
SOFTWARE Open Access

Protein alignment algorithms with an efficient
backtracking routine on multiple GPUs
Jacek Blazewicz1,2, Wojciech Frohmberg1, Michal Kierzynka1,4, Erwin Pesch3 and Pawel Wojciechowski1*

Abstract

Background: Pairwise sequence alignment methods are widely used in biological research. The increasing number
of sequences is perceived as one of the upcoming challenges for sequence alignment methods in the nearest
future. To overcome this challenge several GPU (Graphics Processing Unit) computing approaches have been
proposed lately. These solutions show a great potential of a GPU platform but in most cases address the problem
of sequence database scanning and computing only the alignment score whereas the alignment itself is omitted.
Thus, the need arose to implement the global and semiglobal Needleman-Wunsch, and Smith-Waterman
algorithms with a backtracking procedure which is needed to construct the alignment.

Results: In this paper we present the solution that performs the alignment of every given sequence pair, which is
a required step for progressive multiple sequence alignment methods, as well as for DNA recognition at the DNA
assembly stage. Performed tests show that the implementation, with performance up to 6.3 GCUPS on a single
GPU for affine gap penalties, is very efficient in comparison to other CPU and GPU-based solutions. Moreover,
multiple GPUs support with load balancing makes the application very scalable.

Conclusions: The article shows that the backtracking procedure of the sequence alignment algorithms may be
designed to fit in with the GPU architecture. Therefore, our algorithm, apart from scores, is able to compute
pairwise alignments. This opens a wide range of new possibilities, allowing other methods from the area of
molecular biology to take advantage of the new computational architecture. Performed tests show that the
efficiency of the implementation is excellent. Moreover, the speed of our GPU-based algorithms can be almost
linearly increased when using more than one graphics card.

Background
The most important and the most frequently used algo-
rithms in computational biology are probably the Needle-
man-Wunsch [1] and the Smith-Waterman [2] algorithms
for global and local pairwise alignments of DNA (and pro-
tein) sequences, respectively. These algorithms are based
on dynamic programming. As a result, one gets an optimal
alignment, but the approach requires a lot of time and
memory. The problem becomes more serious when pair-
wise alignments have to be computed for a set of thou-
sands of sequences (a common case at the assembly stage
of DNA recognition [3-5]). A natural extension of the
pairwise alignment is a multiple sequence alignment
(MSA) problem, which is much more complex. Theoreti-
cally, the MSA problem can be also solved by dynamic

programming, but it was proved that for a Sum-of-
Pairs score this problem is NP-hard [6]. Thus, heuristic
approaches are frequently used (see review [7]). The most
common ones, based on the so called progressive algo-
rithm, require the alignment of every input sequence pair.
Sometimes, such pairwise alignments are performed with
highly specialized methods like in case of [8,9], but often it
is the Needleman-Wunsch or Smith-Waterman algorithm
[10,11] resulting in time-consuming methods. Hence, the
increasing number of sequences is perceived as one of the
upcoming challenges for the MSA problem in the nearest
future [12].
Recently, modern graphics processing units (GPUs) have

been widely exploited for solving many bioinformatic pro-
blems. An example may be the problem of scanning data-
bases for sequences similar to a given query sequence. A
few efficient implementations addressing this problem have
been developed (see [13-16]). However, it should be

* Correspondence: Pawel.Wojciechowski@cs.put.poznan.pl
1Poznań University of Technology, Poznań, Poland
Full list of author information is available at the end of the article

Blazewicz et al. BMC Bioinformatics 2011, 12:181
http://www.biomedcentral.com/1471-2105/12/181

© 2011 Blazewicz et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:Pawel.Wojciechowski@cs.put.poznan.pl
http://creativecommons.org/licenses/by/2.0

stressed that scanning a database is considerably different
from aligning every possible pair of sequences from a given
input set. Both problems, seemingly the same, vary in many
aspects, especially in case of low-level GPU optimizations.
Moreover, it is worth noting that all the methods men-
tioned above compute only the alignment score, not the
alignment itself. Yet, many real-life applications require also
the alignment to be computed. One of the known
approaches, by Khajeh-Saeed A. et al. [17], partially solves
this problem but the application has been designed for a
very specific benchmark. Additionally, the method adopted
for backtracking procedure is not clear and not very effi-
cient either. Hence, the software is not applicable in prac-
tice, e.g. to the MSA or the DNA assembly problem.
However, the idea presented by Liu Y. et al. [18] seems to
be a quite successful approach to the former of these two
problems. The proposed solution uses the Myers-Miller
algorithm [19] to compute the alignment. The main advan-
tage of this algorithm is the possibility of aligning very long
sequences as the backtracking procedure works in linear
space. The main drawback, on the other hand, is the neces-
sity of conducting additional computations - the backtrack-
ing routine has quadratic computational complexity here.
But yet, many practical applications require dealing with a
large number of short sequences, e.g. [20]. In these pro-
blems a special emphasis should be put on efficient proces-
sing without any redundant or repeated computations and
not necessarily on saving memory.
The main goal of this work derives from the discussion

above. It is a construction of GPU-based dynamic pro-
graming algorithms for pairwise alignment. One difference
between our approach and the previous ones is that we
have optimized the algorithm for aligning every sequence
with each other from a given input set. The second differ-
ence is that our method, unlike others, performs the back-
tracking procedure in linear time. Although special data
structures are used here, no redundant computations are
needed. In contrast to the Myers-Miller algorithm, it was
designed for the GPU architecture. Moreover, the three
basic pairwise alignment algorithms, i.e. local, global and
semiglobal, differ only in details, so all of them have been
implemented. As a result we got a valuable tool for multi-
sequence pairwise alignments which is fast and can be run
on a common personal computer equipped with NVIDIA
GPU (G80, GT200 or Fermi). Extensive computational
tests show its advantage over CPU-based solutions like the
Emboss package or the highly optimized Farrar’s imple-
mentation. Moreover, our task manager is able to use
more than one GPU. Performed tests show that the multi-
GPU support influences the execution time considerably.

GPGPU and the CUDA programming model
There are a few substantial differences between CPU and
GPU architectures that make a GPU a more powerful

tool for some applications. The same differences cause
some difficulties in programming of graphics cards.
Firstly, GPUs have many more cores, which are the main
computational units, e.g. NVIDIA GeForce 280 has 240
cores. Secondly, there is much less cache memory avail-
able on the GPU. Moreover, the cache memory on the
graphics card is not managed automatically, but by a
programmer.
Such an architecture gives opportunities to utilize the

hardware more efficiently. On the other hand, writing
parallel algorithms on GPU is more time-consuming,
because it requires in-depth knowledge and understanding
of the hardware. As a result the algorithm can be much
faster than its CPU version. Although there are a few
GPGPU (general-purpose computing on graphics proces-
sing units) technologies like ATI Stream [21] or OpenCL
[22] on the market, one of them - CUDA [23], is a bit
more established than others. Our implementation of
alignment algorithms was done using this technology. The
CUDA environment is an extension of C/C++ program-
ming languages which enables programmers to access the
resources of the GPU.
To understand the essentials of CUDA, one has to be

aware of different types of available memory. The main
differences between these memory types have been
shown in Table 1. The proper usage of memory is the
key to good performance. However, not only the type of
memory used is important, but also their correct usage.
Different kinds of memory have different access patterns.
It means that for instance, the order of reading/writing
data can be also crucial [24]. Because RAM (also called
the main or global memory) is much slower than the
memory on the chip, most of the CUDA programs follow
this simple rule: fetched data from the global memory is
processed locally as much as possible, using registers,
shared memory and caches, then the results are written
back to the global memory. In this way one can limit
expensive data transfers from or to the global memory.
Another significant property of CUDA-enabled graphics

cards is that the GPU consists of many multiprocessors
and each multiprocessor has a number of cores working

Table 1 Differences between memory types in CUDA

Memory type Located on chip Cached Access Scope

Registers yes n/a R/W Thread

Local no no/yes* R/W Thread

Shared yes n/a R/W Block

Global no no/yes* R/W Program

Constant no yes R Program

Texture no yes R Program

Differences between memory types in CUDA (n/a stands for „not applicable”,
letter R for „read” and letter W for „write”, * - caching depends on compute
capability). For more information see CUDA Best Practices Guide [24].

Blazewicz et al. BMC Bioinformatics 2011, 12:181
http://www.biomedcentral.com/1471-2105/12/181

Page 2 of 17

as one or more SIMT (single instruction multiple thread)
units. One such unit is able to execute one and only one
instruction at the same time, but in many threads and on
various parts of data. As a result, during the process of
designing an algorithm, one must take this into
consideration.
Being conscious of the architecture described briefly

above, one can design and implement alignment algo-
rithms efficiently.

Algorithms for pairwise sequence alignment
There are three basic algorithms for performing pairwise
sequence alignment: Needleman-Wunsch [1] for com-
puting global alignment, its modification for semiglobal
alignment and Smith-Waterman [2] for computing local
alignment. All these algorithms are based on the idea of
dynamic programming and to some extent work analo-
gically. Taking into consideration Gotoh’s enhancement
[25], the algorithms are described briefly below.
Let us define:

• A - a set of characters of nucleic acids or proteins,
• si - the i-th sequence,
• si(k) Î A - k-th character of the i-th sequence,
• SM - substitution matrix,
• SM(ci Î A, cj Î A) - substitution score for ci and cj
pair,
• Gopen - penalty for opening a gap,
• Gext - penalty for extending a gap,
• H - a matrix with partial alignment scores,
• E - a matrix with partial alignment scores indicat-
ing vertical gap continuation,
• F - a matrix with partial alignment scores indicat-
ing horizontal gap continuation,

Needleman-Wunsch algorithm
To compute the alignment of two sequences, the algo-
rithm (called later NW algorithm) has to fill the matrix
H according to the similarity function. The similarity
function determines a score of substitution between two
residues. This relation is given in a substitution matrix,
like one from BLOSUM [26] or PAM [27] families. The
matrix H also takes gap penalties into account,
described by Gopen and Gext. The size of the matrix H is
(n + 1) × (m + 1), where n is the number of residues in
the first sequence s1 and m - in the second sequence s2.
The matrix H is filled using the following formulae:

Hi,j = max

⎧⎪⎨
⎪⎩

Ei,j
Fi,j

Hi−1,j−1 + SM(s1(i), s2(j))

⎫⎪⎬
⎪⎭ (1)

Ei,j = max
{

Ei,j−1 − Gext

Hi,j−1 − Gopen

}
(2)

Fi,j = max
{

Fi−1,j − Gext

Hi−1,j − Gopen

}
(3)

where i = 1...n and j = 1...m.
The first row and the first column are filled according

to the following formulae:

Hi,0 = −i · Gext − Gopen (4)

H0,j = −j · Gext − Gopen (5)

Moreover, the E and F matrices are initialized by put-
ting -∞ value into the first row and column. The result
for this part of the algorithm is the value of similarity,
so called score. Let us denote the coordinates of the cell
with the similarity score by (i*, j*). In case of the NW
algorithm, this value can be found in the H(n, m) cell of
the matrix H.
The goal of the second stage - backtracking, is to

retrieve the final alignment of two sequences. The idea
of backtracking is that the algorithm performs backward
moves starting from the (i*, j*) cell in the matrix H until
it reaches the (0, 0) cell. Every time when the algorithm
moves to the upper cell, a gap character is inserted into
the sequence s1 in the final alignment. If the algorithm
moves left, a gap is added analogically to the sequence
s2, and finally the diagonal move means that the corre-
sponding residues are aligned. The backtracking proce-
dure is deeply analyzed in Section “The idea of
backtracking procedure and GPU limitations”.
The semiglobal pairwise alignment
A semiglobal version of dynamic programming for pair-
wise alignment differs from the previous one in three
points. The first one is the way how the matrix H is
initialized. For semiglobal alignment the formulae (4)
and (5) should be replaced respectively by:

Hi,0 = 0 (6)

H0,j = 0 (7)

The second difference concerns the coordinates of the
cell where the similarity score can be found in the
matrix H. For semiglobal alignment this cell is the one
with the highest value from the last row or column of
the matrix H.
The last difference involves the stop criterion for the

backtracking procedure. In this case backtracking is fin-
ished when the cell (k, 0) or (0, l) is reached, where k =
0, ..., n and l = 0, ..., m.
Smith-Waterman algorithm for the local pairwise alignment
The Smith-Waterman algorithm (called later SW algo-
rithm) also differs from the Needleman-Wunsch algo-
rithm in three points. The first one is again the way of
initializing the matrix H. The initializing values should

Blazewicz et al. BMC Bioinformatics 2011, 12:181
http://www.biomedcentral.com/1471-2105/12/181

Page 3 of 17

be the same as in the semiglobal version of the
algorithm.
The second difference concerns the formulae describ-

ing the process of filling the matrix H. The formula (1)
should be replaced by the following one:

Hi,j = max

⎧⎪⎪⎨
⎪⎪⎩

0
Ei,j
Fi,j

Hi−1,j−1 + SM(s1(i), s2(j))

⎫⎪⎪⎬
⎪⎪⎭ (8)

where i = 1...n and j = 1...m.
The next difference covers the coordinates of the cell

with the final score for the local alignment. In this case
the (i*, j*) cell is the one with the highest value within
the entire matrix H.
The last difference concerns the stop criterion of the

backtracking procedure. The Smith-Waterman algo-
rithm is finished when a cell with zero value is reached.

Implementation
The idea of backtracking procedure and GPU limitations
To obtain the alignment efficiently four boolean
matrices have been defined in our approach, each of
size (n + 1) × (m + 1). The purpose of these matrices is
to indicate the proper direction of backward moves for
the algorithm being at a certain position during the pro-
cess of backtracking. Although their memory usage is
quadratic, the advantage is that they enable to perform
the backtracking procedure in a linear time, in contrast
to the Mayers and Miller’s idea.
The backtracking matrices are defined as follows:

• Cup - indicates whether the algorithm should con-
tinue moving up,
• Cleft - indicates whether the algorithm should con-
tinue moving left,
• Bup - indicates whether the algorithm should move
up, if it does not continue its way up or left,
• Bleft - indicates whether the algorithm should move
left, if it does not continue its way up or left.

Two special cases should be stressed:

• if Cup = false, Cleft = false, Bup = true and Bleft =
true then the algorithm should move to the diagonal
cell in the up left direction,
• if Cup, Cleft, Bup and Bleft have logical value false
then the backtracking procedure is finished.

In the case of global and semiglobal alignment algo-
rithms, the matrices are filled according to the following
formulae:

Cup
i,j =

{
true if Ei,j = Ei,j−1 − Gext

false else
(9)

Cleft
i,j =

{
true if Fi,j = Fi−1,j − Gext

false else
(10)

Bup
i,j =

⎧⎨
⎩
true ifHi,j = Ei,j or

Hi,j = SM(s1(i), s2(j)) +Hi−1,j−1

false else
(11)

Bleft
i,j =

⎧⎨
⎩
true if (Hi,j = Fi,j and Hi,j �= Ei,j) or

Hi,j = SM(s1(i), s2(j)) +Hi−1,j−1

false else
(12)

The additional condition of Hi,j ≠ Ei,j in the formula
(12), as compared to the formula (11), prevents the algo-
rithm from an ambiguous situation, when both direc-
tions, up and left, are equally good. In this case, to
avoid non-deterministic behavior, the algorithm should
prefer only one, predefined direction.
For the local alignment algorithm, the Cup and Cleft

matrices are filled according to formulae (9) and (10),
respectively. However, the Bup and Bleft matrices are
filled using the following formulae:

Bup
i,j =

⎧⎪⎪⎨
⎪⎪⎩

true if(Hi,j = Ei,j or
Hi,j = SM(s1(i), s2(j)) +Hi−1,j−1) and
Hi,j > 0

false else

(13)

Bleft
i,j =

⎧⎪⎪⎨
⎪⎪⎩

true if((Hi,j = Fi,j and Hi,j �= Ei,j) or
Hi,j = SM(s1(i), s2(j)) +Hi−1,j−1) and
Hi,j > 0

false else

(14)

An important issue, one should take into considera-
tion, is that during the process of filling the matrix H
any cell value can be computed only if the values of the
left, above and diagonal cells are known. It means that
only these cells that are on the same anti-diagonal can
be processed simultaneously. As a result, there is not
much to parallelize (in the context of massively parallel
GPU architecture) in a single run of NW or SW algo-
rithm. However, progressive multiple sequence align-
ment algorithms require aligning of many sequences
(every sequence with each other). Our idea was to
design an algorithm for efficient execution of many pair-
wise alignment instances running concurrently. To uti-
lize the GPU resources properly one has to load it with
a sufficient amount of work. To fulfill this requirement
at least 80 × 80 NW/SW instances should be computed
concurrently (this number will be explained in Section
“Implementation of the algorithms”). The problem to

Blazewicz et al. BMC Bioinformatics 2011, 12:181
http://www.biomedcentral.com/1471-2105/12/181

Page 4 of 17

overcome was that the amount of available RAM on
graphics cards was, for this purpose, relatively small (e.g.
the GeForce GTX 280 usually has 1 GB of RAM). In
fact, the H, E and F matrices do not have to be kept
entirely in RAM (see Section “Implementation of the
algorithms”). However, the backtracking tables (Cup,
Cleft, Bup, Bleft) must be kept in the global memory.
Hence, they would take a lot of memory space if they
were held in normal C/C++ boolean arrays, e.g. for
sequences with lengths of 500 residues one would need
80 × 80 × 5002 × 4 bytes i.e. 6103.5 MB only for back-
tracking arrays. Thus, a special emphasis has been put
to make this figure smaller, so that the algorithm can be
run on any CUDA-capable device.

Implementation of the algorithms
All the algorithms in our implementation, namely the
NW algorithm, its semiglobal version and the SW algo-
rithm, have a few input parameters such as a substitu-
tion matrix, Gopen and Gext values, a file in fasta format
with sequences to be aligned, etc. When the algorithm
is launched, it performs an alignment of every given
sequence with each other. The result of the algorithm
consists of the score and the alignment for each pair of
sequences.
Let S be the set of input sequences. The total number

N of sequences’ pairs to be aligned is given by the fol-
lowing formula:

N =
| S |(| S | − 1)

2
(15)

Because the problem of aligning many sequences
simultaneously is a memory-consuming task, it has been
split into subproblems. The whole matrix of tasks,
where a single task is a pairwise alignment, was divided
into smaller matrices, called windows (see Figure 1). The
size of each window, denoted by window size, is a trade-
off between the amount of global memory required and
the number of tasks running concurrently. Obviously,
the global memory is limited and the number of tasks
running concurrently is directly connected with the effi-
ciency. Performed tests showed that a good value for
the window size parameter is 80 - this number can vary
depending on the hardware. The vast majority of mem-
ory allocated by the algorithm is used for backtracking
matrices. Therefore, one of the most significant pro-
blems was to store them properly. It is crucial to pack
backtracking matrices into as small memory space as
possible. To achieve this, any single cell of previously
defined boolean matrices (Cup, Cleft, Bup, Bleft) is repre-
sented by one bit. Hence, in one 32-bit memory word, a
total of 32 values can be stored. These enhancements,
i.e. windowing and backtracking matrices with their

binary representations, enable the algorithm to run on
any CUDA-capable device.
One window can be considered as a grid consisting of

constant-sized blocks, as shown in Figure 1. Any single
window is executed entirely on one GPU. Many win-
dows, though, can be executed on many different GPUs.
The block size is set to 16, because of our low-level opti-
mizations of the algorithm. It means that in one block
there are 16 · 16 = 256 threads. Each thread is responsi-
ble for aligning one pair of sequences. Although the
window size value must be divisible by the block size,
the algorithm ensures that all input sequences will be
aligned, despite of their number. Execution of a block is
over if its last thread finishes. Hence, to fully utilize the
hardware resources, the lengths of all of the sequences
within a block should be similar. The same applies to
any window and its blocks. Therefore, the input
sequences are sorted from the longest to the shortest
one in the preprocessing step. This enhancement
improves the algorithm performance significantly.
All alignment algorithms are divided into two main

procedures, called kernels. The first kernel computes the
alignment score and fills the backtracking matrices, the
second one performs the backtracking stage. In the first
kernel every thread fills its H, E and F matrices as well as
its backtracking arrays Cup, Cleft, Bup, Bleft horizontally. In
each iteration a total of eight cells are computed, as
shown in Figure 2. The global memory is accessed at the
beginning of the iteration (when one element of the H
and E matrices is read) and at the end (when the results,
i.e. one element of the H and E matrices, and eight

Figure 1 Division of the problem. Division of the problem into
subproblems called windows and blocks. The input sequences are
sorted from the longest to the shortest one.

Blazewicz et al. BMC Bioinformatics 2011, 12:181
http://www.biomedcentral.com/1471-2105/12/181

Page 5 of 17

elements of backtracking arrays, are written back). A pair
of H and E elements are stored together as one 32-bit
word.
Also the elements of backtracking arrays are stored in

a 32-bit word - eight elements in each of four matrices
give totally 32 bits. Moreover, one can notice that the
elements of the matrix F do not have to be transferred
from/to the global memory, because they can be stored
in the fast, shared memory. Although utilization of the
shared memory greatly speeds up the algorithm, not all
the solutions, e.g. Manavski et al. [13], leverage its
potential. Additionally, in our implementation the ele-
ments of the substitution matrix are stored in the con-
stant memory and the sequences are stored as a texture.
As a result, to process eight elements of the dynamic
programming matrix one 32-bit word is read from the
slow, global memory and two 32-bit words are written
back. Apart from this all the operations are performed
using registers, shared memory, cached constant mem-
ory and textures. The pseudocode of the first kernel has
been shown in Figure 3.
The idea of processing the dynamic programming

matrix in vectors of eight elements in the first kernel is
similar to the one proposed by Liu Y. et al. in
CUDASW++ [15]. However, CUDASW++ kernel per-
forms a database scan and, as such, takes advantage of
storing the query sequence in the constant memory
what results in significant performance boost. This idea
was further exploited in CUDASW++2.0 [16] by using
so called query profile. These improvements are not
applicable for our solution in which there is no single
query sequence that could be effectively shared across
all the threads.
The second stage of the algorithm - backtracking, is

executed by the second kernel. Also in this case, one
thread is responsible for processing of only one

alignment. The kernel starts from the (i*, j*) cell, com-
puted in the first stage, and performs the up, left or
diagonal moves, depending on the backtracking
matrices, until the stop condition is fulfilled. When the
algorithm moves up, the elements of Cup, Cleft, Bup and
Bleft matrices do not have to be read from the global
memory, because in most cases, they are already in reg-
isters - one 32-bit word contains the information about
eight elements of backtracking arrays. However, when
the algorithm moves left or diagonal, one word is read
from the global memory. This kernel, launched in grids
of blocks, produces the final alignments of every
sequence with each other. Its pseudocode has been
shown in Figure 4. The second stage of the algorithm is
very quick and usually comprises less than 1 percent of
total runtime.
The advantage of using the backtracking arrays is that

the backtracking stage can be performed very quickly in
a linear time leading to very good solutions for short and
medium-length sequences. However, its main drawback
is quadratic memory complexity, discussed in Section
“The idea of backtracking procedure and GPU limita-
tions”. Thus, the question is: what is the length of the
longest sequences that can be processed by our program?
Table 2 shows the maximum lengths of sequences, that
can be aligned by the algorithm, depending on the
amount of RAM available on the graphics card and the
value of window size parameter. E.g. to utilize the
resources of the GeForce GTX 280 with 1 GB of RAM
properly, it is sufficient to set window size parameter to
80. It means that the input sequences, regardless of their
number, can be as long as about 547 residues each. Pro-
cessing of longer sequences is also possible, but the win-
dow size parameter should be decreased, e.g. the proper
window size value for sequences with the length of 900
residues is 48. Although this change will have an influ-
ence on the overall performance of the algorithm, its
speed may be still satisfactory. Taking this into consid-
eration, we can conclude that the algorithm can process
sequences with reasonable length. On the other hand,
while aligning short sequences, one can try to increase
the value of window size. This may improve the algo-
rithm’s performance.
Bearing in mind, that nowadays many computer sys-

tems are equipped with more than one graphics card,
we have designed and implemented a multi-GPU sup-
port. To ensure that all graphics cards used are equally
loaded with work, regarding to their individual speeds,
we have also implemented a task manager. Its role is to
balance work among available GPUs. First, it sorts the
tasks (here: windows) in descending order of their esti-
mated complexity. Then, the tasks are assigned consecu-
tively to any GPU that becomes idle. This type of
scheduling, i.e. largest processing time first (LPT),

Figure 2 Processing of the dynamic programming matrix.
Processing of the dynamic programming matrix. The cells are
processed horizontally in a group of eight. The cells that have
already been processed are marked as grey, cells that are currently
processed are black and cells to be processed are white.

Blazewicz et al. BMC Bioinformatics 2011, 12:181
http://www.biomedcentral.com/1471-2105/12/181

Page 6 of 17

although not optimal, ensures that the upper bound of

execution time is equal to (
4
3

− 1
3m

) · topt, where topt is

the optimal execution time and m - number of proces-
sing units [28,29]. In practice, applying LPT rule results
in very good run times.

Results
The main goal of this section is to compare the perfor-
mance of the algorithm to other state-of-the-art
approaches. However, before proceeding to the actual
tests, the measure of cell updates per second (CUPS)
should be well understood. The measure represents the

//--->

for (x = 0; x < sequenceX.length; x++)

{
H up = readFromGlobal(x); F up = readFromGlobal(x);

sequenceXElement = readFromTexture(x);

H upleft = H init; H init = H up;

unsigned int back = 0;

// |

// V

for(i = 0; i < 8; i++)

{
H left = readFromShared(i); E left = readFromShared(i);

sequenceYElement = readFromShared(i);

//reading value of substitution matrix from constant memory

similarity = readFromConstant(sequenceXElement, sequenceYElement);

E current = max(E left - gapEx, H left - gapOp);

F current = max(F up - gapEx, H up - gapOp);

H current = max(E current, F current);

H current = max(H current, H upleft + similarity);

//backtracking arrays

back <<= 1;

back |= (H_current == F current) ||

(H_current == H upleft + similarity); //if go up

back <<= 1;

back |= (H_current == E current) &&

(H_current != F current) ||

(H_current == H upleft + similarity); //if go left

back <<= 1;

back |= F_current == F up - gapEx; //if continue up

back <<= 1;

back |= E_current == E left - gapEx; //if continue left

//initialize variables for next iteration

writeToShared(H current, i); writeToShared(E current, i);

H upleft = H left; H up = H current; F up = F current;

}
writeToGlobal(H up,x); writeToGlobal(F up,x); writeToGlobal(back,x,y);

}
Figure 3 Pseudocode of the first kernel. Pseudocode of the inner loops in the first kernel. The H matrix is filled in a way specific to the NW
algorithm.

Blazewicz et al. BMC Bioinformatics 2011, 12:181
http://www.biomedcentral.com/1471-2105/12/181

Page 7 of 17

average time needed to compute one cell in the matrix
H, including the time of all side operations like compu-
tation of the values in the E and F matrices or perform-
ing the backtracking procedure. In practice, the number
of computed cells in the matrix H is divided by the
overall runtime of the algorithm. In our case it is:

∑
i∈{1,2,...,n−1}

∑
j∈{1,2,...,i} lengthi · lengthj
t · 109 [GCUPS] (16)

where n is the number of input sequences, lengthi is
the length of the i-th sequence, t represents the time in
seconds and the result is given in giga (109) CUPS.

x = sequecnceXLength;

y = sequecnceYLength;

readFromGlobal(back, x, y);

unpackCurrentElement(back, C up, C left, B up, B left);

prevDirection = DIAGONAL;

while(C up || C left || B up || B left)

{
//determining direction

if((prevDirection == UP) && (C up == true))

direction = UP;

else if((prevDirection == LEFT) && (C left == true))

direction = LEFT;

else if ((B up == true) && (B left == false))

direction = UP;

else if ((B up == false) && (B left == true))

direction = LEFT;

else //diagonal move

direction = DIAGONAL;

//performing the move

if (direction == LEFT)

{
alignmentElementX = readFromTexture(sequenceX, x);

alignmentElementY = ’-’;

x--;

}
else if (direction == UP)

{
alignmentElementX = ’-’;

alignmentElementY = readFromTexture(sequenceY, y);

y--;

}
else //diagonal move

{
alignmentElementX = readFromTexture(sequenceX, x);

alignmentElementY = readFromTexture(sequenceY, y);

x--; y--;

}

readFromGlobalIfNeeded(back, x, y);

unpackCurrentElement(back, C up, C left, B up, B left);

prevDirection = direction;

append(alignmentX, alignmentElementX);

append(alignmentY, alignmentElementY);

}
Figure 4 Pseudocode of the second kernel. Pseudocode of the backtracking kernel.

Blazewicz et al. BMC Bioinformatics 2011, 12:181
http://www.biomedcentral.com/1471-2105/12/181

Page 8 of 17

It should be stressed, however, that this measure
underestimates the performance of the algorithms with
a backtracking routine, because while the number of
cells in the matrix H does not change, the time needed
by backtracking is added.
The first implementation of the SW algorithm taking

advantage of CUDA-capable GPUs has been developed
by Manavski S. et al. [13]. The SW-CUDA algorithm run-
ning on two NVIDIA GeForce 8800GTX graphics cards
achieves its peak performance of about 3.5 GCUPS.
Another approach, developed by Ligowski L. et al. [14],
with optimized shared memory usage was able to achieve
up to 7.5 GCUPS using one and up to 14.5 GCUPS using
both GPUs of the GeForce 9800 GX2. The CUDASW++
implementation by Liu Y. et al. [15] achieves a perfor-
mance close to 10 GCUPS on a GeForce GTX 280 gra-
phics card and up to 16 GCUPS on a dual-GPU GeForce
GTX 295. This approach has been further explored by its
authors resulting in optimized SIMT and partitioned vec-
torized algorithm CUDASW++ 2.0 [16] with an astonish-
ing performance of up to 17 GCUPS on a GeForce GTX
280 and 30 GCUPS on a dual-GPU GeForce GTX 295. In
the meantime also a couple of solutions addressing the
Cell/BE [30-32] or FPGA [33,34] processors have been
developed, all showing a great potential of new comput-
ing architectures. However, all implementations men-
tioned above solve a different problem - they perform a
database scan, which is an easier problem to optimize for
a couple of reasons, e.g. the query sequence may be kept
all the time in fast on-the-chip memory. Moreover, all

mentioned approaches concentrate on computing only
the alignment score, not the alignment itself.
In search for an application to which our algorithm

could be compared, we have come across the Khajeh-
Saeed A. et al. solution [17]. This application, in one of its
configurations, is able to perform the SW algorithm
together with the backtracking stage and moreover apply
this for any possible pair of sequences from a given input
set. Thus, it is quite similar to our algorithm, but its per-
formance is rather poor. Tests shown in the article indi-
cate a performance of around 0.08 GCUPS for a GeForce
GTX295 and about 0.17 GCUPS for four such graphics
cards. Another application that performs the same compu-
tations is MSA-CUDA [18]. To be more precise, the first
step of implemented ClustalW algorithm requires every
input sequence to be aligned with each other. Unfortu-
nately, the authors have not reported how fast this step is.
Only the overall MSA times have been presented. More-
over, although the algorithm of Myers and Miller has been
applied as a backtracking routine, sequences up to only
around 860 residues have been tested in the article.
Because the application is not available, we could not
include it in our comparison. Since the number of state-
of-the-art applications performing a backtracking proce-
dure is very limited, we have decided to compare our
algorithm to score-only implementations. In order to
make them more similar to our approach, the score in a
reference application should be calculated for any pair of
sequences from a given input set. This assumption, how-
ever, ruins the performance of all GPU-based database
scan solutions. In this case, they would have to be
launched n - 1 times, where n is the number of input
sequences, each time with decreased size of the database.
Obviously, a good parallelism with a small database cannot
be obtained for these algorithms. Hence, it would be unfair
to include such tests in the paper. Instead, we decided to
make use of a well-established algorithm of Farrar M. [35]
which is a CPU-based, highly optimized database scan
method. Yet, because a single run of the Smith-Waterman
algorithm for two sequences is parallelized here, it can be
easily modified into a version that computes a score for
each pair of sequences without any loss of its performance.
A detailed description of such a modification is provided is
the next subsection.

Comparison to the Farrar’s implementation
In this test our algorithm is compared to the Farrar’s
implementation of the Smith-Waterman algorithm [35].
Farrar’s approach utilizes the set of SSE2 instructions
available in modern CPUs which makes the algorithm
very efficient. The strength of the method does not rely
on the great number of input sequences which can be
processed simultaneously, but on SIMD operations per-
formed within a single run of the SW algorithm.

Table 2 The maximum sequence length depending on
the GPU RAM and window size parameter

window size 6 GB 4 GB 2 GB 1 GB 512 MB

16 7036 5721 3994 2751 1836

32 3518 2860 1996 1374 916

48 2345 1906 1330 915 609

64 1758 1429 997 685 455

80 1406 1143 796 547 362

96 1171 951 663 454 300

112 1003 815 567 388 255

128 877 712 495 338 221

144 779 633 439 299 194

160 701 569 394 268 172

176 637 516 358 242 155

192 583 473 327 220 139

208 538 436 301 202 126

224 499 404 278 186 115

240 465 376 259 172 105

Estimated length of the sequences that can be processed by the algorithm
depending on the amount of the global memory (GPU RAM) and the window
size parameter.

Blazewicz et al. BMC Bioinformatics 2011, 12:181
http://www.biomedcentral.com/1471-2105/12/181

Page 9 of 17

Therefore, the algorithm could be easily converted from
scanning a database to computing scores for each pair
of sequences from a given input set. All changes needed
were made in the source code, so that the application
does not have to be launched many times. Special tests
were conducted to assure that the performance of the
algorithm (in GCUPS) has not been affected.
For testing purposes we used the Ensembl Databases -

Release 55 [36], which contains genomic information
regarding selected vertebrate species. All tests were per-
formed on randomly selected subsets of sequences from
the Homo Sapiens translation predictions.
In order to see if the performance of the algorithms

depends on the length of the sequences, the input data
was divided into six groups with different average
lengths: 51, 154, 257, 459, 608 and 1103 amino acids.
Moreover, for each group three sets with different num-
ber of sequences are considered to see if their number
has any significant impact on the performance. The sub-
stitution matrix (BLOSUM50) as well as gap penalties
(Gopen = 10, Gext = 2) were fixed the same for all tests.
The tests were run on the following hardware:

• CPU: 2 × Intel Xeon E5405, 2.0 GHz,
• GPU: NVIDIA Tesla S1070 with 16 GB of RAM,
• RAM: 16 GB,
• OS for our algorithm: 64-bit Linux,
• OS for Farrar’s method: 64-bit Microsoft Windows
7.

Each algorithm was launched with each input data ten
times. Table 3 presents the average execution times
measured in seconds whereas Table 4 shows the perfor-
mance in GCUPS. The standard deviation values s have
been omitted, because they do not give any significant
information (in each case the value s made up less than
1% of measurement). Additionally, our algorithm has
been tested in one and four GPU configurations,
respectively.
The performance of the Farrar’s algorithm grows sig-

nificantly with increasing sequence length, reaching
around 3.15 GCUPS for the sets with the longest
sequences. In contrast, our algorithm with the perfor-
mance of about 2.8 GCUPS seems to be insensitive to
the sequence length. Its speed slightly decreases only for
the groups with long sequences (608 and 1103). The
reason behind this is that longer sequences require
more global memory and thus the value of the window
size parameter needs to be reduced. This corresponds
directly to the number of tasks running in parallel.
Hence the slowdown.
Farrar’s solution, that has been used in this test, uses

only one CPU core, but obviously we can expect a
speedup close to linear if all CPU cores were used.

Table 3 Time comparison between our solution and the
Farrars’ implementation

avg. length # of sequences CPU, Farrar 1 GPU 4 GPUs

51 4000 24,113 8,064 2,070

8000 95,156 31,111 7,855

12000 210,806 69,083 17,439

154 2000 28,300 17,931 4,609

4000 112,109 67,747 17,284

6000 251,730 149,030 37,622

257 2000 61,182 49,226 12,535

4000 242,756 186,436 47,305

6000 543,656 410,255 103,278

459 2000 149,269 155,631 39,478

4000 594,976 594,140 149,539

6000 1339,538 1332,831 333,593

608 800 41,675 50,222 12,840

1200 92,776 106,840 27,406

1600 164,135 191,793 48,463

1103 800 123,572 164,780 41,946

1200 278,194 359,065 89,899

1600 495,624 628,847 158,699

Mean times (in seconds) for the Smith-Waterman algorithm applied to
different sets of sequences. Average lengths of sequences as well as
cardinality of sets are given. The Farrar’s implementation computes only
scores while our GPU-based implementation computes scores and alignments.

Table 4 Performance comparison between our solution
and the Farrars’ implementation

avg. length # of sequences CPU, Farrar 1 GPU 4 GPUs

51 4000 0,863 2,581 10,055

8000 0,875 2,676 10,597

12000 0,888 2,711 10,740

154 2000 1,677 2,647 10,296

4000 1,693 2,801 10,980

6000 1,696 2,865 11,349

257 2000 2,160 2,685 10,544

4000 2,177 2,835 11,173

6000 2,187 2,898 11,513

459 2000 2,824 2,709 10,679

4000 2,834 2,837 11,274

6000 2,831 2,846 11,370

608 800 2,842 2,358 9,224

1200 2,871 2,493 9,720

1600 2,885 2,469 9,770

1103 800 3,154 2,366 9,293

1200 3,151 2,442 9,752

1600 3,144 2,478 9,819

Mean values of GCUPS (Giga Cell Updates Per Second) for the Smith-
Waterman algorithm applied on different sets of sequences. The GCUPS value
is mainly used for score-only versions of the algorithm. Here, the performance
of the GPU-based method is understated, because the value does not count
in any additional operations (or cells) needed by the backtracking stage while
the entire computational time is always considered.

Blazewicz et al. BMC Bioinformatics 2011, 12:181
http://www.biomedcentral.com/1471-2105/12/181

Page 10 of 17

However, our approach is also scalable - the execution
times drop by a factor of nearly four when all four
GPUs are used and the algorithm reaches up to 11.5
GCUPS. The number of input sequences does not affect
the performance of Farrar’s approach and it was high
enough to have no influence on the performance of our
algorithm. We can conclude that for sequences of aver-
age length (459) both implementations run comparably
fast, but the GPU-based algorithm tends to be much fas-
ter when short sequences are processed. Moreover, it is
worth noting that our algorithm additionally performs
the backtracking step and computes the actual align-
ments of the sequences.
The speedup is much higher if the algorithm is com-

pared to the one presented by Khajeh-Saeed A. et al. in
[17]. Up to our knowledge this is the only GPU-based
solution addressing the same problem where the perfor-
mance is reported. Our approach is about 35 and 68
times faster for one and four graphics cards, respectively.

Time comparison to the Emboss implementation
Apart from comparison to the state-of-the-art solutions,
we decided to compare the algorithm to the implementa-
tion available in a popular package with bioinformatics
tools - the Emboss [37]. The input sequences were also
chosen from the Ensembl Databases - Release 55 (see
Section “Comparison to the Farrar’s implementation”).
We tested ten sets of sequences, each containing 2800
entries with lengths between 100 and 420 amino acids.
The execution times of our NW and SW algorithms’
implementations were compared with needle and water
programs, which are available in the Emboss package.

The needle program performs semiglobal alignments
using the NW algorithm, the water program computes
local alignments using the SW algorithm. These pro-
grams have been designed for aligning one sequence with
a set of sequences. Instead of changing the source code, a
special shell script was prepared that allows to align
every sequence with each other. As a side effect, the pro-
grams from the Emboss package had to be launched 2800
times. In order to make the comparison reasonably fair
their execution times have been reduced appropriately.
We prepared a set of 2800 sequences with lengths equal
to 1. Then, we measured the execution times of the pro-
grams from the Emboss package for this special set. The
times were subtracted from the execution times of the
test cases containing real sequences. It is worth noting
that needle and water programs work using one CPU
thread. Obviously, the NW and SW algorithms are deter-
ministic - they always find the optimal solution. There-
fore, there is no need to compare the quality of the
results.
The tests were run on the following hardware:

• CPU: Intel Core 2 Quad Q8200, 2.33 GHz,
• GPU: NVIDIA GeForce GTX 280 with 1 GB of
RAM,
• RAM: 8 GB,
• OS: 64-bit Linux.

Each algorithm was run ten times (once for each input
set). Figure 5 shows the average execution times mea-
sured in seconds. The standard deviation values s have
been omitted, because they do not give any significant

Figure 5 Average time of aligning a set of 2800 sequences. Average time of aligning a set of 2800 sequences. The algorithms marked as
needle and water come from the Emboss package and ran on the CPU. The algorithms marked as semiglobal NW and SW were launched on a
single GPU - GeForce GTX 280. The scale of the time axis is logarithmic.

Blazewicz et al. BMC Bioinformatics 2011, 12:181
http://www.biomedcentral.com/1471-2105/12/181

Page 11 of 17

information (in each case the value s comprised less
than 1% of the measure).
The average times of computation for the needle and

water programs were 6157 and 10957 seconds respec-
tively (about 102 and 182 minutes), whereas the times
for our implementation were as follows: 89.7 seconds
for the NW and 100.8 seconds for the SW algorithm.
Thus, the GPU implementation of the semiglobal ver-
sion of NW was about 68 times faster than the CPU-
based needle. In case of the SW algorithm the difference
was even higher: the GPU version was about 108 times
faster. To show this relationship properly, the scale of
the time axis in Figure 5 is logarithmic.

Multi-GPU test
The multi-GPU test was performed to see how the time
of the computations depends on the number of graphics
cards used. The sets of input sequences were the same
as in the case of the test from Section “Comparison to
the Farrar’s implementation”.
The tests were run on the following hardware:

• CPU: 2 × Intel Xeon E5405, 2.0 GHz,
• GPU: NVIDIA Tesla S1070 with 16 GB of RAM,
• RAM: 16 GB,
• OS: 64-bit Linux.

The Smith-Waterman algorithm was launched using
one, two, three and four GPUs in turn. The algorithm

was run ten times for each input set and the mean values
of the computational times are shown in Table 5. To
make the comparison easier, we added the columns with
speedups. The execution times of the algorithm were
nearly two times shorter for two graphics cards, nearly
three and four times shorter when using three and four
graphics cards, respectively. This shows that using more
than one GPU one can gain almost linear speedup.
To see if the same applies to the NW algorithm and its

semiglobal version, we prepared a simple test. The input
sequences were taken from the Ensembl Databases -
Release 55 and the set of sequences contained 4000
entries with lengths between 100 and 420 amino acids.
All three algorithms, namely global and semiglobal ver-

sions of the NW, and the SW algorithm, were launched
using again one, two, three and four GPUs, respectively.
Each algorithm was run ten times and the mean values of
the computational times as well as the speedups are
shown in Table 6. The execution times of the algorithms
strongly depend on the number of GPUs and the obtained
speedup is almost linear. Note that in our implementation
multi-GPU support with load balancing works for each
alignment algorithm.

Number of sequences needed to load the GPU
According to Gustafson ’s law [38], to gain a good
speedup on a parallel system, the problem instances
have to be sufficiently large. To investigate how large
the problem instances must be, the following test was

Table 5 Computational times of the SW algorithm depending on the number of GPUs used

avg.length # of sequences 1 GPU 2 GPUs 3 GPUs 4 GPUs

time speedup time speedup time speedup time speedup

51 4000 8,06 1,000 4,04 1,997 2,71 2,971 2,07 3,896

8000 31,11 1,000 15,57 1,998 10,39 2,995 7,86 3,961

12000 69,08 1,000 34,56 1,999 23,07 2,994 17,44 3,961

154 2000 17,93 1,000 9,05 1,982 6,10 2,939 4,61 3,890

4000 67,75 1,000 34,21 1,981 22,93 2,955 17,28 3,920

6000 149,03 1,000 74,66 1,996 50,14 2,973 37,62 3,961

257 2000 49,23 1,000 24,72 1,991 16,59 2,968 12,54 3,927

4000 186,44 1,000 93,80 1,988 62,80 2,969 47,31 3,941

6000 410,26 1,000 205,87 1,993 137,26 2,989 103,28 3,972

459 2000 155,63 1,000 78,16 1,991 52,45 2,967 39,48 3,942

4000 594,14 1,000 298,50 1,990 198,57 2,992 149,54 3,973

6000 1332,83 1,000 667,31 1,997 444,92 2,996 333,59 3,995

608 800 50,22 1,000 25,66 1,957 17,40 2,886 12,84 3,911

1200 106,84 1,000 53,91 1,982 35,77 2,987 27,41 3,898

1600 191,79 1,000 95,93 1,999 64,01 2,996 48,46 3,958

1103 800 164,78 1,000 83,84 1,965 56,83 2,900 41,95 3,928

1200 359,07 1,000 179,85 1,997 119,89 2,995 89,90 3,994

1600 628,85 1,000 314,85 1,997 209,78 2,998 158,70 3,963

Mean computational times (in seconds) of the SW algorithm depending on the number of GPUs used. The algorithm was run on Tesla S1070 in U1 rack case
containing four graphics cards. The speedup refers always to the one GPU configuration.

Blazewicz et al. BMC Bioinformatics 2011, 12:181
http://www.biomedcentral.com/1471-2105/12/181

Page 12 of 17

designed. Each dynamic programming algorithm was
launched for different problem sizes. The smallest
instance consisted of 16 randomly selected sequences
from the Ensembl Databases - Release 55 (see Section
“Comparison to the Farrar’s implementation”). Each
subsequent instance contained additional 16 sequences,
the largest instance had 1024 sequences. The lengths
of the sequences varied between 100 and 420 amino
acids. The adopted measure was the average time
needed to compute a single alignment of two
sequences. To be more precise, the time needed to
perform all alignments for a given problem instance
was measured and then divided by the total number of
computed alignments. The goal was to determine the
minimal number of input sequences that could guaran-
tee good performance.
The tests were run on the following hardware:

• CPU: Intel Core 2 Quad Q8200, 2.33 GHz,
• GPU: NVIDIA GeForce GTX 280 with 1 GB of
RAM,
• RAM: 8 GB,
• OS: 64-bit Linux.

Figure 6 shows that for sixteen input sequences the
average times of performing a single pairwise alignment
for the global and semiglobal versions of NW, and the
SW algorithm were relatively long - about 1.72, 1.84
and 2.15 milliseconds, respectively. These times were
significantly shorter for larger sizes of the problem.
The reasonable times of 0.1, 0.1 and 0.12 ms, respec-

tively, have been achieved for an instance with 80
sequences. The chart is limited to the maximum
instance size of 256 sequences, because the curve almost
reaches its asymptote. For an instance of this size the
times were 0.04, 0.04 and 0.05 ms, respectively. All
three algorithms needed only around 0.03 ms if 512
sequences were processed. Although further increment-
ing of the problem size resulted in some decreases in
time, the benefits were not considerable. It means that
even for relatively small instances the algorithms were
able to gain a good speedup.

Test on the Fermi architecture
The algorithm was designed during the time when only
the G80 and the GT200 GPU architectures were available
on the market. However, recently a new architecture,

Table 6 Performance of the algorithms depending on the number of GPUs used

algorithm 1 GPU 2 GPUs 3 GPUs 4 GPUs

time speedup time speedup time speedup time speedup

global NW 158,25 1,000 81,86 1,933 54,19 2,920 40,41 3,916

semiglobal NW 163,16 1,000 84,81 1,924 56,01 2,913 41,69 3,914

SW 182,01 1,000 93,89 1,939 61,96 2,938 46,48 3,916

Mean computational times (in seconds) for 4000 input sequences depending on the number of GPUs used. The algorithms were run on Tesla S1070.

Figure 6 Average time of computation of one alignment. Average time of computations of one alignment depending on the total number
of input sequences. Tests were run on a single graphics card - GeForce GTX 280.

Blazewicz et al. BMC Bioinformatics 2011, 12:181
http://www.biomedcentral.com/1471-2105/12/181

Page 13 of 17

called Fermi [39], has come along. Hence, we set out to
check if the application can benefit from a doubled num-
ber of CUDA cores that are on the new chips.
The sets of input sequences were the same as in the case

of the test from Section “Comparison to the Farrar’s
implementation”. Only the longest sequences were
excluded, because of more limited memory on the gra-
phics cards.
The tests were run on the following hardware:

• CPU: Intel Core i7 950, 3.06 GHz,
• GPU: 2× NVIDIA GeForce GTX 480 with 1.5 GB
of RAM,
• RAM: 8 GB,
• OS: 64-bit Linux.

Each method, i.e. the SW algorithm as well as the NW
algorithm and its semiglobal version, was launched ten
times for each input data. Table 7 presents the average
performance measured in GCUPS. The standard

Table 7 Performance of the algorithms depending on the hardware architecture

algorithm avg. # of 1 GT200 GPU 1 Fermi GPU 2 Fermi GPUs

length sequences GCUPS speedup GCUPS speedup GCUPS speedup

4000 2,58 1,00 5,13 1,99 10,02 3,88

51 8000 2,68 1,00 5,21 1,95 10,13 3,78

12000 2,71 1,00 5,25 1,94 10,28 3,79

2000 2,65 1,00 5,37 2,03 10,55 3,98

154 4000 2,80 1,00 5,57 1,99 10,87 3,88

SW 6000 2,86 1,00 5,65 1,97 11,07 3,87

2000 2,68 1,00 5,12 1,91 9,91 3,69

257 4000 2,83 1,00 5,25 1,85 10,21 3,60

6000 2,90 1,00 5,20 1,80 10,10 3,48

2000 2,71 1,00 4,26 1,57 8,02 2,96

459 4000 2,84 1,00 4,57 1,61 8,46 2,98

6000 2,85 1,00 4,64 1,63 8,56 3,01

4000 3,04 1,00 5,68 1,87 11,13 3,66

51 8000 3,15 1,00 5,76 1,83 11,21 3,56

12000 3,17 1,00 5,81 1,83 11,36 3,58

2000 3,10 1,00 5,88 1,90 11,46 3,69

154 4000 3,29 1,00 6,16 1,87 12,06 3,67

6000 3,36 1,00 6,28 1,87 12,24 3,64

global NW 2000 3,15 1,00 5,68 1,80 10,85 3,44

257 4000 3,33 1,00 5,80 1,74 11,15 3,35

6000 3,55 1,00 5,78 1,63 11,15 3,14

2000 3,19 1,00 4,84 1,52 9,07 2,84

459 4000 3,35 1,00 5,14 1,54 9,63 2,88

6000 3,36 1,00 5,17 1,54 9,68 2,89

4000 2,88 1,00 5,50 1,91 10,75 3,74

51 8000 2,97 1,00 5,58 1,88 10,86 3,66

12000 3,01 1,00 5,62 1,87 11,04 3,67

2000 3,00 1,00 5,81 1,94 11,36 3,79

154 4000 3,18 1,00 6,02 1,90 11,87 3,74

6000 3,25 1,00 6,17 1,90 12,00 3,69

semiglobal NW 2000 3,05 1,00 5,60 1,84 10,90 3,57

257 4000 3,23 1,00 5,77 1,79 11,10 3,44

6000 3,39 1,00 5,73 1,69 11,03 3,26

2000 3,09 1,00 4,78 1,54 9,04 2,92

459 4000 3,24 1,00 5,04 1,56 9,55 2,95

6000 3,25 1,00 5,14 1,58 9,56 2,94

Mean performance (in GCUPS) for different versions of the algorithm running on two architectures: GT200 (Tesla S1070) and Fermi (GeForce GTX480). The
columns with speedup always refer to the configuration with one GT200 GPU.

Blazewicz et al. BMC Bioinformatics 2011, 12:181
http://www.biomedcentral.com/1471-2105/12/181

Page 14 of 17

deviation values s were insignificant (less than 1% of
measurement) and hence omitted. Additionally, the
table includes the performance of the previous genera-
tion architecture - GT200, represented here by one
GPU from the Tesla S1070 (see Section “Comparison to
the Farrar’s implementation”).
The test shows that with the Fermi architecture the

performance of the algorithms increases by a factor of
nearly two, especially for short sequences. In case of
longer sequences this dominance is slightly reduced,
because only 1.5 GB of RAM was available on our
Fermi graphics card whereas one Tesla has 4 GB.
Obviously, Fermi GPU with 3 or 6 GB of memory may
solve this performance issue. However, one should
remember that the solution aims to process mainly
short and medium-length sequences.

The backtracking routine overhead
Although the algorithm has been designed especially to
deal well with backtracking routine, we also carried out a
special test to investigate its performance when the back-
tracking is not performed, i.e. for score-only version. In
other words we set out to check the overhead needed by
the backtracking procedure. The kernel responsible for the
actual backtracking is very quick and as stated before com-
prises less than 1 percent of total runtime of the algorithm.
It, however, requires the backtracking arrays to be filled by
the kernel 1. Since these arrays are not used for any other
purpose, we excluded them from computations.
Tests were conducted on workstation already described

in Section “Test on the Fermi architecture”. This time,
though, only one GPU was used. The sets of input
sequences were also the same. The results are presented
in Table 8.

The performance of the score-only algorithm increases
considerably reaching up to 9.39 GCUPS. The results are
not as good as e.g. in CUDASW++2.0, but one should be
aware of the fact that our algorithm was optimized to
work well together with the backtracking routine. More-
over, our method has a few assumptions (described ear-
lier) that distinguish it from other implementations but
at the same time make it more elaborate.
The BT share values were computed in the following

way: the computational times of the algorithm with the
backtracking routine were divided by the runtimes of cor-
responding score-only versions of the algorithm. As we
can see the overhead of the backtracking is mainly caused
by the necessity of filling the Cup, Cleft, Bup and Bleft

matrices. However, the additional 45% - 65% is still low in
comparison to the method proposed by Myers et al. [19].
Their approach requires twice as much computations and
hence the overhead is around 100%. Moreover, we expect
that the overhead on GPU would be even higher because
of multiple reads of entire input sequences from the global
memory. We may conclude that for short and medium-
length sequences our method appears to be more suitable.

Conclusions
Although a few GPU-based implementations of the SW
algorithm are already known [13-16] most of them
address the problem of database scanning and comput-
ing only the alignment scores. Our algorithm is able to
compute scores and pairwise alignments. Apart from
the SW algorithm, we have also implemented global and
semiglobal versions of the NW algorithm. Performed
tests show that the efficiency of the implementation is
excellent. The algorithm is able to align sequences in
roughly the same time as the Farrar’s solution needs to

Table 8 The overhead of the backtracking procedure

avg. length # of sequences SW global NW semiglobal NW

GCUPS BT share GCUPS BT share GCUPS BT share

51 4000 7,59 1,48 8,35 1,47 8,08 1,47

8000 7,60 1,46 8,36 1,45 8,31 1,49

12000 7,61 1,45 8,43 1,45 8,15 1,45

154 2000 8,05 1,50 8,77 1,49 8,89 1,53

4000 8,24 1,48 9,11 1,48 9,09 1,51

6000 8,31 1,47 9,17 1,46 9,39 1,52

257 2000 7,76 1,52 8,69 1,53 8,69 1,55

4000 8,02 1,53 8,65 1,49 8,82 1,53

6000 7,85 1,51 8,67 1,50 8,65 1,51

459 2000 7,03 1,65 7,84 1,62 7,79 1,63

4000 7,21 1,58 8,17 1,59 8,01 1,59

6000 7,19 1,55 8,07 1,56 7,91 1,54

Mean performance (in GCUPS) for different versions of the score-only algorithm - without the backtracking procedure. The BT share columns refer to the
overhead of corresponding algorithms with backtracking routine. Tests were run on a single GeForce GTX480.

Blazewicz et al. BMC Bioinformatics 2011, 12:181
http://www.biomedcentral.com/1471-2105/12/181

Page 15 of 17

compute only scores. Yet, its real dominance reveals
while short sequences are processed with no perfor-
mance loss. Moreover, the speed of our GPU-based
algorithms can be almost linearly increased when using
more than one graphics card. We have also checked
what is a minimum reasonable number of input
sequences. Performed tests show, that even for about 80
sequences our algorithms are able to gain a good
speedup. What is worth noting, all the tests were per-
formed using real sequences.
The NW and SW algorithms with a backtracking rou-

tine may have a lot of applications. They can be used as a
robust method for multi-pairwise sequence comparisons
performed during the first step in all of the multiple
sequence alignment methods based on the progressive
approach. Another area of interest can be the usage of a
GPU-based semiglobal alignment procedure as a part of
the algorithm for the DNA assembly problem, being one
of the most challenging problem in current biological stu-
dies. It has already been shown that in this case a parallel
solution can be successfully applied [20]. Using GPU-
based approaches we expect that its execution time would
be even shorter, because the large number of short
sequences is perfectly in line with the benefits of our
algorithm.

Availability and requirements
• Project name: gpu-pairAlign
• Project home page: http://gpualign.cs.put.poznan.pl
• Operating system: Linux
• Programming language: C/C++
• Other requirements: CUDA 2.0 or higher, CUDA
compliant GPU, make, g++
• License: GNU GPLv3
• Any restrictions to use by non-academics: none

Abbreviations
NW: the Needleman-Wunsch algorithm; SW: the Smith-Waterman algorithm;
CPU: central processing unit; GPU: graphics processing unit; GPGPU: general-
purpose computing on graphics processing units; CUDA: Compute Unified
Device Architecture; RAM: random access memory; OS: operating system.

Acknowledgements
This research has been partially supported by the Polish Ministry of Science
and Higher Education under Grant No. N N519 314635.

Author details
1Poznań University of Technology, Poznań, Poland. 2Institute of Bioorganic
Chemistry PAS, Poznań, Poland. 3University of Siegen, Siegen, Germany.
4Poznań Supercomputing and Networking Center, Poznań, Poland.

Authors’ contributions
WF, MK and PW conceived of the study and participated in its design. WF
proposed the idea of backtracking arrays. WF and MK contributed equally to
algorithm design and implementation. MK carried out computational tests.
JB and EP participated in the coordination of the project. All authors were
involved in writing the manuscript and all of them read and approved its
final version.

Received: 30 December 2010 Accepted: 20 May 2011
Published: 20 May 2011

References
1. Needlemana S, Wunsch C: A general method applicable to the search for

similarities in the amino acid sequence of two proteins. J Mol Biol 1970,
48(3):443-3, 48: 443-53.

2. Smith T, Waterman M: Identification of Common Molecular
Subsequences. Journal of Molecular Biology 1981, 147:195-97.

3. Deonier R, Tavare C, Waterman M: Computational Genome Analysis. Springer
2005.

4. Pevzner P: Computational Molecular Biology: An Algorithmic Approach. The
MIT Press 2000.

5. Blazewicz J, Bryja M, Figlerowicz M, Gawron P, Kasprzak M, Kirton E, Platt D,
Przybytek J, Swiercz A, Szajkowski L: Whole genome assembly from 454
sequencing output via modified DNA graph concept. Computational
Biology and Chemistry 2009, 33:224-230.

6. Wang L, Jiang T: On the complexity of multiple sequence alignment.
J Comput Biol 1994, 1(4):337-348.

7. Pei J: Multiple protein sequence alignment. Current Opinion in Structural
Biology 2008, 18(3):382-386.

8. Do CB, Mahabhashyam MS, Brudno M, Batzoglou S: ProbCons: Probabilistic
consistency-based multiple sequence alignment. Genome Res 2005,
15(2):330-340.

9. Lassmann T, Sonnhammer EL: Kalign - an accurate and fast multiple
sequence alignment algorithm. BMC Bioinformatics 2005, 6:298 [http://
www.biomedcentral.com/1471-2105/6/298].

10. Thompson J, Higgins D, Gibson T: CLUSTAL W: improving the sensitivity
of progressivemultiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice.
Nucleic Acids Research 1994, 22:4673-4680.

11. Notredame C, Higgins D, Heringa J: T-Coffee: A novel method for multiple
sequence alignments. Journal of Molecular Biology 2000, 302:205-217.

12. Kemena C, Notredame C: Upcoming challenges for multiple sequence
alignment methods in the high-throughput era. Bioinformatics 2009,
25(19):2455-2465.

13. Manavski S, Valle G: CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment. BMC Bioinformatics
2008, 9.

14. Ligowski L, Rudnicki W: An efficient implementation of Smith Waterman
algorithm on GPU using CUDA, for massively parallel scanning of
sequence databases. IPDPS 2009, 1-9.

15. Liu Y, Maskell DL, Schmidt B: CUDASW++: optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing
units. BMC Research Notes 2009, 2.

16. Liu Y, Maskell DL, Schmidt B: CUDASW++2.0: enhanced Smith-Waterman
protein database search on CUDA-enabled GPUs based on SIMT and
virtualized SIMD abstractions. BMC Research Notes 2010, 3.

17. Khajeh-Saeed A, Poole S, Perot J: Acceleration of the Smith-Waterman
algorithm using single and multiple graphics processors. Journal of
Computational Physics 2010, 229:4247-4258.

18. Liu Y, Maskell DL, Schmidt B: MSA-CUDA: Multiple Sequence Alignment
on Graphics Processing Units with CUDA. 20th IEEE International
Conference on Application-specific Systems, Architectures and Processors 2009.

19. Myers EW, Miller W: Optimal alignments in linear space. Comput Appl
Biosci 1988, 4:11-17.

20. Blazewicz J, Kasprzak M, Swiercz A, Figlerowicz M, Gawron P, Platt D,
Szajkowski L: Parallel Implementation of the Novel Approach to Genome
Assembly. Proc SNPD 2008, IEEE Computer Society 2008, 732-737.

21. ATI Stream. [http://www.amd.com/stream].
22. OpenCL. [http://www.khronos.org/opencl].
23. NVIDIA CUDA. [http://www.nvidia.com/object/cuda_home.html].
24. NVIDIA CUDA C Programming Best Practices Guide. [http://www.nvidia.

com/object/cuda_develop.html].
25. Gotoh O: An Improved Algorithm for Matching Biological Sequences.

Journal of Molecular Biology 1981, 162:705-708.
26. Henikoff S, Henikoff J: Amino Acid Substitution Matrices from Protein

Blocks. PNAS 1992, 89:10915-10919.
27. Dayhoff M, Schwartz R, Orcutt B: A model of Evolutionary Change in

Proteins. Atlas of protein sequence and structure, Nat Biomed Res Found
1978, 5(supp 3):345-58.

Blazewicz et al. BMC Bioinformatics 2011, 12:181
http://www.biomedcentral.com/1471-2105/12/181

Page 16 of 17

http://gpualign.cs.put.poznan.pl
http://www.ncbi.nlm.nih.gov/pubmed/5420325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5420325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19477687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19477687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8790475?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18485694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15687296?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15687296?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16343337?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16343337?dopt=Abstract
http://www.biomedcentral.com/1471-2105/6/298
http://www.biomedcentral.com/1471-2105/6/298
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10964570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10964570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19648142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19648142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3382986?dopt=Abstract
http://www.amd.com/stream
http://www.khronos.org/opencl
http://www.nvidia.com/object/cuda_home.html
http://www.nvidia.com/object/cuda_develop.html
http://www.nvidia.com/object/cuda_develop.html
http://www.ncbi.nlm.nih.gov/pubmed/1438297?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1438297?dopt=Abstract

28. Graham RL: Bounds on multiprocessing timing anomalies. SIAM J Appl
Math 1969, 17(2):416-429.

29. Blazewicz J, Ecker K, Pesch E, Schmidt G, Weglarz J: Handbook on
Scheduling: From Theory to Applications. Springer 2007.

30. Szalkowski A, Ledergerber C, Krahenbuhl P, C D: SWPS3 - fast multi-
threaded vectorized Smith-Waterman for IBM Cell/B.E. and x86/SSE2.
BMC Research Notes 2008, 107.

31. Farrar M: Optimizing Smith-Waterman for the Cell Broad-band Engine.
[http://farrar.michael.googlepages.com/SW-CellBE.pdf].

32. Wirawan A, Kwoh C, Hieu N, Schmidt B: CBESW: Sequence Alignment on
Playstation 3. BMC Bioinformatics 2008, 9:377.

33. Oliver T, Schmidt B, DL M: Reconfigurable architectures for bio-sequence
database scanning on FPGAs. IEEE Trans Circuit Syst II 2005, 52:851-55.

34. Li T, Shum W, Truong K: 160-fold acceleration of the Smith-Waterman
algorithm using a field programmable gate array (FPGA). BMC
Bioinformatics 2007, 8:185.

35. Farrar M: Striped Smith-Waterman speeds database searches six times
over other SIMD implementations. Bioinformatics 2007, 23(2):156-161.

36. Ensembl Databases - Release 55. [ftp://ftp.ensembl.org/pub/release-55].
37. Rice P, Longden I, Bleasby A: EMBOSS: The European Molecular Biology

Open Software Suite. Trends in Genetics 2000, 16:276-77.
38. Gustafson J: Reevaluating Amdahl’s Law. Communications of the ACM

1988, 31:532-533.
39. NVIDIA Fermi Architecture. [http://www.nvidia.com/object/

Fermi_architecture.html].

doi:10.1186/1471-2105-12-181
Cite this article as: Blazewicz et al.: Protein alignment algorithms with
an efficient backtracking routine on multiple GPUs. BMC Bioinformatics
2011 12:181.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Blazewicz et al. BMC Bioinformatics 2011, 12:181
http://www.biomedcentral.com/1471-2105/12/181

Page 17 of 17

http://farrar.michael.googlepages.com/SW-CellBE.pdf
http://www.ncbi.nlm.nih.gov/pubmed/18798993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18798993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17555593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17555593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17110365?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17110365?dopt=Abstract
ftp://ftp.ensembl.org/pub/release-55
http://www.ncbi.nlm.nih.gov/pubmed/10827456?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10827456?dopt=Abstract
http://www.nvidia.com/object/Fermi_architecture.html
http://www.nvidia.com/object/Fermi_architecture.html

	Abstract
	Background
	Results
	Conclusions

	Background
	GPGPU and the CUDA programming model
	Algorithms for pairwise sequence alignment
	Needleman-Wunsch algorithm
	The semiglobal pairwise alignment
	Smith-Waterman algorithm for the local pairwise alignment

	Implementation
	The idea of backtracking procedure and GPU limitations
	Implementation of the algorithms

	Results
	Comparison to the Farrar’s implementation
	Time comparison to the Emboss implementation
	Multi-GPU test
	Number of sequences needed to load the GPU
	Test on the Fermi architecture
	The backtracking routine overhead

	Conclusions
	Availability and requirements
	Acknowledgements
	Author details
	Authors' contributions
	References

