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Abstract

Background: Linkage Disequilibrium (LD) bin-tagging algorithms identify a reduced set of tag SNPs that can
capture the genetic variation in a population without genotyping every single SNP. However, existing tag SNP
selection algorithms for designing custom genotyping panels do not take into account all platform dependent
factors affecting the likelihood of a tag SNP to be successfully genotyped and many of the constraints that can be
imposed by the user.

Results: SNPPicker optimizes the selection of tag SNPs from common bin-tagging programs to design custom
genotyping panels. The application uses a multi-step search strategy in combination with a statistical model to
maximize the genotyping success of the selected tag SNPs. User preference toward functional SNPs can also be
taken into account as secondary criteria. SNPPicker can also optimize tag SNP selection for a panel tagging
multiple populations. SNPPicker can optimize custom genotyping panels including all the assay-specific constraints
of Illumina’s GoldenGate and Infinium assays.

Conclusions: A new application has been developed to maximize the success of custom multi-population
genotyping panels. SNPPicker also takes into account user constraints including options for controlling runtime.
Perl Scripts, Java source code and executables are available under an open source license for download at
http://mayoresearch.mayo.edu/mayo/research/biostat/software.cfm

Background
Despite the commercial availability of affordable genome
wide genotyping panels, custom-designed SNPs panels
are frequently used for high resolution genotyping studies
focusing on specific genes or chromosomal regions. The
design of custom SNP panels for genotyping studies aims
to minimize the number of SNPs to genotype while max-
imizing the information content of the panel.
The number of SNPs to genotype can be minimized by

taking advantage of linkage disequilibrium (LD) between
SNP alleles in the same population. A number of algo-
rithms are available to assess LD between SNPs and
select tag SNPs representative of groups of correlated
SNPs called bins [1-5]. These bin-tagging algorithms use
population specific sets of reference genotypes to com-
pute bins and tag SNPs and report all possible tag SNP

candidates for each bin. Note that Tagger, which reports
the best tag SNP, also provides an exportable table of
r2 values between SNPs that can be used to compute all
tag SNPs candidates. Since these tag SNPs candidates are
theoretically equivalent from a linkage disequilibrium
point of view, only one tag SNP per bin needs to be geno-
typed to account for the genetic variation of the SNPs in
that bin. In practice, choosing tag SNPs based on LD cri-
teria alone, without considering assay constraints, can
lead to selecting tag SNPs that might fail experimentally.
Therefore the design of a panel needs to account for
experimental factors to maximize genotyping success.
These factors include genotyping score (provided by the
vendor) and distance constraint between SNPs. Further-
more, cost constraint should also be taken into account.
For instance, when a SNP panel is designed to genotype
two or more populations, SNPs that tag bins in multiple
populations should be prioritized. Finally, user-defined
preferences such as inclusion or exclusion of specific
SNPs and their prioritization by functional category (e.g.
non-synonymous) should also be accounted for in the
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design of the panel. Therefore the design of a SNP panel
is a complex task that involves the optimization of multi-
ple parameters. Applications like mPopTag [5], TagZilla
[3], TAGster [6], multiPopTagSelect [7], and Snagger [8]
provide partial solutions to this problem while also
including some level of support for multi-population tag
SNP selection.
However, none of these applications provides control

over a comprehensive enough set of parameters to effec-
tively customize and optimize tag SNP selection for the
Illumina Infinium assay. SNPPicker was developed to fill
this gap and since the Infinium assay can support custom
panels with up to 200,000 SNPs, SNPPicker also support
simultaneous tag SNP selection over multiple genes or
chromosomal regions. SNPPicker is an application for
the design of genotyping panels that accounts for experi-
mental platform constraints, user specific preferences,
and optimal selection of tag SNPs across multiple popu-
lations. SNPPicker focuses on the Illumina platforms
since Affymetrix and Applied Biosystems (ABI) provide
their own procedures for tag SNP selection. However,
configuration parameters can be adjusted to apply to
other platforms.

Methods
SNPPicker is a post-processor of LD bin-tagging algo-
rithms. The application can process the output of ldSe-
lect, TagZilla, Tagger, and Snagger to obtain tag SNPs
and bin definitions. Alternatively, bin definitions, num-
ber of SNPs per bin, and tag SNPs per bin can be speci-
fied via tab-delimited files. SNPPicker can be configured
for different genotyping platforms and user preferences.
A command line interface enables control of SNPPicker
options and specification of project-specific input and
output files.

Optimization Constraints
The optimization process takes into account several
factors such as:

Platform-Specific Factors
Conflicting tag SNPs: SNPs that are in close proximity
along the DNA sequence can interfere with each other
when assayed [9]. For instance, Illumina recommends
SNPs to be separated by more than 60 bp on their
GoldenGate assay [10]. SNPPicker optimizes the avoid-
ance of conflicting tag SNP based on a distance cut-off.
In addition, the user can request the distribution of con-
flicting tag SNPs across multiple panels to force con-
flicting tag SNPs to be genotyped. When specified, this
request will be first taken into account by SNPPicker.
Remaining conflicts will be resolved by selecting non
conflicting tag SNPs.

Genotyping Probability: the probability that a SNP will
be successfully genotyped depends on several physico-
chemical and experimental factors that can be empirically
assessed. Ingersoll and co-workers suggested combining a
predicted genotyping score provided by vendors and
experimentally established confidence classes into a
probability reflective of the chance that a SNP has to suc-
ceed during the assay [11,12]. SNPPicker uses a similar
approach, allowing the specification of two properties per
SNP that are converted into probabilities. By default
Ingersoll et al. parameters for are loaded into SNPPicker.
The mapping function is under user control, but SNP
probabilities must be limited to a small set of discrete
values to enable functional prioritization.
Illumina Infinium-specific factors: the Infinium assay

developed by Illumina introduces a new design con-
straint. SNPs with rare complementary allele combina-
tions (i.e. A/T or C/G) are genotyped using pair of bead
types whereas all other allele combinations are genotyped
with only a single bead type [10]. Since the panel include
a fixed number of bead types, the total number of SNPs
that can be included in a panel can be maximized by
avoiding A/T or C/G SNPs. SNPPicker can be used to
perform this optimization.

User-Specified Factors
Functional rank: different functional categories can be
assigned to a tag SNP such as nonsense, missense, non-
synonymous, coding, etc. Each category is assigned a
configurable rank to define the order of preference in
which tag SNPs will be included in the assay panel. This
rank prioritization is only taken into account when tag
SNPs have the same genotyping probability.
Number of assay panels: SNPPicker can organize SNPs

on multiple SNP panels. When more than one panel is
used, SNPPicker attempts to remove conflicting tag
SNPs by distributing conflicting pairs across panels.
Conflicts due to DNA template competition can thus be
avoided.
Maximum number of tag SNPs per bin: the maximum

number of tag SNPs to select per bin can be defined by
the user. This number can be assigned as a function of
the total number of tag SNPs. The default is one tag SNP
per bin. This feature is useful to avoid failures for large
bins which represent a large fraction of the genetic
variation.
Maximum genotyping probability of a bin: a genotyping

probability threshold can be set in the program. This
threshold defines the limits above which the user consid-
ers that a bin will be successfully assayed. From a techni-
cal point of view, this threshold speeds up the search for
solutions since once the threshold is reached tag SNPs
are no longer added to a bin even if the maximum
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number of tag SNPs per bin has not been reached. By
default the threshold value is set to 1, which turns off
this optimization since no bin can reach that probability.
Existing genotypes: SNPPicker can account for SNPs

that have been genotyped in a previous experiment.
SNPPicker will not pick any tag SNPs for bins where
these genotyped SNPs are tag SNPs.
Minimum genotyping score threshold for a SNP:

a threshold can be set to exclude SNPs with a low pre-
dicted genotyping score from the optimization process.
In addition to having a higher risk of failure, it is suspected
that some of these SNPs can interfere with the perfor-
mance of other SNPs in the panel by non-specifically bind-
ing to DNA [9].
User imposed tag SNPs inclusion and exclusion: the

user can force tag SNPs to be present (also called obli-
gates) or excluded from the final assay panel. If two
obligate SNPs are in violation of the proximity con-
straint, the one being selected will be decided based on
the optimization of the score of each alternative.

Optimization Strategy: Bin Clusters
SNPPicker’s optimization strategy focuses on finding a
solution that maximizes the score of a panel while mini-
mizing the total number of tag SNPs or bead types to
genotype. Since the exhaustive enumeration of all possi-
ble tag SNPs panels that match user defined criteria can
be time consuming, SNPPicker groups non-independent
bins into clusters for joint optimization. Non-indepen-
dent bins are transitively grouped by single linkage clus-
tering. Two bins are non-independent when each has a
member of a pair of conflicting tag SNPs or when these
bins share at least one tag SNP (which can occur when
bins are from different populations). Each resulting clus-
ter of bins, called a bin cluster, is optimized and scored
independently during the optimization process.
The tag SNPs selected from each bin cluster are com-

bined into the final panel and scored as a function of
the genotyping probability of the SNPs in the panel.
Optimization first maximizes coverage criteria and then
a score for each bin cluster. Lastly, the sum of the func-
tional classes of all the selected tag SNPs is minimized
for solutions with equal bin cluster score.

Scoring Functions
Coverage Selection Criteria
The panel has to optimize the following coverage cri-
teria for each bin cluster before the bin cluster score is
optimized.

(1) Has the most number of bins tagged by at least
one tag SNP.
(2) Has the maximum number of obligates.

(3) Has the lowest difference between the expected
and actual total number of tag SNPs in the panel.
The expected total number of tag SNPs is derived
from the maximum number of tag SNPs per bin set
by the user. No penalty is applied if a bin has less
than the user defined number of tag SNPs because
the bin has too few tag SNPs or because the bin
probability reaches the user defined maximum geno-
typing probability of a bin.

Bin Cluster Score
The bin cluster score is computed from the genotyping
probability of a bin divided by the total number of tag
SNPs to favor a solution with fewer tag SNPs. The ratio
is weighted by the number of tag SNPs in a bin, a strat-
egy [2] that increases the statistical power for associa-
tion with a phenotype.
The score of SP a panel P is computed by summing

scores over each bin cluster:

Sp =
nclusters∑

k=1

SCk

where the score for the kth bin cluster is computed as
follows:

SCk =

∑
i∈Cluster(k)

Ptagged bin
i ntagSnpsi

ntagsk

, (1)

where Pi
tagged_bin is the probability of successfully gen-

otyping at least one tag SNP per bin, ni
tagSnps is the

number of tag SNP in bin i, and nk
tags is the total num-

ber of tag SNPs selected for bin cluster k. Note that if
the -infinium command line option is selected, nk

tags in
equation 1 is replaced by the number of bead types
nk

beads.
The probability Pi

tagged_bin is computed from

ptagged bin
i = 1 −

∏

l=1..ntagsi

Psnp failure
l = 1 −

∏

l=1..ntagsi

(1 − Psnp success
l )

where the probability Pl
snp_success of successfully geno-

typing a SNP is a configurable function of the predicted
genotyping score and the confidence class. Pl

snp_success is
obtained from retrospective analysis of SNPs that have
been successfully genotyped.
Functional Prioritization and Functional Score
During the first two phases of solution search, tag SNPs
with equal probability are considered for inclusion in the
panel in order of their functional rank (higher rank first)
insuring that the first solution found with a given cover-
age and score will have the best functional rank among
equivalent solution. However, during the search for a
final solution, a swapping procedure is used (section 2.4),
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which breaks the functional ordering. During that phase,
the functional rank prioritization is achieved by picking
the solution with the maximum sum of the functional
rank of the tag SNPs in the bin-cluster (after coverage
and bin cluster score optimization).

Optimization Algorithm
Pre-processing
Prior to optimization, tag SNPs are organized to facili-
tate and speed up the enumeration of solutions. Three
pre-processing steps are executed in the following order:

(1) Selection of initial set of candidate tag SNPs:
during this step, tag SNPs not meeting minimum
score criteria and SNPs excluded at the user’s
request are removed from the list of tag SNPs.
(2) Identification of bin clusters: next, bin clusters
are created by linking bins with conflicting tag SNPs
or sharing overlapping tag SNPs. The latter happens
when multiple populations are analyzed. Note that
remaining isolated bins are treated as bin clusters.
(3) Ranking of tag SNPs in bin cluster: lastly, tag
SNPs in each bin cluster are sorted in descending
order of genotyping probability. Since tag SNP prob-
abilities are discretized, many tag SNPs may have the
same probability. Tag SNPs with the same probability
are ordered by decreasing functional rank.

Optimization Procedure
SNPPicker’s optimization procedure operates on each bin
cluster of tag SNPs independently and proceeds in three
consecutive phases. The first phase is designed to ensure
rapid convergence towards a nearly optimal solution via
a heuristic algorithm. The second and third phases
further explore the solution space until the user specified
time limit is reached or an exhaustive search has been
completed.
Phase 1: nearly optimal solution The first phase
focuses only on non conflicting tag SNPs and tag SNPs
genotyped by a single bead when the Illumina Infinium
protocol is used.
Single population optimization: for each cluster, tag

SNPs are selected for inclusion in the panel in order of
ranking until the maximum genotyping probability
threshold or the maximum number of tag SNPs has been
reached for each bin in the cluster.
Multi-population optimization: a nearly optimal solution

is created using a dynamic programming search: tag SNPs
are ordered in each cluster as a function of the number of
populations they tag (NPtag), and their rank in the bin
cluster. Each tag SNP with the same NPtag is selected
iteratively. Once a tag SNP is selected, NPtag is updated
for the remaining tag SNPs, counting only bins that still
need more tag SNPs. The remaining tag SNPs are then
reordered as a function of NPtag and their rank in the list.

When only tag SNPs tagging single bins remain, tag SNPs
are picked independently for each bin. This procedure is
repeated recursively until the maximum bin cluster prob-
ability score or the maximum number of tag SNPs has
been reached for each bin in the cluster. The best solution
serves as the starting point for phase 2.
Phase 2: swapping in conflicting tag SNPs and tag SNPs
assayed by a pair of bead types The second step is more
time consuming. It attempts to add to the panel tag
SNPs from pairs of conflicting tag SNPs or tag SNPs
requiring a pair of bead types when the -infinium option
is specified. A swapping strategy similar to the one
described by Howie and co-workers is used [7] by simul-
taneously adding one or more of the not previously con-
sidered tag SNPs while removing subsets of tag SNPs
from the panel to avoid proximity conflicts or superflu-
ous coverage.
Phase 3: exploring full solution space Finally in an
attempt to further refine the nearly optimal solution
obtained from previous phases, the systematic replace-
ment of zero or more selected tag SNPs already in the
panel with the remaining tag SNPs is performed. Since
this swapping procedure can be time consuming, a time
limit can be set by the user. Tag SNP swapping is
performed independently for each bin cluster. Note that
the number of removed tag SNPs can be different from
the number of added tag SNPs to ensure the exhaustive
exploration of solutions that meet the coverage require-
ments, yet have a better score. The swapping process
stops when the time limit allocated for the search is
exhausted or the full search for a better solution is com-
plete. If a better solution is found by swapping, the entire
swapping procedure is repeated with the new baseline
solution. The numbers of SNPs to swap out is limited to
be no more than 20 to limit computational time.

Approximate solution
Bin clusters with a large number of tag SNPs can require
more time to optimize than the limit set by the user.
When the time limit is reached or if the cluster has more
than 31 tag SNPs to swap, the exhaustive search from
Phase 3 is reduced to a simpler version that sequentially
tries to swap in a single tag SNP at a time instead of mul-
tiple tag SNP while still trying to swap out multiple tag
SNPs. The tag SNPs are considered in the order of the
ranked tag SNP list. Although not optimal, the time to
find a high scoring solution is significantly reduced by
avoiding swapping in multiple SNPs at the same time.

Final Panel and report
The tag SNP panel is reported in a tabular format: obligate
tag SNPs are listed first followed by the remaining tag
SNPs. The predicted genotyping score, functional class,
bin ID, population tagged, and genotyping probability is
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also provided for each SNP. Other than obligates, tag
SNPs are reported in order of their contribution to the
panel score. The incremental contribution to the panel
score of each tag SNP is listed as well. If the multiple
panel design option was selected, a panel identifier is pro-
vided for the conflicting tag SNPs. Finally, if a bin has no
selected tag SNP, the report includes the reason why each
tag SNP in that bin was not selected.

Integration of SNPPicker with SNPApp
SNPApp is an in-house application developed to facilitate
the selection of SNPs and computation of tag SNPs in
genes or chromosomal regions. SNPApp accesses multi-
ple sources of public reference genotypes including
Hapmap [13] Phase II, release 23, NIEHS SNPs [14], and
SeattleSNPs [15]. The application has recently added
genotypes from the 1000 genomes project [16]. Gene
definitions are obtained from Entrez RefSeq [17-20].
SNPApp uses ldSelect for tag SNP calling [1]. SNPApp
returns LD bins and tag SNP data for each gene or chro-
mosomal region submitted as input. SNPApp provides
this information for each source of reference genotype
along with coverage information. SNPPicker is interfaced
to SNPApp to provide a comprehensive solution for gen-
otyping panel design. For this work, SNPApp was used to
generate tag SNPs with the following parameters: r2>=
0.9, minor allele frequency cut-off of >= 5 percent, and
inclusion of SNPs up to 10 Kb 5’ or 3’ of each gene.

Results
Validation Datasets
55 Genes validation set
SNPPicker was used to design a 55 gene single-population
GoldenGate panel for the Hapmap CEU population. The
55 innate and adaptive immune response genes dataset
was assembled from 3 classes of genes. The first class
includes innate immune response genes including antiviral
proteins and associated pathway genes, interferon and
interferon inducible genes, toll-like receptor and asso-
ciated pathway genes (MX1, MX2, OAS1, OAS2, OAS3,
ADAR, EIF2AK2, IRF3, IRF7, ISG20, ISGF3G, RNASEL,
DDX58, VISA, CASP10, TRIM22, TLR3, and TLR4). The
second class includes a broad spectrum of immune
response genes such as cytokine (IL2, IL4, IL5, IL6, IL10,
IL12A, IL12B, IFNA1, IFNA2, IFNA21, IFNB1, IFNG,
TNFA, and CSF2) and cytokine receptor genes (IL2RA,
IL2RB, IL2RG, IL4R, IL6R, IL6ST, IL10RA, IL10RB,
IL12RB1, IL12RB2, IL18R1, IFNAR1, IFNAR2, IFNGR1,
IFNGR2, TNFRSF1A, TNFRSF1B, and CSF2RB) regulating
Th1, Th2, and inflammatory responses to rubella. The
third class includes genes encoding nuclear receptors for
vitamin A and D (RXRA, RARA, RARB, RARG, and VDR)
that play an important role in the regulation of both innate
and adaptive responses to viral vaccines.

A total of 1995 tag SNPs were provided to SNPPicker
using SNPApp, with 1790 being above the minimum
score threshold. 130 of those tag SNPs being considered
for the panel (7.1%) had at least one other tag SNP in
close proximity (closer than 61 bp).
160 Genes validation set
SNPPicker was also used to design a multi-population
GoldenGate panel to genotype 160 cardiovascular disease
related genes [21,22]. Tag SNPs were extracted from
Hapmap for the European whites (CEU) and African
Yorubans (YRI) population using SNPApp. The analysis
of the 9135 tag provided to SNPPicker showed that 3873
tag SNPs (42.2%) are shared between the CEU and YRI
population. 1948 tag SNPs (21.3%) have at least one
other tag SNP in close proximity (closer than 61 bp).

Validation
Quality of the optimization procedure
SNPPicker was configured to generate a single panel
optimized for the Golden-Gate assay with a single tag
SNP per bin. Pairs of tag SNPs separated by 60 bp or less
were not allowed in the final panel. Tag SNP selection
was performed independently for each chromosome con-
taining at least one gene, allowing up to 50 seconds of
optimization per bin cluster. For the 160 and the 55 gene
panels, out of a total of 4263 and 1876 bin clusters opti-
mized respectively, 7 and 2 bin clusters respectively were
not completed within the fifty seconds allocated due to
too many tag SNPs. The approximate solution was
returned for those clusters. The computational time was
dominated by the time spent to optimize the large
bin-clusters.
Quality of the designed panel
To assess the quality of the solution returned by
SNPPicker, one million random solutions per chromo-
some were generated for each panel. These solutions
were constrained to include as many or fewer tag SNPs
than the optimized panel returned by SNPPicker.
Because of conflicts, some bins may not end up with
any selected tag SNP, therefore bins need to be assigned
tag SNPs in randomized order to avoid bias about
which bins do not get tagged. For each chromosome,
random solutions were generated by iteratively ran-
domly selecting a bin and randomly assigning a tag SNP
to that bin. The procedure for each solution terminates
when i) the total number of tag SNPs in the panel has
been reached or ii) no more tag SNPs can be added to
any bin because of conflicts or because all bins have
reached their maximum number of tag SNPs. This ran-
domization procedure takes into account the selection
of multiple SNPs per bin.
None of the random solutions had better coverage than

SNPPicker’s solution. For the random solutions with
equal coverage, none of the random solutions for any of
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the chromosomes had scores better than SNPPicker’s
optimized solution. The results were similar for the 55
genes panel. The same analysis was also performed inde-
pendently on each of the bin clusters for which an
approximate solution was generated. In these cases as
well, after one million permutations for each of those bin
clusters, no better solutions were found.
Enrichment of high probability tag SNPs
To assess the enrichment of high probability tag SNPs
upon optimization, the normalized distribution of tag
SNP probabilities in the initial set of tag SNPs was com-
pared to that of the panel after optimization (Figure 1).
The highest enrichment of 25% (from 40% to 50%) is
observed for tag SNPs with probability>0.95. The prob-
ability enrichment is limited because the optimization
can only operate on bins that have more than a single
tag SNP (29% (2065/7295) of bins).
Enrichment of functional tag SNPs
Figure 2 shows the enrichment of preferred functional
classes in the designed panel, with the highest priority
classes to the right of the figure. Contrary to the geno-
typing probability optimization, enrichment of func-
tional classes is very limited. This is due to the small
number of bin with multiple tag SNPs having identical
genotyping probabilities. The lowest priority class is
decreased by 2.5% upon optimization while the higher
priority classes show slight increases.

Feature comparison with other tag SNPs selection
applications
Table 1 compares the features of SNPPicker with two
of the most commonly used applications for tag SNP
selection with multi-population support: multiPopTag-
Select V1.1 [7] and Snagger [8]. MultiPopTagSelect, like
SNPPicker, post-processes the output of tag SNP selection
algorithms. MultiPopTagSelect is designed to post-process
the output of ldSelect only and optimize tag SNPs across
multiple populations. MultiPopTagSelect takes into
account scores assigned to SNPs and a functional rank of
tag SNPs. In contrast with SNPPicker, multiPopTagSelect
chooses functional rank over score and does not account
for conflicting tag SNPs. Snagger is an application
designed for single gene/region analysis that can design
panels for multiple populations, but unlike SNPPicker, it
uses a non-optimal incremental approach to select tag
SNPs in multiple populations. It first optimizes tag SNPs
selection for one population and next extends the selec-
tion to another population by adding SNPs to ensure cov-
erage. This selection strategy was shown to be suboptimal
[7]. SNPPicker is also the only tool whose scoring function
gives different probability to tag SNPs with experimental
validation or that can optimize panel design for the Illu-
mina Infinium chemistry.
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Figure 1 Tag SNPs per Probability Range. Tag SNPs genotyping
probabilities before and after optimization. Only tag SNPs meeting
the minimum score for inclusion in the panel are included in the
histogram. Counts per bin are below each histogram bin and error
bars at the top of bins are poisson estimates (the square root of the
counts) scaled to percentage.
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Figure 2 Tag SNPs Functional Enrichment. Tag SNPs functional
class enrichment before and after optimization. Each bin represents
a single rank of functional class (most significant classes on the
right). Only ranks with at least 100 tag SNPs prior to optimization
are shown. Only tag SNPs meeting the minimum score
requirements for inclusion in the panel are included in the
histogram. Counts per bin are below each histogram bin and error
bars at the top of bins are poisson estimates (the square root of the
counts) scaled to percentage. Multiple functional classes match
each rank, only one label shown for each rank.
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Optimization Comparison with Snagger and
MultiPopTagSelect
The performance of SNPPicker, Snagger, and MultiPop-
TagSelect was compared on the design a SNP panel for
the genotyping of the 160 genes validation set. For this
comparison, two panels were designed for Infinium and
GoldenGate assays. To make results comparable, the same
tag SNP and LD information produced by Snagger was
converted to bins in order to perform the comparison
between the three applications. Tag SNPs were computed
to tag SNPs with minor allele frequency greater of equal
to 0.05 at a minimum r2 of 0.9. Bins were created accord-
ing the procedure in [1], but limiting the central tag SNPs
to the tag SNPs selected by Snagger and proceeding in the
population order of Snagger (CEU first, next YRI). It
should be noted that the bin construction procedure led
to different number of bins in the two panels because
Snagger chose different tag SNPs in the two cases.
Snagger was run with the -minBinSize option set to

10000 and minProbSucc to 0.01 to disable the selection
of multiple tag SNPs per bin. Genotyping scores were
obtained from Illumina. Missing scores were set to -99.
A minimum genotyping score of 0.4 was required for a
SNP to be selected as candidate tag SNP. SNPPicker was
limited to using at most 50 seconds per bin cluster to
make the total runtime of all applications similar.

Tables 2 & 3 provide an overview of the multi-population
panels designed by SNPPicker, multiPopTagSelect, and
Snagger. Table 2 reports the comparative statistics of the
panel designed for the GoldenGate assay that is sensitive to
SNPs in close proximity (conflicting SNPs). Note that mul-
tiPopTagSelect does not handle conflicting tag SNPs. From
the 7996 bins produced by Snagger, 7648 are tagged by
SNPPicker compared to 7859 by multiPopTagSelect. How-
ever, multiPopTagSelect includes in the panel 426 conflict-
ing SNP that might lead to assay failure, resulting in only
7433 bins that are likely to be successfully tagged. When
compared to Snagger, the other tool that can handle con-
flicting SNPs, SNPPicker is able to tag 8 additional bins
using only 5038 tag SNPs instead of the 5154 tag SNPS
required by Snagger. SNPPicker can also design a panel
that tags all of the 7859 bins tagged by multiPopTagSelect
by spreading the conflicting tag SNPs across multiple
panels.
Table 3 reports comparative statistics on the panel

designed for the Infinium assay. This assay does not
require elimination of conflicting tag SNPs, but requires
using two bead types for A/T or C/G tag SNPs versus a
single bead type for all other SNPs. The cost of the panel,
that is related the total number of bead types, is impacted
by the number of A/T or C/G tag SNPs selected.
SNPPicker is the only application able to optimize a geno-
typing panel to reduce the number of A/T or C/G tag
SNPs to genotype while still maximizing the genotyping
score (and functional score). The panel designed by
SNPPicker includes 105 less bead types than MultiPop-
TagSelect and 195 less than Snagger. The difference
between the number of tag SNPs selected by SNPPicker
and MultiPopTagSelect comes from the optimization
strategy used by SNPPicker. SNPPicker processes all loci
on the same chromosome simultaneously, enabling saving
29 tag SNPs located into overlapping bins. These tag SNPs
tagged genes within 20 KB of each other.

Discussion
SNPPicker automates the design of tag SNP genotyping
panels with maximum likelihood of genotyping success
while minimizing the number of tag SNPs to assay.
SNPPicker also optimizes functional tag SNPs, but only

after maximizing genotyping probability. This approach
makes SNPPicker different from other applications, such

Table 1 Differentiating features between various multi-
population tag SNPs selection programs

SNPPicker Snagger multiPopTagSelect Feature

X X Simultaneous multi-
population optimization

X X Optimizes genotyping
score

X X Optimizes conflicting tag
SNPs

X X X Functional class
prioritization (strategy
specific to each
application)

X X Optional selection of
multiple tag SNPs per bin

X Simultaneous optimization
of multiple genes or
regions

X Accounts for previously
genotyped SNPs

X Optimizes for the Infinium
assay

X Distribute conflicting SNP
across multiple panel

X X Not limited to Hapmap
Samples

Differentiating features between the multi-population tag SNPs algorithms.
Features similar to all 3 applications were omitted.

Table 2 Multi-population panel design for the
GoldenGate assay

optimizer MultipopTagSelect SNPPicker Snagger

bins 7996 7996 7996

tagged bins 7859 7648 7640

tag SNPs 5248 5038 5154

conflicting tag SNPs 426 0 0
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as multiPopTagSelect and Snagger, that prioritize func-
tional class at the expense of the genotyping success of a
SNP.
SNPPicker maximizes genotyping success by optimiz-

ing two properties: the genotyping probability of a bin
(or a cluster of bins), statistically derived from the indivi-
dual genotyping probability of each SNP; and, for some
platforms, the proximity distance between SNPs. The
genotyping probabilities currently used by SNPPicker are
derived from a retrospective analysis of experimental
genotyping results. SNP proximity is a strictly enforced
constraint. Although, in this article, this feature was used
only on the GoldenGate custom genotyping design, this
constraint can significantly impact the design of the
panel for any genotyping platform that is based on hybri-
dization [9]. The importance of this effect was measured
in two datasets. Fifteen and thirty three percent respec-
tively of SNPs with minor allele frequency (MAF) >= 5%
were within 60 base pairs of another SNP in the Ameri-
can European whites (CEU) population for the Hapmap
II [13] (build 36, Feb. 21 2009) and for the 1000 genomes
pilot 2 data (March 2010 release) [16]. SNPPicker also
includes options to avoid any conflict, not only between
selected tag SNPs, but between any SNP supplied by the
user in the score files.
SNPPicker uses a time-constrained algorithm to search

for an optimal solution. This option provides more flex-
ibility and control over the time that will be allocated for
the optimization, particularly when bin clusters with a
large number of tag SNPs and spanning several popula-
tions have to be processed. The time allocated for the
search is guided by the user. If the search completes
before the time limit, the returned solution is optimal. If
not, SNPPicker returns a solution that, while not guaran-
teed to be optimal, may in fact be the optimal solution.
Finally, SNPPicker includes a set of useful features that

makes the tool versatile and easy to customize for the
needs of a specific study. These features include: i)
accounting for constraints of the GoldenGate or Infinium
chemistry, ii) accounting for tag SNPs that have been
previously genotyped (and therefore should not be re-
assayed), iii) distributing tag SNPs on multiple panels to
avoid proximity constraints, iv) simultaneous design of a

multi-gene panel, and v) simultaneous multi-population
optimization.
One limitation of SNPPicker’s post-processing design

is that if a bin has all of its tag SNPs excluded because
of score or proximity constraint, the non-tag SNPs in
the bin remain untagged. This limitation is easily miti-
gated by running a second round of tag SNP selection,
only including SNPs that are in untagged bins and not
in proximity conflicts with the tag SNPs chosen in the
first pass.

Conclusions
SNPPicker is an application for the design of single and
multi-population genotyping panels based on the linkage
disequilibrium of SNPs and additional constraints
imposed by the user or by the genotyping assay.
SNPPicker is currently the only tool that can optimize
bead type selection for the Infinium assay, an assay that
is frequently used when large SNPs panels have to be
designed. Its integration with SNPApp provides an easy
to use comprehensive solution to the design of genotyp-
ing panels. The extensive set of criteria that are offered
to control the selection of SNPs make it also a flexible
tool for the designed of customized SNP panels. Finally,
SNPPicker is a command line application that can
straightforwardly be integrated within data processing
pipelines.
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