
SOFTWARE Open Access

DAS Writeback: A Collaborative Annotation
System
Gustavo A Salazar1,2,3*, Rafael C Jimenez3, Alexander Garcia4, Henning Hermjakob3, Nicola Mulder2 and
Edwin Blake1

Abstract

Background: Centralised resources such as GenBank and UniProt are perfect examples of the major international
efforts that have been made to integrate and share biological information. However, additional data that adds
value to these resources needs a simple and rapid route to public access. The Distributed Annotation System (DAS)
provides an adequate environment to integrate genomic and proteomic information from multiple sources,
making this information accessible to the community. DAS offers a way to distribute and access information but it
does not provide domain experts with the mechanisms to participate in the curation process of the available
biological entities and their annotations.

Results: We designed and developed a Collaborative Annotation System for proteins called DAS Writeback. DAS
writeback is a protocol extension of DAS to provide the functionalities of adding, editing and deleting annotations.
We implemented this new specification as extensions of both a DAS server and a DAS client. The architecture was
designed with the involvement of the DAS community and it was improved after performing usability experiments
emulating a real annotation task.

Conclusions: We demonstrate that DAS Writeback is effective, usable and will provide the appropriate
environment for the creation and evolution of community protein annotation.

Background
The annotation of biological data is a common task in
different fields of the life sciences, and can be classified
into two types: manual and automatic [1]. Manual anno-
tation refers to the actions of an individual, usually an
expert in the field, annotating the evidence extracted
during a review of published scientific literature. It is a
valuable effort that produces important resources like
UniProtKB/Swiss-Prot, a manually annotated database
of high quality protein information [2]. Automatic anno-
tation is generally based on the hypothesis that two very
similar sequences (homologues) have a common ances-
tor and their functions and features should be similar;
therefore, any annotation in one of the sequences can
be extrapolated to the other. Automatic annotation is
required because of the flood of data that can not be
handled manually; genome projects, among others, are
able to generate terabytes of information on a daily

basis and it is therefore impossible to have enough
experts to annotate this quantity of data manually. How-
ever, automatic processes are inexact [3], they can infer
erroneous annotations.
A combination of the two types of annotation is

required in order to balance the needs for both high
quality annotation and large-scale processing. Manual
annotation thus becomes a quality-control mechanism
for the information obtained by automatic methods.
Currently, most manual annotation is performed by
experts employed by the institutions hosting databases,
but many additional experts in the wider scientific com-
munity could contribute to this effort if the facilities
existed to do so. We have designed and implemented
the Distributed Annotation System (DAS) Writeback,
which enables community-based manual annotation of
public data. Our approach makes the process of manual
annotation a collaborative task, whereby any individual
can participate by sharing their knowledge in the form
of new or edited annotations.* Correspondence: gsalazar@cs.uct.ac.za

1Computer Sciences Department, University of Cape Town, South Africa
Full list of author information is available at the end of the article

Salazar et al. BMC Bioinformatics 2011, 12:143
http://www.biomedcentral.com/1471-2105/12/143

© 2011 Salazar et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:gsalazar@cs.uct.ac.za
http://creativecommons.org/licenses/by/2.0


Collaborative environments such as WikiProteins [4]
or Gene Wiki [5] use the wiki paradigm in the biological
domain. The central goal of WikiProteins is to promote
the community annotation of biomedical concepts and
their interactions, however it does not offer any tools
for annotating specific biological parts of a protein -e.g.
positional features. In contrast to the wiki-based
approach, which duplicates information from its original
source to make it part of the wiki environment, DAS
Writeback directly references the source database. DAS
allows the user to access several sources in a federated
way and at the same time use tools for editing the data.
DAS [6] is a widely-adopted standard communication
protocol, and has an established set of methods to make
the annotations from different network locations avail-
able in the same context. Annotations in DAS are
known as features, and each has a defined set of attri-
butes. For example: TYPE indicates the type of the
annotation, START-STOP define the position, and
METHOD describes the method used to identify the fea-
ture. DAS is motivated by the idea of providing a feder-
ated system; a logical association of independent sources
distributed over multiple sites, which provides a single,
integrated, coherent view of all resources in the federa-
tion. This architecture makes several distinct physical
data sources appear as one logical data source to end-
users. Here we describe the implementation of a DAS
Writeback system through an extension of the existing
DAS protocol. We present an example of the system
and results of a usability experiment to test the
implementation.

Implementation
A Masters thesis at the Chalmers University of Technol-
ogy on this topic resulted in the implementation of a
DAS Writeback server as a proof of concept [7]. The
graphical user interface was built using JSP (Java Server
Pages) and the servers were Java servlets. The mechan-
ism used to store the new annotations was incompatible
with the concept of meta-annotation, which is one of
the fundamental ideas of this project. Despite this, the
experiences and results of that project were very useful
and enabled us to avoid several potential issues.
A fundamental distinction between the previous pro-

ject and the one presented here, is that the former
adopts the proposals included in the DAS/2 document,
whereas we propose an extension for DAS 1.6. Please
note that DAS/2 is an entirely separate specification
which is not backwards compatible with existing servers
and clients despite being based on the DAS architecture.
The submission forms used in the previous project
acted as the start point to get a more specific form for
protein annotation, to which we added some user inter-
face aids that are discussed below. Furthermore, we

thought that the user should be immersed in the
context of the proteins that they are annotating, and
therefore decided to embed the writeback functionality
in a DAS client, which provides the available informa-
tion for the target protein. The DAS Writeback system
provides the capabilities of reading, writing, editing and
deleting features by users of a web application. For the
design and development of such a system it was neces-
sary to design an architecture that supports the new fea-
tures, define an extension of the DAS specification to
accommodate the client-server communication, and
implement server and client components. All of these
milestones were achieved while trying to follow the same
style as the existing DAS technology, thus looking for an
easy adoption of the system by the DAS community.
When extending the DAS protocol to support servers

that can store edited annotations, we set out to retain
compatibility with the existing read-only system of
HTTP GET requests. Development was based on the
idea that a DAS Writeback server should have, at the
very least, the methods for basic reading/writing opera-
tions. In Database Theory, this is known as CRUD
(Create, Read, Update and Delete) [8].
The components of the system were developed bear-

ing the following goals in mind: 1. The original annota-
tions of a DAS source should not be modified directly;
2. The system should be trusted by the user; and 3. The
system should promote interaction between the server
and users.

Architecture
In order to accomplish the first goal, the architecture
includes a third party writeback server that stores the
changes to a set of annotation, independent of the origi-
nal source providing those annotations. In addition,
changes to annotations can be considered annotations
themselves and so the writeback server must provide
methods to annotate annotations. This requires three
new types of annotation: Create, Update and Delete.
Figure 1 represents the architecture of DAS including

the writeback server. Firstly it is necessary to highlight
that, when a feature is requested, the writeback server
behaves as another annotation server, but is the last one
in the queue. The way this information is rendered is
the responsibility of the client. A standard DAS transac-
tion starts by querying the DAS Registry (the DAS Reg-
istry provides a repository for the registration and
discovery of DAS services). Next the reference sequence
is obtained, followed by parallel requests to several
annotation sources. The interaction between client and
writeback occurs after the client has retrieved and dis-
played all of the information for the target protein, since
it is only then that the user has a complete landscape
view to take the decision to add, update or delete a

Salazar et al. BMC Bioinformatics 2011, 12:143
http://www.biomedcentral.com/1471-2105/12/143

Page 2 of 8



feature. HTTP requests relating to write operations on
the writeback server are much larger than standard DAS
requests (shown in Figure 1 as the width of the red
arrow). The reason for this is that the client is now
required to send the information to add or update a
specific feature, including its type, category, position and
other characteristics predefined in DAS. The communi-
cation with the writeback server is thus extended
beyond the display of a graphic that compiles the infor-
mation from all the servers. This is when the user starts
to interact with the information, transforming the client
from a pure visualisation tool to an interactive interface
between the user and the DAS data.

Protocol Extension
RESTful web services implement remote procedure calls
across the Web as an alternative solution to SOAP
(Simple Object Access Protocol) web services. One of
the major strengths of the RESTful strategy is that it is
based on such widely adopted standards as HTTP,
XML, URI and MIME. This makes REST, and therefore
DAS, technologies easy to implement and attractive to
both developers and final users. A comparison between
SOAP and REST web services can be found in [9].

One of the main features of the REST architecture is
to have a uniform interface. This means that REST
resources should be manipulated using a predefined set
of operations. In the case of the Web, those operations
are the 4 basic reading/writing operations CRUD, and
the HTTP methods PUT, GET, POST and DELETE are
suggested in the literature to specify those actions.
These operations “are broadly applicable but they also
help uphold specific Web architectural properties” [10].
The idea of specifying operations for publishing and

editing resources using HTTP is not novel; AtomPub is
a proposed protocol for publishing and editing Web
Resources using HTTP [11]. Google has also defined a
protocol based on Atom, AtomPub and RSS2.0 [12].
The writeback specification used for this implementa-
tion is a combination of features of those protocols, plus
the inherent requirements of the DAS technology. The
proposed specification can be found on the DAS1.6E
web page (http://www.biodas.org/wiki/DAS1.6E#DAS_
writeback 2009). It proposes that both input and output
documents for the writeback should follow the DAS
GFF format (See Additional File 1); the HTTP method
indicates what to do with the received document (create,
update or delete a feature) and the HTTP status codes
used for DAS remain valid and will indicate success or
failure of the requested command.

Server
Our implementation of DAS Writeback is an extension
of the MyDAS server [13] and is based on DAS1.6. A
writeback data source was implemented to store annota-
tions. Annotations are the main entity in the data
model, and any edits or deletions of an annotation are
considered to be versions of the original annotation.
The datasource uses Hibernate [14] as its layer to

access the persistence data, which brings the advantage
of being Database-Engine independent. The data source
has been successfully tested using PostgreSQL, MySQL
and Derby but is expected to work properly in other
engines.

Client
As a federated system, DAS delegates most of the inte-
gration responsibilities to its clients, giving it a “dumb
server, clever client” architecture [15]. As a consequence,
if the goal is to capture feedback from users (Write-
back), the client should be able to execute several tasks
related to both logic and user interaction. One of the
goals of this project was to create the perception for
users that the writeback functions in a client are native
and can be used naturally with existing clients. For this
reason, the extension of an existing client was preferable
to implementing a new client from scratch. In addition,
the writeback server behaves as any other DAS server

Figure 1 Writeback in the DAS Architecture. Extension of the
DAS architecture for the writeback. A third party writeback server is
the last to be queried by the client, and its response is used to
update the information provided by the annotation servers.
Communication with the writeback server has the peculiarity that
the amount of information sent by the client is considerably larger
than for any other server. The clock in the background represents
the chronological order of the actions in a DAS transaction.

Salazar et al. BMC Bioinformatics 2011, 12:143
http://www.biomedcentral.com/1471-2105/12/143

Page 3 of 8

http://www.biodas.org/wiki/DAS1.6E#DAS_ writeback
http://www.biodas.org/wiki/DAS1.6E#DAS_ writeback


for reading purposes, so many software routines of an
existing client could potentially be reused for the write-
back visualisation.
Dasty2 [16] is a web-based protein DAS client, which

makes extensive use of AJAX in order to make the user’s
experience as close as possible to using a stand-alone cli-
ent. Dasty2 offers a number of features that make it an
ideal candidate for the proposed extensions. For example,
Dasty2 has a modular structure based on panels, so it
provides the opportunity to group the writeback features
in a new panel, thus isolating the writeback content for
those who prefer not to use this information. Dasty2
went through a refactoring process, optimising its code
to provide a plug-in framework. The new version is called
Dasty3. The writeback client has been implemented as a
Dasty3 plugin and is included in its core feature set.
The communication between the client and the write-

back server has some differences with respect to the com-
munication with other DAS servers. Firstly, the different
HTTP methods (PUT, GET, POST and DELETE) should
be used according to their function. For this reason, the
proxy component of Dasty3 was extended to support the
appropriate method usage. The second difference is in the
amount of information transferred; before the writeback,
all the requests in Dasty3 were using the GET method.
Therefore the information sent from the client to the
proxy was limited to 256 characters, which is the URL size
limit for some web browsers and servers. With the write-
back functionalities, however, the client sends an XML
document that is likely to exceed the URL size limit, mak-
ing the use of other HTTP methods mandatory. This rein-
forces the applicability of the choice of adopting the
RESTful standard. The communication between writeback
client and server is achieved using the DAS GFF XML for-
mat, which is defined in the DAS specification. The client
has a logical model to map the DAS GFF format when it
is reading from the writeback server, and also starts from
this model to build the XML when information is to be
sent to the server.

Results
We have developed a DAS writeback tool by extending
existing DAS clients and servers. The writeback is
included as a plug-in of Dasty3 and is integrated in the
latest implementation of MyDAS, compliant with the
current DAS 1.6 specification. The extensions performed
in Dasty3 in order to support the writeback capabilities
are divided below into reading and writing functions, i.e.
if annotations are requested or if a change/creation is
submitted, respectively:

Reading Functions
The writeback server behaves like any other DAS source
when a set of features is requested. The client decides

when and how to process this information. For the
Dasty3 writeback plug-in, the user has three different
modes to operate (Figure 2A):
Disable the writeback display
The first mode essentially ignores the writeback infor-
mation and in this case Dasty3 just collects and displays
the original information from the sources. This is useful
for the users who do not want the collaborative infor-
mation displayed.
Writeback as an extra source
Dasty3 can display the information coming from the
writeback server as an extra data source. In this case, all
the writeback features will be displayed as new tracks,
allowing the users to compare the original annotation
with the last version of it in the writeback server. Figure
2D shows an example of this display.
Merging the writeback with the sources
In this mode, the writeback annotations overwrite the
original ones in the graphic. This generates a similar
graphic for features as normally rendered by Dasty3, but
incorporating the modifications that the writeback ser-
ver contains. The features tagged as deleted will be
transparent in the graphic, and just its border will be
visible.

Writing Functions
After authentication, the writeback extension for Dasty3
allows users to Create, Update and Delete features. The
internal pop-up windows of Dasty3 are reused in order
to display the tools to execute these functions in the
same context as the selected feature’s information. With
this goal in mind, a set of tabs was added to these win-
dows. Figure 3 shows the contents of the four different
tabs that the user can choose after clicking on a particu-
lar feature. The first tab (Figure 3A) is the detailed
information that Dasty3 provides to the user for the
chosen feature, the other three tabs give access to the
writeback capabilities. Below is a description of how the
writeback capabilities are made available in Dasty3:
Update
Figure 3B is a screenshot of the edit tab; in it the user
has the same detailed information, but in a form that
allows the user to change the values of any field. When
the information is sent to the server, it is stored as the
current version of the feature and it will be the one to
which the server returns for future requests. Another
way to edit a feature is through the history tab (Figure
3D). In this case, the user can choose to roll-back to a
previous version.
Create
In the top-right corner of the writeback panel (Figure 2B)
there is a form to add a new feature, which is similar to
the one in Figure 3B but without any content in the
fields. The user enters the details of the feature in the

Salazar et al. BMC Bioinformatics 2011, 12:143
http://www.biomedcentral.com/1471-2105/12/143

Page 4 of 8



form, Dasty3 sends them to the writeback server and a
new feature is created.
Delete
Figure 3C shows a confirmation message for the dele-
tion of the feature. Features are not really deleted from
the server, rather they are tagged in such a way that this
information can be used to hide the features in the
merge method. The list of current deleted features is
displayed in the writeback panel.

User Interface Aids
Version 1.6 http://www.biodas.org/documents/spec-1.6.
html of the DAS specification recommends the use of
ontologies in order to standardise both types and evidence
codes, and make the task of integrating annotation from
several servers easier. The recommendation says that for
the values of the attribute cvId and the content of the ele-
ment TYPE, the SO (Sequence Types and Features), MOD
(Protein Modifications) and BS (BioSapiens Annotations)
ontologies should be used. In the case of the method, the
ontology to use is the Evidence Code Ontology. [15].
In order to promote the use of those ontologies, a list

of suggested terms from the corresponding ontology is

displayed in the edit form (Figure 3B) while the user is
writing in the fields “type” and “method”.
The same form has a set of logic validations to ensure

that the coordinates of the annotation are not out of the
limit imposed for the size of the protein, and that the
start amino acid is before the end amino acid. Finally,
the orientation and phase components of a DAS feature
are defined by default to Non Applicable because these
genomic-specific fields do not apply to annotations of
proteins.
A basic module to allow for user authentication

through a login and password was added in the write-
back panel (Figure 2A). Any writing function is condi-
tional on prior login and password validation. The
reading functionality does not require authentication.

Usability Experiment
At the conclusion of two cycles of design, implementa-
tion and feedback from the DAS community, we sub-
jected the system to a final formative evaluation by
conducting a usability experiment. The technique used
to design such an experiment was Constructive Interac-
tion [17]. Basically, Constructive Interaction consists of

Figure 2 Dasty3 + Writeback. Snapshot of Dasty3+Writeback highlighting some of the modified/added features on dasty3 to support the
writeback capabilities.

Salazar et al. BMC Bioinformatics 2011, 12:143
http://www.biomedcentral.com/1471-2105/12/143

Page 5 of 8

http://www.biodas.org/documents/spec-1.6.html
http://www.biodas.org/documents/spec-1.6.html


executing the tasks in dyads, one of the users is the
actor (who has control of the computer) and the other
is the co-actor. The instructions for the test subjects
indicate that they consult each other before any action
and avoid contact with the facilitator. In this way the
ideas are expressed more naturally as a normal commu-
nication between the parts of the dyad.
The experiment was executed with the participation of

eight postgraduate students organised in dyads. The
annotation tasks were based on data extracted from a
published paper, demonstrating that the system can be
used for a real biological use case. All the sessions were
recorded and analysed for further improving the write-
back extension. Details of the usability experiment are
described in [18].
The experiment allowed us to capture fifteen usability

issues. Only one was classified as a Major Problem(In
Dasty, the ‘positional features’ table was not automati-
cally updated after the first added annotation) and five as
a Minor Problems. There were two positive findings, two
bugs and five suggestions. A detailed list of the findings
is included in the Additional File 2. All the problems and
bugs were solved for the final version of the application,
three of the suggestions were implemented and the
remaining two were postponed to a future maintenance
cycle. The major outcome of the experiment is that the
users were able to use the writeback functionalities

without extensive training, giving us two important
things to highlight: Firstly, both server and client function
according to the user’s expectations, and secondly, the
functionalities are intuitive enough to allow untrained
users to solve protein annotation tasks.

Discussion
At the time of writing this manuscript, the DAS registry
reports over 1200 data sources. This illustrates the high
adoption of DAS, making it the perfect environment for
a collaborative approach as presented here. The write-
back specification is now an official extension in DAS
and is considered to be a part of the core protocol. The
developed software has been well received by the com-
munity. On the one hand, the server implementation is
now part of the official development of one of the more
stable DAS servers (myDas); and, on the other hand, the
client is included in the set of plugins of Dasty3, which
is a widely used DAS client. However, the success or
failure of any collaborative system is recognized through
the interaction of real users with the system, and addi-
tional time is required to be determine this. We hope
this system will contribute to creation of a more pub-
licly accessible, easily updatable, and reliable protein
knowledge base. The experiment vindicated our User
Centered Approach. The one major issue has been cor-
rected, and in general we demonstrated the usefulness
of our concept. All the groups that participated in the
experiment were able to Create/Update DAS annota-
tions from a published paper, so we consider this to
demonstrate that our system is effective, usable and will
provide the appropriate environment for the creation
and development of a protein annotation community.

Conclusions
We developed a system for annotating positional fea-
tures on a protein sequence in a collaborative environ-
ment where the consumers of the information have the
option to become authors of new annotations or to edit
existing ones. From the usability experiment we learnt
that DAS Writeback provides an appropriate environ-
ment for the creation, editing and deletion of protein
annotations. Such a system can contribute to the cura-
tion of automatic annotation as a community process
and also provides a quick way to publish manual anno-
tations while these are awaiting annotation in a curated
database. The advantage of DAS Writeback over wiki-
based tools is that it enables structured, fine-grained
positional annotation of sequences using existing ontol-
ogies, rather than free text, thus ensuring addition of
annotation in a format compatible with the public
databases.
The DAS Writeback server facilitates the collabora-

tive annotation of biological sequences, particularly

Figure 3 Tabs for writeback functions in Dasty3. From left to
right: (a) Detailed information of the feature. (b) Form to edit any
detail of the feature. (c) Confirmation for deletion. (d) Writeback
history of the feature

Salazar et al. BMC Bioinformatics 2011, 12:143
http://www.biomedcentral.com/1471-2105/12/143

Page 6 of 8



proteins, within the DAS environment. An important
concept for our work is the notion of community
based annotation within the biomedical domain; shift-
ing the annotation from centralised practices to highly
distributed schemas for which the participation of the
community adds value to the data and improves its
quality. The server was tested for performance and was
found to support several concurrent users. The client
was tested for usability and was found to facilitate the
annotation process well.
An important milestone in the future is to provide an

implementation of the same technology for other types
of genetic material. For example, writeback for DNA
information or for experimental information such as
microarrays. We propose that future developments
could include the implementation of filtering by
dynamic trust rankings based on both features and
users, this may achieve a higher level of confidence in
the information of the writeback system.

Availability and requirements
Project and documentation:

• Project name: writeback
• Project home: http://code.google.com/p/writeback/
• Programming language: Java+Javascript
• License: Apache 2.0
• Any restrictions to use by non-academics: None

Server:

• Project name: MyDAS (As a data source
implementation)
• Project home page: http://code.google.com/p/
mydas/
• Operating system(s): Platform independent
• Programming language: Java
• Other requirements: Java 1.5 or higher, Tomcat 5.0
or other servlet server.
• License: Apache 2.0
• Any restrictions to use by non-academics: None

Client:

• Project name: Dasty3 (As a plug-in)
• Project home page: http://www.ebi.ac.uk/dasty/
• Project sources: http://dasty.googlecode.com/
• Operating system(s): Platform independent
• Programming language: JavaScript-HTML
• Other requirements: JavaScript enabled in the web
browser; Firefox 3.5+ is recommended
• License: Apache 2.0
• Any restrictions to use by non-academics: None

Additional material

Additional file 1: DAS GFF Example. Example of a file that follows the
DAS GFF format and can be used as input for the writeback server.

Additional file 2: Usability report. This is list of the findings of the
usability experiment for the writeback extension on Dasty.

Acknowledgements
We thank the National Bioinformatics Network of South Africa for funding
the project. RJ has been supported by European Commission “Enfin” grant,
contract number LSHG-CT-2005-518254. This work was also funded by APO-
SYS, contract number FP7-HEALTH-2007-200767. We would like to thank
Elizabeth Kelly for insightful comments on the manuscript. We are grateful
to the DAS community and the members of their mailing list, especially to
Andy Jenkinson, for their advice and suggestions during the development of
this project. This research was conducted using the resources of the
departments of Computer Science and the Computational Biology Group in
the Institute for Infectious Disease and Molecular Medicine of the University
of Cape Town.

Author details
1Computer Sciences Department, University of Cape Town, South Africa.
2Computational Biology Group, Department of Clinical Laboratory Sciences,
University of Cape Town, South Africa. 3European Bioinformatics Institute,
Hinxton, Cambridgehire, UK. 4Faculty of Languages and Literary Studies,
Bremen University, Germany.

Authors’ contributions
Critical revision of the manuscript for important intellectual input: RJ, AG,
HH, NM and EB. Technical and material support: HH, NM and EB. Study
supervision: HH, NM and EB. Study concept: GS, RJ and AG. Architectural
design: GS and EB. Software development: GS. Drafting of the manuscript:
GS. Design of the usability experiment: GS, NM and EB. All authors read and
approved the final manuscript.

Received: 8 November 2010 Accepted: 10 May 2011
Published: 10 May 2011

References
1. Doerks T, Bairoch A, Bork P: Protein annotation: detective work for

function prediction. Trends in Genetics 1998, 14(6):248-250[http://www.
sciencedirect.com/science/article/B6TCY-3TDR6JM-H/2/
14d824f09fd8b9b984999387aea84460].

2. UniProt Consortium: The Universal Protein Resource (UniProt) in 2010.
Nucleic Acids Res 2010, , 38 Database: D142-8[http://www.ncbi.nlm.nih.gov/
pubmed/19843607].

3. Bhatia U, Robison K, Gilbert; W, Klenk HP, White O, Venter JC: Dealing with
Database Explosion: A Cautionary Note. Science 1997,
276(5319):1724-1725[http://www.sciencemag.org/content/276/5319/1724.
full].

4. Mons B, Ashburner M, Chichester C, van Mulligen E, Weeber M, den
Dunnen J, van Ommen GJ, Musen M, Cockerill M, Hermjakob H, Mons A,
Packer A, Pacheco R, Lewis S, Berkeley A, Melton W, Barris N, Wales J,
Meijssen G, Moeller E, Roes P, Borner K, Bairoch A: Calling on a million
minds for community annotation in WikiProteins. Genome Biology 2008,
9(5):R89[http://genomebiology.com/2008/9/5/R89].

5. Huss IJW, Orozco C, Goodale J, Chunlei W, Batalov S, Vickers TJ, Valafar F,
Su AI: A Gene Wiki for Community Annotation of Gene Function. PLoS
Biol 2008, 6(7):e175.

6. Dowell R, Jokerst R, Day A, Eddy S, Stein L: The Distributed Annotation
System. BMC Bioinformatics 2001, 2:7[http://www.biomedcentral.com/1471-
2105/2/7].

7. Grzibovska A, Prlic A: DAS2 writeback server implementation. Master’s
thesis Chalmers University of Technology; 2008.

8. Kilov H: From semantic to object-oriented data modeling. ISCI ‘90:
Proceedings of the first international conference on systems integration on
Systems integration ‘90 Piscataway, NJ, USA: IEEE Press; 1990, 385-393.

Salazar et al. BMC Bioinformatics 2011, 12:143
http://www.biomedcentral.com/1471-2105/12/143

Page 7 of 8

http://code.google.com/p/writeback/
http://code.google.com/p/mydas/
http://code.google.com/p/mydas/
http://www.ebi.ac.uk/dasty/
http://dasty.googlecode.com/
http://www.biomedcentral.com/content/supplementary/1471-2105-12-143-S1.XML
http://www.biomedcentral.com/content/supplementary/1471-2105-12-143-S2.PDF
http://www.ncbi.nlm.nih.gov/pubmed/9635409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9635409?dopt=Abstract
http://www.sciencedirect.com/science/article/B6TCY-3TDR6JM-H/2/14d824f09fd8b9b984999387aea84460
http://www.sciencedirect.com/science/article/B6TCY-3TDR6JM-H/2/14d824f09fd8b9b984999387aea84460
http://www.sciencedirect.com/science/article/B6TCY-3TDR6JM-H/2/14d824f09fd8b9b984999387aea84460
http://www.ncbi.nlm.nih.gov/pubmed/19843607
http://www.ncbi.nlm.nih.gov/pubmed/19843607
http://www.ncbi.nlm.nih.gov/pubmed/9206831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9206831?dopt=Abstract
http://www.sciencemag.org/content/276/5319/1724.full
http://www.sciencemag.org/content/276/5319/1724.full
http://www.ncbi.nlm.nih.gov/pubmed/18507872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18507872?dopt=Abstract
http://genomebiology.com/2008/9/5/R89
http://www.ncbi.nlm.nih.gov/pubmed/18613750?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11667947?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11667947?dopt=Abstract
http://www.biomedcentral.com/1471-2105/2/7
http://www.biomedcentral.com/1471-2105/2/7
http://www.ncbi.nlm.nih.gov/pubmed/21649922?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21551144?dopt=Abstract


9. Pautasso C, Zimmermann O, Leymann F: Restful web services vs. “big"’
web services: making the right architectural decision. WWW ‘08:
Proceeding of the 17th international conference on World Wide Web New
York, NY, USA: ACM; 2008, 805-814.

10. Vinoski S: Serendipitous Reuse. IEEE Internet Computing 2008, 12:84-87.
11. Gregorio J, de Hora B: The Atom Publishing Protocol. Tech. rep., NewBay

Software; 2007 [http://bitworking.org/projects/atom/rfc5023.html].
12. Google: Google Data Api Protocol. Tech. rep., Google; 2009 [http://code.

google.com/apis/gdata/].
13. Jones P, Quinn AF: MyDAS. 2008 [http://code.google.com/p/mydas/].
14. Bauer C, King G: Java Persistence with Hibernate. Manning Publications

2006.
15. Jenkinson A, Albrecht M, Birney E, Blankenburg H, Down T, Finn R,

Hermjakob H, Hubbard T, Jimenez R, Jones P, Kahari A, Kulesha E, Macias J,
Reeves G, Prlic A: Integrating biological data - the Distributed Annotation
System. BMC Bioinformatics 2008, 9(Suppl 8):S3[http://www.biomedcentral.
com/1471-2105/9/S8/S3].

16. Jimenez RC, Quinn AF, Garcia A, Labarga A, O’Neill K, Martinez F, Salazar GA,
Hermjakob H: Dasty2, an Ajax protein DAS client. Bioinformatics 2008,
24(18):2119-2121[http://bioinformatics.oxfordjournals.org/cgi/content/
abstract/24/18/2119].

17. Miyake N: Constructive interaction and the iterative process of
understanding. Cognitive Science 1986, 10(2):151-177[http://www.
sciencedirect.com/science/article/B6W48-4F1SFHJ-2/2/
bed223337d693c5494d33a1f88887ecf].

18. Salazar G, Mulder N, Blake E: DAS Writeback: A Collaborative Annotation
System. Master’s thesis University of Cape Town; 2010 [http://pubs.cs.uct.ac.
za/archive/00000609/].

doi:10.1186/1471-2105-12-143
Cite this article as: Salazar et al.: DAS Writeback: A Collaborative
Annotation System. BMC Bioinformatics 2011 12:143.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Salazar et al. BMC Bioinformatics 2011, 12:143
http://www.biomedcentral.com/1471-2105/12/143

Page 8 of 8

http://www.ncbi.nlm.nih.gov/pubmed/21649883?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21649883?dopt=Abstract
http://bitworking.org/projects/atom/rfc5023.html
http://code.google.com/apis/gdata/
http://code.google.com/apis/gdata/
http://code.google.com/p/mydas/
http://www.ncbi.nlm.nih.gov/pubmed/19091026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19091026?dopt=Abstract
http://www.biomedcentral.com/1471-2105/9/S8/S3
http://www.biomedcentral.com/1471-2105/9/S8/S3
http://www.ncbi.nlm.nih.gov/pubmed/18694895?dopt=Abstract
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/24/18/2119
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/24/18/2119
http://www.sciencedirect.com/science/article/B6W48-4F1SFHJ-2/2/bed223337d693c5494d33a1f88887ecf
http://www.sciencedirect.com/science/article/B6W48-4F1SFHJ-2/2/bed223337d693c5494d33a1f88887ecf
http://www.sciencedirect.com/science/article/B6W48-4F1SFHJ-2/2/bed223337d693c5494d33a1f88887ecf
http://www.ncbi.nlm.nih.gov/pubmed/21649922?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21649922?dopt=Abstract
http://pubs.cs.uct.ac.za/archive/00000609/
http://pubs.cs.uct.ac.za/archive/00000609/

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Architecture
	Protocol Extension
	Server
	Client

	Results
	Reading Functions
	Disable the writeback display
	Writeback as an extra source
	Merging the writeback with the sources

	Writing Functions
	Update
	Create
	Delete

	User Interface Aids
	Usability Experiment

	Discussion
	Conclusions
	Availability and requirements
	Acknowledgements
	Author details
	Authors' contributions
	References

