, such
as hemoglobin A1c, are not returned in our analysis.
This may be due to the inability of these biomarkers to
differentiate between patient subsets within these parti-
cular diseases, or a lack of statistical independence in
the associated data.
We also examined Duchenne muscular dystrophy

(DMD), a disease whose pathogenesis stems from a
mutation in the dystrophin gene. It was previously
shown that patients with DMD may have elevated levels
of AST, which is corroborated by our analysis [26].
These high levels of AST have been attributed to muscle
breakdown rather than liver pathology, which is tradi-
tionally associated with AST levels. As more muscle
begins to break down in the progression of DMD, we
would expect to see an increase in levels markers for tis-
sue damage, such as AST. Therefore we suggest that
AST may serve as a marker for disease progression in
DMD. It also has been shown that lactate dehydrogen-
ase (LDH), also identified by our analysis, is increased in
patients affected with DMD [27].
A relationship whose basis is less evident is the impli-

cation of triglyceride levels as a factor in DMD. Young
and colleagues have shown that mice with hereditary
muscular dystrophy have significantly increased amounts
of triglyceride in skeletal muscle biopsies [28]. There has
been a conspicuous absence of examining triglyceride
levels in the blood for DMD patients, which is captured
in clinical lipid profiles. A recent study by Wren and
colleagues showed that muscle adiposity values are accu-
rate in determining disease severity of DMD patients
[29]. Our analysis suggests that triglyceride levels in
blood could also serve as a novel biomarker that indi-
cates the severity of DMD.
We acknowledge some limitations in our approach.

Foremost, the range of lab measurements found in the
patient data limited the identification of significant bio-
markers for each disease. These biomarkers were also
manually mapped to general physiological processes and
thus are limited to our current understanding of phy-
siology. Biomarkers may be involved in multiple physio-
logical processes and may be part of processes we do
not capture. We also acknowledge that clinarrays do not
take into consideration the temporal aspect of disease
progression. However, as with microarrays, the temporal
aspect of gene expression within a given tissue is also
often ignored unless specifically part of the protocol.
ICA-based clinarray analysis could be extended to incor-
porate a temporal component in future work. We also
note that while we currently do not use the longitudinal
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data available at a patient-specific level in electronic
medical records, this type of data could be incorporated
in future work to potentially increase the power of our
analysis. In several cases, lab measurements could not
be included in the clinarray for a disease as the underly-
ing patient data was too sparse. Thus, the set of labora-
tory measurements was not the same for each clinarray.
In addition, the use of ICA is only appropriate when the
assumption of combinatorial linearity of components is
satisfied. Further testing is needed to determine if this
assumption holds generally for clinical biomarker data.
In future work we hope to expand our data set to

include biomarkers for additional diseases and formulate
clinical validation of the results as well as integrate long-
itudinal and temporal information to produce more
extensive models of disease pathophysiology.

Conclusions
We have developed a novel approach that incorporates
independent component analysis of patient laboratory
biomarkers represented as vectors in a clinarray. This
approach seeks to separate out statistically independent
signals of disease pathophysiology as measured by clini-
cal laboratory tests on patient populations. We applied
this approach to a data set characterizing five distinct
disease conditions in a pediatric patient population. The
results of this analysis yielded both unique and common
physiological factors associated with the diseases ana-
lyzed. Several of these associations can be explained by
known disease pathophysiology, whereas some of the
associations are novel, and therefore suggest novel dis-
ease biology as well as novel uses for established labora-
tory biomarkers in clinical management of these
diseases. This work provides a novel basis for unsuper-
vised, data-driven analysis of disease pathophysiology
from aggregate clinical laboratory measurements of
patient populations.

Methods
Building clinarrays from patient lab tests
Quantitative clinical biomarker data, consisting of
893,956 measurements across 972 distinct biomarkers,
obtained at the Lucile Packard Children’s Hospital
(LPCH), were collected in a de-identified manner from
the Stanford Translational Research Database Environ-
ment (STRIDE; http://stride.stanford.edu). This data
represented 4085 patients diagnosed with one or more
of five chronic diseases: asthma, type 1 diabetes, type 2
diabetes, cystic fibrosis, and Duchenne muscular dystro-
phy. The Institutional Review Board of the Stanford
University School of Medicine approved the use of de-
identified clinical data in this manner.
Clinarrays were generated from patients diagnosed

with one or more of the diseases previously mentioned.

The median value for each biomarker across all mea-
surements of that biomarker for an individual patient
was calculated. The median values for all biomarkers
were aggregated to create the clinarray. Due to the pau-
city of data, thresholds were implemented to exclude
patients and biomarkers that were poorly represented.
Patients with less than 10 distinct biomarkers were
excluded. Biomarkers without measurements for at least
fifty percent of the remaining patients were also
excluded.

Independent component analysis
For our analysis we consider a clinarray data matrix X
where the columns correspond to individual patient
clinarrays, one clinarray per patient, and whose rows
correspond to the variable biomarker measurements for
each patient. Missing values were imputed using the K
nearest neighbor imputation (KNNImpute) algorithm
[30] with K = 10. The biomarker values were centered
to a mean of zero and scaled to unit variance. The ICA
model considers X as the matrix product of statistically
independent components or signals S, and a mixing
matrix A.

X = AS

Thus the observed physiological measures in the clin-
array X are considered to be a linear combination of
statistically independent latent physiological modes in
various combinations as defined by the unknown mixing
matrix A. Thus the goal of ICA is to estimate an opti-
mal un-mixing matrix W that attempts to satisfy the
equation:

Y = WX = WAS

Where Y is an approximation of S and if W=A-1 then
Y is a perfect reconstruction of S.
In this analysis we employed the FastICA algorithm

proposed by Hyvärinen [31]. FastICA employs a contrast
function that uses approximations of neg-entropy to
identify non-Gaussian components. We determined the
number of components to extract using the screen test
method, which is used in exploratory factor analysis to
estimate the putative number of latent principal factors.

Extracting physiological factors
The results produced by the FastICA algorithm are
influenced by random initializations from which the
objective function of minimizing statistical independence
of components is optimized. Thus the algorithm is
known to find local minima depending on the initial
conditions, and successive runs of the algorithm will
produce slightly different results. In addition, ICA algo-
rithms do not extract the components in order. There-
fore we designed an iterative ICA analysis in which the
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FastICA algorithm was applied to the clinarray data over
500 iterations.
We investigated two different techniques for extract-

ing significant laboratory biomarkers from the ICA
iterations. First we examined the distribution of the
absolute signal loading scores across all components
and iterations. We then identified significant lab tests by
identifying, for each disease, lab tests whose mean abso-
lute component loading score was in the top 1% of the
distribution. In a second approach, we counted number
of times each lab was found to have the highest absolute
loading score within a component across all iterations,
and selected lab tests found to load highest on a compo-
nent in all iterations. Both approaches yielded exactly
the same results.

Additional material

Additional file 1: Characteristics of patient data extracted from
clinical records for analysis For each disease the ICD9 codes taken to
represent the disease along with the count of patients identified using
these codes is shown.
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