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Abstract

Background: This paper is devoted to distance measures for leaf-labelled trees on free leafset. A leaf-labelled tree
is a data structure which is a special type of a tree where only leaves (terminal) nodes are labelled. This data
structure is used in bioinformatics for modelling of evolution history of genes and species and also in linguistics for
modelling of languages evolution history. Many domain specific problems occur and need to be solved with help
of tree postprocessing techniques such as distance measures.

Results: Here we introduce the tree edit distance designed for leaf labelled trees on free leafset, which occurs to

measures.

be a metric. It is presented together with tree edit consensus tree notion. We provide statistical evaluation of
provided measure with respect to R-F, MAST and frequent subsplit based dissimilarity measures as the reference

Conclusions: The tree edit distance was proven to be a metric and has the advantage of using different costs for
contraction and pruning, therefore their properties can be tuned depending on the needs of the user. Two of the
presented methods carry the most interesting properties. E(3,1) is very discriminative (having a wide range of
values) and has a very regular distance distribution which is similar to a normal distribution in its shape and is
good both for similar and non-similar trees. NFC(2,1) on the other hand is proportional or nearly proportional to
the number of mutation operations used, irrespective of their type.

Background

This paper is devoted to distance measures for leaf-
labelled trees on free leafset. A leaf-labelled tree is a
data structure which is a special type of a tree where
only leaves (terminal) nodes are labelled. This data
structure is used in bioinformatics for modelling of
evolution history of genes and species and also in lin-
guistics for modelling of languages evolution history.
Many domain specific problems occur and need to be
solved with help of tree postprocessing techniques
such as distance measures, consensus trees, clustering.
Distance measures play the most important role as
they are very often the start point for more compli-
cated techniques. One of such problem is a problem of
competing evolutionary hypothesis. In the process of
phylogenetic tree reconstruction, different candidate
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trees may be obtained, the researches have to deter-
mine the true tree of life.

Many existing techniques are designed for trees built
of the same leafset which is very limiting. Here we focus
on techniques that do not require trees to contain the
same set of leaves. Previously we introduced the simple
z-restriction approach [1] and more sophisticated fre-
quent subsplit approach [2,3]. Here we introduce the
tree edit distance designed for leaf labelled trees on free
leafset, which occurs to be a metric. It is presented
together with tree edit consensus tree notion and some
new results for frequent subsplit based dissimilarity
measures approach. For the purpose of experimental
testing we follow and extend methodology presented in
[4]. We use the popular Robinson-Foulds [5] and MAST
[6] based distances as the reference measures. The
experiments yield very promising results.
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Methods

Basic Notions

Here we provide the basic notions and the description of
some basic operation on leaf labelled trees which were
chosen as the basic operation for new tree edit distance
measure. Some derived notions are also presented here.

Leaf-labelled tree is a tree with labels assigned to its
leaves. Unrooted leaf-labelled trees are very often repre-
sented as a set of splits [7].

Definition [Split] The Split (or Bipartition) A|B (of a
tree T with leafset L), corresponding to an edge e is a
pair of leafsets A and B, which originated from splitting
tree T into two disconnected trees, whilst removing an
edge e from atree T,AUB =L. If |A| =1 or |B| =1,
the split is trivial.

In this paper, we will refer to the leafset of a given
split s as L(s). The set of splits corresponding to each
edge builds a unique representation of a given tree. We
will refer to the set of splits for a given tree as S(7). We
will use s € S(T), or s € T to denote that split s occurs
in tree T.

Definition [Contraction]

The Contraction of a tree T is obtained by removing a
chosen internal edge from tree T and identifying adja-
cent nodes of the contracted edge.

Because split corresponds to edge (provided that no
internal edges of degree two occur), so a contraction
may be realised by removing a split from a splitset that
represents the given tree. Figure 1 illustrates a contrac-
tion operation, and the splitsets are as follows:

T 1 : albcde, blacde, c|labde, d|abce, e|abcd, ab|cde,
abe|cd

T 2 : albcde, blacde, clabde, d|abce, e|abcd, ab|cde

T1 is called a refinement of T2, however T2 is also a
subtree of T1 (in more general terms), therefore we will
say that T2 is c-subtree of T1.

Definition [c-cubtree] A C-subtree of tree T is a sub-
tree where only a contraction operation has been used
to construct the c-subtree from its supertree T.

Definition [Pruning] Pruning is the operation of remov-
ing a chosen leaf from a tree, and afterwards removing the
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nodes of degree two (which is called forced contraction).
The pruning operation can be illustrated on a set of splits
as the process of removing leaves from splits, and then
removing duplicate splits and not-valid splits, which corre-
sponds to forced contraction.

Figure 2 illustrates a pruning operation, where T2 is
the process of removing leaf d (a node of degree two
emerges after this) and finally T3 is a tree where a
forced contraction has also been applied.

T1 : a|bcde, blacde, c|abde, d|abce, e|labcd, ab|cde,
abe|cd

T2 : a|bce, blace, c|abe,- |abce, e|abc, ab|ce, abe|c

T3 : a|bce, blace, c|abe, e|abc, ab|ce

T3 is called an induced subtree of T1, however here
we will call it a p-subtree.

Definition [p-subtree] A P-subtree PS of a tree T is a
subtree where only a pruning operation is allowed to
construct the subtree PS from its supertree T.

Definition [restricted tree, z-restricted tree, induced
subtree] A z-restricted tree T° (alternatively denoted as
T|z in the literature and also called an induced subtree)
of a tree T on leafset z, is a p-subtree of T where all
leaves not in z were pruned. In this paper we use both
T? and T|z notations, the second one is more popular
and clearer, however it sometimes conflicts with the
split notation.

Definition [Restricted Split Equality(z-equality)] [1]
Splits s; and s, are restrictedly equal on leafset z if their
z-restricted versions on leafset z are equal.

$1=752 & 51 = 55 1)

Figure 3 illustrates a more complicated tree together
with its p-subtree(restricted subtree on z = acde) and c-
subtree.

In [2] we have introduced the subsplit term which is
used for the distance and consensus methods discussed
later in this paper.

Definition [Subsplit and supersplit] [2] Split s; is a
subsplit of s, and s, is a supersplit of s; iff s; is restrict-
edly equal to s, on the leafset of s;, and the leafset of s;
is a subset of the leafset of s,.

T1 2

Figure 1 Contraction operation.
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Figure 2 Pruning operation. T1 - input tree, T2 - tree where leaf d was removed, T3 - tree after additional forced contraction.

51 € 8) & (s1=%s2) Az=L(s1) A(L(s1) € L(s2))  (2)
This can be presented alternatively as:

51(AIB) C5,(CID) & (ACDABCC)V(ACCABCD) (3)

Common information extraction techniques

Definition [The strict consensus tree] [8] The strict
consensus tree is defined in terms of splits. The strict
consensus tree is a tree constructed of all splits com-
mon to all trees in a given pro le of trees. Figure 4
presents two trees together with their strict consensus
tree.

Splits from T1: a|bcdef, blacdef, c|abdef, d|abcef, e|
abcdf, flabcde, ab|cdef, abc|def, abcd|ef

Splits from T2: a|bcdef, blacdef, c|abdef, d|abcef, e|
abcdyf, flabcde, ab|cdef, abc|def, abce|fd

The common splits of these trees, which build the
strict consensus tree, are as follows: a|bcdef, b|acdef, c|
abdef, d|abcef, e|abcdf, flabcde, ab|cdef, abc|def.

Because the concept of a consensus tree is very strict,
for many trees, a consensus tree can easily become a
star (a tree built of only trivial splits). In order to deal
with this problem, many variations of consensus trees
have been proposed, among others, a majority rule con-
sensus tree.

Definition [Majority rule consensus tree] The major-
ity rule consensus tree is built from splits that occur in
the majority of trees.

Definition [Maximum Agreement Subtree (MAST)]
[6] For a given pro le of leaf-labelled trees T4,.... T,, the
Agreement Subtree is a tree for which Ty = T1|x- = T,|
x for given x, where x & L(T). The Maximum Agree-
ment Subtree is an agreement subtree with a maximum
number of leaves [6].

An example of a MAST can be seen in Figure 5. In
Figure 5, T1 and T2 are the input trees, the leaf d is
removed from both trees resulting in T1” and T2’
respectively. Finally the leaf /7 needs to be removed to
achieve an identical tree TM, which is a maximum
agreement subtree of T1 and T2.

Several versions of the MAST problem exist like
RMAST, which considers only rooted trees, or UMAST
for general unrooted trees.

A MAST problem without any restrictions is generally
NP-hard [7]. However when the degree of one input
trees is limited, then the algorithm is polynomial [7].
Also, when the number of trees is limited to two, then
the algorithm is also polynomial.

Distance measures
Robinson - Fould distance [5] originated from phylo-
genetic analysis. It is defined as the difference between

T1 f

C d

T2

Figure 3 p-subtree and c-subtree. Tree together with it's p-subtree(restricted subtree on z = acde) and c-subtree(edge abcde f was removed).
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Figure 4 Strict consensus tree. Two leaf-labelled trees together with their strict consensus tree.
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the number of all splits and the number of splits shared
by compared trees. As it was proposed for phylogenetic
trees, it is defined for leaf-labelled trees with the same
leafset. The R-F distance between two trees T; and T,
with a set of splits S; and S,, respectively, is as follows:

dr—p(T1, T2) = 1S1 U S2| = [S1 N Sa. (4)

For example, in Figure 4:

dr - p(Th, To) = 2

The tree edit distance [9], [10] between T1 and T2 is
defined as the minimal cost of editing operations needed
to insert a node, delete a node and relabel a node that
transforms T1 to T2. It is based on the concept of edit

distance for strings. Tree edit distance was defined for
node-labelled and edge-labelled trees. The distance has
nice features, it is intuitive, it does not require that com-
pared trees have the same set of leaves. However for
trees with leaves which are only labelled, it cannot be
used directly. Some artificial internal node labelling is
required to use it for such trees, which makes it less
intuitive. This distance has not been popular for leaf-
labelled/phylogenetic trees. However, in our opinion the
idea of edit distance, can be applied to leaf-labelled
trees, provided that the editing operations that are
selected are natural for them. Such an approach can
lead to better distance measures for leaf-labelled trees

T1 g h

p(h)

NP

T2 £ f
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Figure 5 MAST. Two leaf-labelled trees together with their MAST on a, b, ¢, e, f, g.
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than existing measures. Such an approach will be pre-
sented later in this paper.

The MAST distance between trees T1 and T2 is the
number of leaves that need to be removed to obtain the
Maximum Agreement Subtree.

For the trees from Figure 5, d,,,,5; = 2.

Representative Splitset and derived similarity measure
Here, we recall the basis of our representative splitset
approach, which is the foundation for a new consensus
technique and new similarity measure, applicable to
trees where the leafset may vary without discarding any
information. For the detailed information see [2].
Notion of Representative Splitset
Definition [Frequent subsplit] Frequent subsplit s with
support minsup in a profile of trees is a split that is a
subsplit of at least one split in at least minsup of trees.
The minsup parameter is called the minimal support. It
may be an absolute value which denotes the minimum
number of trees in which the split is supposed to be
found (as a subsplit). It can also be given as a relative
value, where it is a minimal percentage of the trees in
which the split is supposed to be found.

Consider the trees shown in Figure 6, which are repre-
sented as follows:

T1 : cd|abefghi, bed|aefghi, abed|efghi, hilabcedefg, ghil
abcdef, fghilabcde plus trivial splits

T2 : bc|adefghj, abc|defghj, abcd|efghj, hj|abcdefg, ghjl
abcdef, fghj|abcde plus trivial splits

According to our approach, we count the number of
trees in which the split occurs (as a subsplit of any
split), rather than counting the number of splits, of
which it is a subsplit. For example, in Figure 6: abcd)|
efgh has the support 2/2 (100%), because it occurs in
both trees: in the first one as a subsplit of abcd|efghi,
and in the second one as a subsplit of abcd|efghj. The
argument for counting trees rather than splits is that
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there may be some subsplits that occur frequently as
subsplits of many splits, but only in one tree. Such trees
are considered uninteresting.

Definition [Representative splitset] Representative
splitset - a set that contains maximal frequent subsplits
s, i.e. such that there is no other frequent subsplit s,
that is also a supersplit of s.

Definition [strict representative splitset SFS] The
strict representative splitset SFS is a representative split-
set with minsup = 100%. More formally, SFS can be
represented as follows:

SES(Ty, ..., Ty) = {s: (Vie(r..mpS€T) A (~ H(Vier.mr€T) As 1)), (5)
where
SET & (Jrers C1). (6)

Definition [Majority-rule representative splitset
MRES] The Majority-rule representative splitset is a
representative splitset with minsup = 50%.

Frequent Splitset Interpretation

It is clear that, from the splits of FS, we cannot directly
construct one tree because the splits in general have dif-
ferent leafsets.

The full reasoning about frequent interpretation was
provided in [2]. Here we just recall the conclusions
which were derived from the split compatibility Defini-
tion and use the fact that from a compatible set of splits
a tree can be built:

Conclusion 1: For each distinct leafset z from fre-
quent splitset (FS) with a support greater than 50%, a
tree can be built. The tree is built on z-restricted ver-
sions of those splits from FS having a leafset as a
superset of z. Therefore the frequent splitset (minsup
> 50%) can be represented as a set of trees. In particu-
lar, it affects the strict and majority-rule frequent
splitset.

Tl

f a

o1

Figure 6 Sample trees on a different leafset. Two leaf-labelled trees on a different leafset.
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Conclusion 2: Each split from the frequent splitset
discussed above will occur in at least one tree, in a
restricted form.

Conclusion 3: Conclusions 1 and 2 are also true for a
tree based on the intersection of all the distinct leafsets
from the frequent split-set.

Conclusion 4: The set of trees resulting from the fre-
quent splitset will also contain a consensus tree, pro-
vided that the input dataset of trees was built on the
same leafset.

For example, as the strict-frequent splitset of trees
from Figure 6 contains splits built on two distinct leaf-
sets: abcdefg and abcefg the intersection of these leafsets
is equal to the second leafset. Therefore, this strict-fre-
quent splitset will be illustrated by two trees as shown
in Figure 7.

Strict-frequent-set: abcd|efgh, gh|abcdef, fgh|abcde, be|
aefgh, hlabcdefg a|bcdefgh, blacdefgh, c|abdefgh, d|
abcefgh, e|abcdfgh, flabcdegh, g|labcedfh

For a more difficult example, let us look at trees T}
and T, from Figure 8: Here, we have three distinct leaf-
sets: {abcde f gh} {abce f gh} {abcde f g} and the intersec-
tion: {abce f g}. Therefore as a visualisation we present
four trees on these leafsets, as shown in Figure 9.
FS-based Dissimilarity Measure
Basing on frequent subsplit notion we defined a dissimi-
larity measure between two trees (or splitsets) [3]. It is
not only applicable to trees with different leafsets but
also gives more intuitive results for trees with the same
leafset:

|SES|

dps(T1, To)=1— _ ~ .
( ) [S1US,|

(7)

where SFS is a strict-frequent splitset and §;U S,is the
modified sum of both splitsets, which means that, if for
splits s; € S1, 85 € Sy, 51 is a supersplit of s, only the
supersplit (s7) is included in the result. Formally, it can
be represented as follows:
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$10S; = {s: (SES1 V sES2) A (~ F((r€S1 V1ESY) As 1)) (8)

Such a measure determines the dissimilarity on the
basis of how many subsplits they share in common. Let
us compare this measure to the most popular: R-F dis-
tance. Consider the example from Figure 10:

SFS(Ty, T») = trivial(5) + ab|cd, SFS(T,, Ts) = trivial,
SES(Ts, Ts) = trivial

dRF (Ty, Ty) = 4, d(T1, T,) = 1 - 6/9 = 4/9

dRF (T, T3) = 4, d(T, T3) = 1 -5/9 = 5/9

It is clear that the R-F distance states that T} and T,
are both as dissimilar as T, and T3 whilst our measure
arrives at a different result, which is an intuitive result
since both T, and T, share a common non-trivial sub-
split ab|cd. For trees on a different leafset, the R-F dis-
tance does not work at all whilst our measure does.

The main drawback of this measure is that it is not a
metric, however it achieves very good statistical charac-
teristics and clustering results as described in the
Results section. In this paper the method was compared
to R-F, MAST and edit distance in the series of
experiments.

Tree Edit Distance and Tree Edit Consensus for Leaf-
Labelled Trees
Tree Edit Distance for Leaf-Labelled Trees
In the following sections we define a new distance and
consensus notion based on editing operations on leaf-
labelled trees. We choose contraction and pruning as
editing operations for leaf-labelled trees. If tree T3 is a
subtree of T1, where both pruning and contraction
operations are allowed, then we call it a pc-subtree or
edit subtree. An example of transforming tree T1 into
T3 using editing operations is shown in Fig. 11.
Definition [Edit script] An Edit script S(7T1, T2) for
leaf-labelled trees 71 and 72 is the pair of subscripts S
(T1) and S(72) which are sequences of editing opera-
tions including contraction and pruning, which can be
applied to the selected input trees T1 and T2 to unify

T1 d

e
4

f h

Figure 7 lllustration of strict frequent splitset. Two trees built from strict frequent splitset of trees from Fig. 6.
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Figure 8 Sample trees on the same leafset. Three leaf-labelled trees on the same leafset.
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them. S(T1, T2) = S(71) U S(72). The subscripts S(71),
(S(72)) are uni-directed which means that by using S
(T1), we can modify 71 to obtain the tree that is a unifi-
cation of T1 and T2, but not necessarily in the opposite
direction.

Definition [Edit script Cost] The cost of an edit script
Cost(S) is the sum of the defined costs of editing opera-
tions: contraction and pruning Cost(s) = Y, s Cost(e)where
Cost(e) = cost, if e is a contraction and Cost(e) = cost,, if
e is a pruning operation. Forced contractions may be
counted or not, depending on application.

Definition [Tree edit distance for leaf-labelled trees]

Having defined positive value costs for contraction
and pruning operation, the tree edit distance for leaf-
labelled trees T1 and T2 is the minimal cost edit
script d(T1, T2) = minCost(S), where forced contrac-
tions are counted as normal contractions. Note that in
order to keep the resulting tree as leaf-labelled tree
only contractions that correspond to non-trivial split
are performed, unless it is a forced contraction - than
trivial split may also be contracted to remove split
with duplicate representation. In this paper, we focus
on the edit distance which counts forced contractions.
Thanks to this property, we can prove that it is a true
metric.

However, there is also an interesting variant of the
edit distance where a forced-contraction is ignored. The
metric property of such a variant is yet to be verified,
the measure will also be considered in experiments due
to its interesting features.

Definition [No Forced Contraction Disimilarity Mea-
sure for leaf-labelled trees] Having defined positive value
costs for contraction and pruning operation, the No
Forced Contraction Disimilarity Measure for leaf-labelled
trees T1 and T2 is the minimal cost edit script d(71, T 2)
= minCost(S), where forced contractions are ignored.

Tree Edit Distance versus R-F Distance and MAST

As mentioned earlier, comparing distance measures is
not a trivial task. Here, we provide a subjective opinion
about why this measure is better than others, however
an objective statistical comparison will be provided in
the Results section.

The R-F and MAST distances have some drawbacks
which have emerged from the fact that the R-F distance
may use only contraction operations and MAST uses
only pruning operations and forced contractions. There
are of course some cases when all three distances per-
form equally well, as in the example of Figure 1, where
for Trees T1 and T2, the R-F Distance = 1, MAST = 1,
Edit Distance = 1.

Tl 2

(a0}

d ¢ C b

Figure 9 lllustration of strict frequent splitset. Trees built from strict frequent splitset of trees T1 and T2 from Fig. 8.

8 0]
a
LIy

d ¢ . b




Koperwas and Walczak BMC Bioinformatics 2011, 12:204
http://www.biomedcentral.com/1471-2105/12/204

Page 8 of 23

T 5 ,% T2 8

a b a

\

Figure 10 Sample trees on the same leafset. Three different trees on the same leafset.
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R-F Distance Drawbacks

1) The first drawback of the R-F distance is that it is
totally useless for leaf-labelled trees on a free leafset. For
example, Figure 2 shows two trees on a different leafset
(T1 and T3). The R-F distance is undefined here. It can
be seen that the removal of one leaf and the internal
edge is sufficient to make the two trees identical. In this
case, both the MAST and Edit Distance can be used as
MAST can be extended to support a free leafset, and
the Edit Distance is naturally suitable for a free leafset.
MAST and Edit distances will provide different values:
MAST distance = 1, Edit Distance = 2. These differ-
ences will be discussed in the following section.

2) The second drawback of the R-F distance is that
even if the trees are on the same leafset, one noisy leaf
may cause the trees to be considered totally different
(all splits must be removed). Removal of one leaf may
significantly reduce the distance between trees. Such a
situation is illustrated in Figure 12. Trees T1 and T2
look totally different, in terms of the R-F distance,
because of leaf d, thus all non-trivial splits must be
removed (all the information!) in order to make them
identical. R-F Distance = 10, however, removing only
leaf d would result in trees differing by only 2 splits!
Therefore, the MAST distance equals 2 and the Edit
Distance equals 6.

MAST Distance Drawbacks

1) The first drawback of the MAST distance occurs
when the trees are similar except for one internal edge
as in Figure 13. In this case, the MAST distance would
equal 3 as it requires the removal of at least 3 leaves in
order to make the trees identical. However, both the R-
F and Edit distances may just remove one edge, thus the

R-F Distance would equal 1 and the Edit Distance
would equal 1.

2) The second drawback is that MAST counts only
the leaves that are removed from both input trees. If it
is allowed to also count leaves that are present in only
one tree in order to support a different leafset, then the
distance will ignore some subtle changes. For example,
in Figure 14, the distance between T1 and T2 is identi-
cal as in the example with T1 and MAST(T1, T2),
which is obviously incorrect. The solution to this pro-
blem would be to count the leaf twice if it is removed
from both trees and count it once if is removed from
one tree. This solution would not however fix another
problem: MAST completely ignores forced contractions.
Therefore, some subtle differences may again be missed.
For example the MAST distance between T1 in Figure 1
and T2 in Figure 2 is the same as between T2 from Fig-
ure 1 and T2 from Figure 2, which is again incorrect. In
this case, the MAST distance would be equal to 1, but
the Edit Distance equals 2 and 1 respectively.

Edit Distance Advantage
In the previous sections, we showed the drawbacks of
RF and MAST distances and showed that the Edit Dis-
tance is better because:

« it can be used for trees on a free leafset

« it can distinguish differences where the MAST dis-
tance cannot as it can use both contraction and
pruning.

Let us compare the values of these distances. The Edit
Distance is easily compared to the R-F distance, pro-
vided the same cost of contraction is used to count both

a Tl a

C

Figure 11 Sample edit script. Example of transforming tree T1 into T3 using edit operations.

T2 = a f T3 =
C b " C:
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Figure 12 Edit-consensus tree. Trees T1 and T2 together with their edit-consensus tree TCe.

distances. The only difference between them is that the
R-F distance cannot use pruning. However, it is impossi-
ble to compare the values directly to MAST as this dis-
tance is not well defined if the leaf is removed from one
tree only, and the cost of forced contractions is ignored.
Therefore, in order to compare the values, we will use
the R-F distance (denoted here as the c-distance) and
instead of MAST, we will count the cost of each prun-
ing operation and forced contraction (denoted here as
the p-distance). Some distance values are presented in
Table 1.

These results show that, in some situations, pruning
operations are better at unifying trees, sometimes con-
tractions are, and sometimes neither performs well.

However, there are cases when using both of them is
better. To sum up below, there are some cases when
one editing operation is better than another: Pruning is
better: when the trees are not on the same leafset, then
pruning is necessary (figures 2, 11, 14) the trees may be
on the same leafset but they contain some noisy leaf
(leaf d in trees T1 and T2 from Figure 12). Contraction
is better: when two significantly large sub-trees are con-
nected directly on one tree, but connected with an addi-
tional edge on the second tree (Figure 13). Both
operations seem to be equally good when the trees are
on the same leafset, there is no noisy data, and the
degrees of the nodes are relatively small. Because there
are some cases when one operation is better than the

¥

Figure 13 Two trees that differ by one internal edge only.
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h C

Figure 14 MAST. Example of the MAST tree between T1 and T2.

a MAST(TL,T2d

b

other, a distance based on both operations shall be bet-
ter than one based on only one operation. A distance
constructed in this way will choose the most appropriate
editing operations. For example, consider Figure 15, the
c-distance equals 8 (all nontrivial splits), p-distance (d
and b in both trees plus 3 forced contractions) equals 7,
pc-distance (i.e. edit distance with unitary costs) equals
4 (d in both trees plus 2 splits)

Cost Manipulation

The difference between the Edit Distance and other dis-
tances is visible especially when the cost of operations is
not the same. Although in some cases both operations
can be equally good, one may prefer for example con-
traction over pruning in some cases. The motivation can
be for example the need to have as many leaves as pos-
sible in the tree edit consensus. Therefore, our distance
uses the costs of editing operations. For example, con-
sider the trees T1 and T2 in Figure 12, and assume that
the pruning cost equals 2 and the contraction cost
equals 1. For these trees, if only the pruning operation
is used, then the p-distance equals 12 (removal of d and
h from both trees and forced contractions), if only a
contraction is used then the R-F-distance equals 10
(removal of all non-trivial splits in both trees), however
if the Edit distance is used then the distance is equal to
8 (removal of d from both trees, then removal of two
differencing splits). The edit script is also illustrated,

Table 1 Values of ¢, p and edit distances for various
examples

Fig (trees) c-dist p-dist Edit-dist
1(T1,T2) 1 2 1
2(T1, T3) - 2 2
11(T1, T3) - 5 3
14(T1, T2) 4 4 4
13(T1, T2) 1 4 1
15(T1, T2) 8 7 4

with its semi-products (T1” and T2’). If we assume the
following costs: 3 for prunning and 1 for contraction,
then the Edit Distance would consist of contraction
operations only, and the distance would be equal to 10.
Tree Edit Distance Metric Proof

In order to show that our measure is a true metric, the
following conditions shall be proved:

cd(T), T5) =0 T, =T,
« d(Ty, To) = d(Ty, Th)
o d(Ty, To) + d(T, T5) 2 d(T1,T3)

The first two conditions are met by definition: The
minimal edit script that unifies T1 and T1 contains no
operations, therefore the distance is equal to 0. On the
other hand, if two different trees T1 and T2 may be uni-
fied only by applying some editing operations, and
because cost must be positive-valued, then the distance
for different trees cannot have the value 0.

As the Definition states that the distance is the mini-
mal cost of unifying two trees, by applying the editing
operations either to T1 or T2, it is therefore symmetric
by Definition.

The third condition is slightly more complicated and
requires more explanation:

Lemma : Having the edit scripts corresponding to dis-
tances d(Ty, T,) and d(T,, T3), we can unify trees T1
and T3 using the same operations as on both scripts (or
a subset of them).

Proof:

Lets denote:

« TPCX the tree edit consensus (unification) of trees
T1 and T2.

« TPCY the tree edit consensus (unification) of trees
T2 and T3.

+ Sx1(T1) = TPCX - the edit subscript that trans-
forms T1 to TPCX



Koperwas and Walczak BMC Bioinformatics 2011, 12:204
http://www.biomedcentral.com/1471-2105/12/204

Page 11 of 23

f h Tl
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Figure 15 Two trees on the same leafset where the Edit distance is more suitable than others.

h T2

¢ b

» Sx2(T2) = TPCX - the edit subscript that trans-
forms T2 to TPCX
« Sy2(T2) = TPCY - the edit subscript that trans-
forms T2 to TPCY
» Sy3(T3) = TPCY - the edit subscript that trans-
forms T3 to TPCY

The mentioned artefacts are presented in Figure 16.

Because S1(S2(7)) = S2(S1(T)), which will be shown in
the next section, we have:

Sx2(Sy2(7T2)) = Sy2(Sx2(72)) and Sx2(TPCY) = Sy2
(TPCX), because Sy2(T2) = TPCY and Sx2(T1) = TPCX

Therefore, there exists some tree TPCZ, such that Sx2
(TPCY) = TPCZ and Sy2(TPCX) = TPCZ (dotted line
on Figure 16), which can be obtained from T1 and T3
with at most the same number of operations as unifying
T1 with T2 and T2 with T3.

Theorem: The tree edit distance for leaf-labelled trees
meets the third metric condition.

Proof: Due to Lemma, presented earlier, there exists
an edit script S(T1, 73) that can unify trees 71 and 73

at the same cost (or less) than the sum of: d(T}, T5) + d
(T27 T3)

Cost(S(T1,T3)) <= d(Ty, T>) + d(T», Ts)

and because

d(T,, Ts) <= Cost(S(T1, T3))

therefore:
d(Ty, Ts) <= d(Ty, Ts) + d(Ts, T5)
Edit Subscript Order

In this section we show that for a given edit subscript (i.
e. a set of operations on one tree), changing the order
of operations in it will not change the resulting tree.
Therefore, it will also not increase the costs. In order to
show this, we need to show that if edit script consists of
operations: py,..., p, and cy,..., ¢,, then the changing
order of operations does not change the result.

Let us assume that a tree is represented with two sets
E(e;... e,) - a set of internal edges referring by non-trivial
splits and L(/; ... [,) - a set of leaves. Let us consider edit
script ES that transforms T represented with Ej, L; to
tree T, represented with E,, L, and E; € E; and L, €
L;. Assume for a moment that we will not handle forced

T1

Figure 16 lllustration for proof of lemma 1.
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contractions. Under such assumption the edit opera-
tions: contraction and pruning operate on a different set
of items - edges(referred with splits) and leaves respec-
tively. Therefore position of contraction operation, with
relation to pruning operation in edit script (and vice
versa) does not affect the result. Additionally, from the
set theory - the order of items removal from a set is
irrelevant - therefore position of contraction operation
with relation to other contraction operation in edit
script is irrelevant. The same holds for pruning. This
leads directly to conclusion that the order of operations
in edit script does not affect the final result.

One may notice that pruning also removes some
edges, but only trivial ones, which are not considered in
edit distance and may be removed at any time. One may
also notice that pruning changes the bipartition repre-
sentation of all non-trivial splits. It is also not a pro-
blem, as the total number of edges is not affected.
Although we use split representation very often, here
the number of edges is important (not the form of their
split representations).

As it was presented earlier in this paper, pruning may
occasionally introduce forced contraction (see Figure 2).
It does not, however, break the assumption that opera-
tions work on different sets and are independent of each
other.

Let us represent pruning p as the pair of operations
p’ that removes leaf only as assumed earlier and fc that
performs forced contraction. So each time pruning p
occurs in edit script it is replaced with either p’ if
there is no forced contraction to perform or p’, fc.
Operation fc may be treated as regular contraction
operation, with the only difference that it is inserted
by pruning. It can also be easily shown that if we
change the order from p’, fc to fc, p’ the result remains
the same as the pruning operation does not trigger
forced contraction if the appropriate edge was removed
earlier in edit script.

The last thing that we mention is the edge matching.
Forced contraction removes the edge, which is a dupli-
cate of another edge with respect to their split represen-
tation. For example e; = ab|cde and e, = abe|cd will be
consider duplicates if leaf e is pruned. It may be there-
fore problematic which edge e; or e, is in fact removed
from set of edges. Therefore if the forced contraction is
to be done then we shall treat it as the unification of
duplicate edges. That means operations c(e;) and c(e;)
can be used exchangeably within the edit script, as the
edges are unified sooner or later.

Algorithm for Counting Edit Distance of Leaf-labelled Trees
The naive algorithm for this problem can be illustrated
as follows:

d(Ty, Ty) = costy * |L(T1) AL(T2)| + k * costye + ds(T1|L(r)nrL(ry), Taloer)nnr)) (9)
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Vser, min(coste + ds(T1 — 5, T)),
Vser, min(coste + ds(T1, T2 — 5)) 10)
VieL(r,)nL(T,)Min(2 * costy + k * costy + dg(Ty — 1, To — 1))

ds(Ty, T,) = min

where d; is the distance for trees on the same leafset,
T, - s denotes tree T2 with removed split s, A stands for
symmetric difference and k indicates the number of
forced contractions that needed to be performed. To
keep metric property costy. is equal to cost,.. In the equa-
tion the following part: cost, * |L(T1)AL(T,)|+k * costy, is
in fact the cost of unification of leafset for both trees.
The algorithm is therefore exponential with respect to
the number of leaves and the number of splits. We
modify algorithm on the basis of two observations. The
first one is that the order of editing operations is irrele-
vant therefore the algorithm can try prunning opera-
tions before it tries contractions. The second one is that
the Edit Distance will never remove the splits that occur
in both trees (except forced contractions), which can be
easily proved, only differing splits (i.e R-F distance) are
considered. After modifications algorithm presents as
follows (L(T1 = = L(T2)).

dr—p(T1, T2) * costy,

(T, T2) = min { Vier(r,ymin(2 * costy + k x costg + dg(Ty — 1, To — 1)) (11)

The algorithm can also be presented with pseudocode
as follows:

function edit distance(T1,T2, cost_c,
cost_p) {

D1 =L(T1) - L(T2) ;

D2 = L(T2) - L(T1) ;

T1l’=prune (T1,D1) ;

T2’ =prune (T2,D2) ;

//after above operations L(T1’) = = L
(T2")
cost = (|D1|+]|D2|)*cost p+ cost _c *

(how many fc(T1,T1’,|D1l]|)+how many fc
(T2,T2',|D2]|))
+ edit _distance_the same leafset
(T1’,T2',cost_c,cost_p);
return cost;
}
function edit distance the same leafset
(T1,T2, cost_c, cost_p) {
minCost = R-F-distance (T1,T2) * cost_c;
L=L(T1l); // L(T1l) = =L(T2)
For each leaf inL
T1l’=prune (T1, leaf) ;
T2’ =prune (T2, leaf) ;
cost_all fc = cost_c * (how_many fc
(T1,T1’,1)+ how many fc(T2,T2',1));
costT = edit distance the same leaf-
set (T1’,T2’, cost_c, cost_p)
+ 2*cost_p + cost_all fc;
if (costT < minCost) minCost=costT;
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end for

return minCost;

}

function how many fc(T1,T1’,k) { return
[s(T1)| - |s(T1") | +k)

// k parameter is used to prevent counting
trivial split contration directly

// associated with leaf removal

function prune (T1,L) - prunes all leaves
from set L from tree T1 and

performs forced contractions.

This algorithm is now exponential with respect to the
number of leaves. It is possible that this can also be
improved so that it has the same complexity as MAST
for two trees (which is polynomial), but further investi-
gations are required. For the purpose of this paper, we
used a dynamic programming algorithm, where partial
results are stored in memory and re-used if necessary. It
turns out that the algorithm was required to only count
a small part of all possible combinations which also
gives grounds for optimism that a better algorithm will
be found.

Let us look on a few steps of naive algorithm for trees
T1 and T2 from Figure 12

T1:gh|abcdef, fgh|abcde, efgh|abcd, aefgh|bcd, abefgh|
cd

T2:f glabcdeh, dfg|labceh, dfgh|abce, defgh|abce, adefgh|
bc

Trees are built on the same leafset so we may
directly calculate d; equation. dz r (71, T2) = 10. Let
us remove some leaves (we will not show all of them
due to clarity of the presentation): Let us remove a, we
obtain:

T1.gh|bcdef, fgh|bcde, efgh|bed, (efgh|bed), befgh|cd

T2 fg|bcdeh, dfg|bceh, dfgh|bce, defgh|bc, (defgh|bc)

plus the trivial splits

Curly braces denote splits that will be force-
contracted.

dr.r (T1’, T2’) = 8, cost of pruning: 2, and cost of
forced contractions: 2 Total cost in this path: 12, so the
result is worse than dz r (T1, 72), and the prunning
additional leaves will also not improve the result.

So let us remove d instead of a

T1:gh|abcef, f gh|abce, efgh|abc, aefgh|bc, (abefgh|c)

T2:(fglabceh), fglabceh, fgh|abce, efgh|abc, aefgh|bc

dp.p (T1, T2’) = 2, cost of pruning: 2, and cost of
forced contractions: 2 Total cost in this path: 6, so the
result is better than dp r (T1, 72) We may continue
with pruning of another leaf to see if we can improve
the result more, so we remove g

T1":(h|abcef), fh|abce, efh|abc, aefh|bc

T2"(flabceh), fh|abce, efh|abc, aefh|bc

dr.rp (T1% T2”) = 0, cost of pruning: 2, and cost of
forced contractions: 2, cost calculated from previous
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step: 4, so the total cost is equal to 8 thus we received
a worse result. We will not continue with pruning of
other leaves as it will not lead to better result.

Therefore the best cost is 6, and the edit script con-
tains two subscripts:

From T1: p(d), fe(c|abefgh), c(gh|abcef)

From T2: p(d), fe(fg|abceh), c(fg|abceh)

Tree Edit Consensus Tree

Similarly, we may define a new consensus method on
the basis of editing operations called the Tree Edit Con-
sensus Tree. The Tree Edit Consensus Tree is the maxi-
mal (with respect to leaves and edges) common subtree
of the input trees, obtained by contraction and pruning
operations and is defined as follows:

Definition [Tree edit consensus tree (PC-Consensus
tree) ] Having defined the positive value costs of con-
traction and pruning operations, the tree edit consensus
for leaf-labelled trees T1 ... Tn is the minimal cost edit
script that unifies these trees. For trees T1 and T2 in
Figure 12 the tree edit consensus tree is tree 7C = 71
= 72" Similar to MAST, the tree edit consensus tree is
not unique. The experimental assessment of this method
was done in PhD thesis [11] and will not be recalled
here.

Tree Edit Consensus Algorithm

Similar to the edit distance, based on the fact that, if a
prunning operation is used it must be used on all input
trees and the fact that contraction is performed only for
splits that do not occur in all input trees. The naive,
dynamic programming algorithm which counts the
score of the tree edit consenus may be defined as fol-
lows:

Cost(TEC(Ty ... T,) = costy| | L(Ty)— (1) L(T:)I+kxcostye+Cost(TECS((T1 z, ... Tulz) (12)

i=1,..n i=1,..n

Cost(SCT(T ... T,)) = costc,

Cost(TECS(Tr .. Ty) = min {Vlgzmin(n * costy + k * costy. + cost(TECs((Ty —1,..., T, —1)) (13)

where Z = (";_; _, L(T:), SCT stands for strict consen-
sus tree, TEC is the Tree Edit Consensus k is the num-
ber of forced contractions that needed to be performed
and costy, is equal to cost,

The tree edit consensus tree may be obtained by
recording prunning operations used along the optimum
path. Recorded prunnings must be applied to input
trees, and afterwards all unmaching edges must be con-
tracted (strict consensus tree).

Quality of similarity measures

The quality of similarity measures is not obvious to esti-
mate. The best possible method would be a method
based on external criteria i.e. based on expert knowl-
edge. In biological applications, it could be a comparison
of the consensus tree with the true phylogenetic tree.
The true tree however is something that is not known.
We agree with the opinion presented in [4] that
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similarity measures are especially difficult to score as
they are very subjective about what is similar and what
is not. Such a subjective approach to score the distance
requires that someone arbitrarily selects the best dis-
tance matrix. This matrix is to be compared with the
distance matrix achieved with a given similarity mea-
sure. A more objective method would be to prove that a
given measure is best in some particular applications or
may be used to solve some particular problems, like for
example the identification of the ancestral paralog posi-
tion in the paralog families mentioned in [12].

The methods that can be applied to measure the qual-
ity of distance measures and consensus techniques can
be roughly divided into:

+ qualitative methods which try to de ne properties
that the given consensus method or similarity mea-
sure must meet as in [7]

+ quantitative methods which try to measure the
quality of consensus or similarity methods such as
[13]. They are often based on some assumptions due
to the lack of verified domain knowledge

» statistical methods which display the statistical
properties of the given method to help an expert
score the method instead of scoring it automatically,
because the quality of a metric may depend on the
application.

In an axiomatic approach, the most common require-
ment for the similarity measure is that it meets metric
properties, or at least pseudo-metric ones.

The quantitative approach is not very suitable for dis-
tance measures due to lack of objective criteria. Even if
we are supplied with biological data which contain
groups of trees and may count for example the propor-
tion of inner-group distances to between-group dis-
tances, such an approach is not very trustworthy. This is
because we see the effect of the distance measure on
selected sets, which may be different for different parts
of the tree-space. We also ignore some potential proper-
ties of distance, for example that the distance metric
may be better for some topologies of trees but worse for
others and this observation could give hints on where to
use it and where not. Simply put, the quality of a metric
may depend on the application.

Except for proving the metric properties of some dis-
tances, we choose the statistical approach as described
in [4] and perform two kinds of experiment:

« Analysis of distance probability distribution
» Analysis of distance dynamics with respect to

number of changes in trees.

In the first approach, we count the distance for a large
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number of randomly generated unrooted trees according
to different distributions and examine the distribution of
probability. The details of random generation of rooted
trees can be found in [14]) - this method can be adapta-
ble for unrooted trees.

P(d(T1,T2) = k). We try to determine:

» whether the distance distribution has any regulari-
ties, follows any known distribution, which proves
that the distance does not work in a random fashion
« whether the distance is well enough discriminative
(has a large number of values), whether the discrimi-
nation property is equally strong for similar and dif-
ferent trees.

The other approach is to mutate the random tree with
different mutation operations and see how the distance
changes.

More details about the experiments will be provided
in the Results section.

Results and Discussion

In this section, an experimental evaluation of the pro-
posed methods is presented. For the purpose of experi-
ments, we use the randomly generated trees with
different distributions and we evaluate the statistical
properties of the similarity measures as described pre-
viously in this paper. From our propositions, we decided
to evaluate the Tree Edit Distance, No Forced Contrac-
tion Similarity Measure called NFC here and the FS-
based Similarity measure.

For comparison with existing distance measures we
have chosen the R-F and MAST distances. R-F is one of
most popular and computionally efficient distances,
MAST and R-F are in a way foundations of the Edit
measures presented in this paper. We decided not to
normalise the values of distances because sometimes
normalisation is not obvious (as in the case of the Edit
distance). Normalisation is not necessary in the first
experiment as we study the distribution rather than
absolute values. In the second experiment, the lack of
normalisation does not prevent us observing dynamics,
it only forbids the spotting of the crossing points of dis-
tances. The approach of normalising with the maximum
observed value, as used in literature, in our opinion dis-
torts the results, because if the real maximum value is
not achieved then the graph is distorted. The only modi-
fications are made with the FS dissimilarity measure, i.e.
values are scaled and biased in order to be compared
with other distances on the same chart.

In this experiment, trees with 8 leaves are presented,
however tests were also performed with trees with up to
17 leaves for unconstrained trees and 12 leaves for bin-
ary trees, with similar results being obtained.
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Distribution of Distance Probability

For this test, 1000 pairs of trees with 8 leaves were gen-
erated and the distribution of probability P(d(T1, T2) =
k) was examined under different tree generation models,
as mentioned previously in this paper. As the Edit Dis-
tance and its version with no penalty for forced contrac-
tion are parametrizable, various pruning and contraction
operations costs were used. In the following experi-
ments, the edit distance with cost of contraction equal
to x, and cost of pruning equal to y is denoted by E(x,
y), the version with no cost for forced contraction is
denoted by NFC(x, y).

Unrooted binary leaf-labelled trees on the same leafset

First consider Figure 17 which shows the R-F, MAST
and Edit distances with the cost of pruning and contrac-
tion equal to 1. It appears that all of these distances on
this dataset took only 4 unique values each. Among
them only 3 frequent enough to be visible on the figure.
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This leads to the conclusion that they are not very dis-
criminative, as the total number of unrooted binary
trees with 8 leaves is ~ 10*. The Edit distance and R-F
distance behave identically here, the number of occur-
rences of particular distance value increases asymptoti-
cally with the value, which means that these distances
are good only for similar trees. On the other hand,
MAST is also not very discriminative but it is more
reminescent of the normal distribution.

Figure 18 shows that the E(1,1), E(1,2), NFC(1,1), NFC
(1,2), NFC(2,1) distributions are similar or identical. Due
to the fact that E(1,1) is identical to R-F for these data,
they won’t be discussed more here.

The distances E(2,1) and E(3,1) are significantly differ-
ent, especially E(3,1) which is compared to MAST and
R-F in Figure 19. The E(3,1) distribution is similar in
shape to MAST so it can be used both for similar and
distant trees, however it has a wider range of values (11
unique values for E(3,1) as compared to 4 for MAST.)

MAST
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Figure 17 Comparison of distributions of selected measures. Comparison of R-F, MAST and E(1,1) distributions.
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Figure 18 Comparison of distributions of selected measures. Comparison E(1,1), E(1,2), NFC(1,1), NFC(1,2), NFC(2,1) distributions, showing the

number of obtained pairs of trees (y axis) with certain distance values (x axis) in 1000 trials.
N J

Conclusion The first conclusion is that by modifying ~ Moreover, the similarity of the Edit, R-F and MAST dis-
the costs of the Edit distance, we can achieve a measure  tributions shows that the distance is not accidental.
with very well-behaving properties: very discriminative The FS similarity measure is the hardest to interpret
and suitable both for similar and dissimilar trees. (see Figure 20), it also has a wide range of values (19
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Figure 19 Comparison of distributions of selected measures. Comparison E(3,1), MAST and R-F distributions, showing the number of
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Figure 20 Comparison of distributions of selected measures. Comparison of FS dissimilarity measure with R-F distributions, showing the
number of obtained pairs of trees (y axis) with certain distance values (x axis) in 1000 trials.

unique values) so it is discriminative, however the shape
of the distribution is very irregular. However, if we
merge the low peaks with neighbouring high peaks, we
achieve something similar to the R-F distance, i.e
increasing with increasing distance value. So the conclu-
sion is that it is discriminative but works better for simi-
lar trees than for distant trees. It is worth remembering
that this measure is not metric for sure, therefore this
may affect its properties.

Unrooted unconstrained leaf-labelled trees on the same
leafset

This distribution leads to similar observations and conclu-
sions. The E(1,1), E(1,2), NFC(1,1), NFC(1,2), NFC(2,1)
distributions are similar or identical (the figure has been
omitted). E(1,1) and R-F are again similar, however the
distribution does not rise asymptotically with increasing
distance value Figure 21. Both E(3,1) (Figure 22) and FS
(Figure 23) look better than MAST and F-S as they take
more values E(3,1) - 24, FS - 27 versus R-F - 8 and MAST
- 4, which make them more discriminative.

Unrooted leaf-labelled trees on a free leafset

In this experiment trees with at most 8 leaves were gen-
erated. Both binary and unconstrained versions will be
discussed together as the differences are only with the
R-F distance. Characteristics of R-F distribution in this
experiment does not recall typical R-F distribution. The
main reason is that it is unsuitable for comparing trees
with different leafsets as it will always return the maxi-
mum value, which will also be dependent on the

number of leaves of the trees. Therefore the distribution
reflects the conditional probability of selecting two trees
with the same leafset(left part of graph) and trees with
different leafsets (right part of graph) of Figure 24 (bin-
ary) and Figure 25 (unconstrained). As for the other dis-
tances, both E(3,1) and FS behave similarly, having a
wide range of values, while E(3,1) is more regular (see
Figure 26). Both E(3,1) (Figure 22) and FS (Figure 23)
look better than MAST and F-S as they take more
values E(3,1) - 24, FS - 27 versus R-F - 8 and MAST -
4, which make them more discriminative.

Conclusion : To summarise the key points of this
experiment:

« The R-F distance is not very discriminative for bin-
ary trees, it is also weak for distant trees. It is not
suitable for trees with different leafsets.

« The MAST distance is good for the same and dif-
ferent leafset, and is good both for distant and simi-
lar trees, however it is only weakly discriminative.

» The Edit distance, with the variant where cost of
contraction = 1 and pruning = 3, looks very promis-
ing as it has a wide range of values and is equally
good for distant and similar trees.

+ The FS dissimilarity measure is similar to the Edit
distance, but it does not have a very regular
distribution.

« NFC here behaves like E(1,1) i.e. it is equivalent to
R-F for the same leafset and equivalent to MAST for
different leafsets, which is good. However it is still
only very weakly discriminative.
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Figure 21 Comparison of distributions of selected measures. Comparison of E(1,1) with R-F and MAST distributions, showing the number of
obtained pairs of trees (y axis) with certain distance values (x axis) in 1000 trials.
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Figure 22 Comparison of distributions of selected measures. Comparison of E(3,1) with R-F and MAST distributions, showing the number of
obtained pairs of trees (y axis) with certain distance values (x axis) in 1000 trials.
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Figure 23 Comparison of distributions of selected measures. Comparison of FS dissimilarity measure with R-F and MAST distributions,
showing the number of obtained pairs of trees (y axis) with certain distance values (x axis) in 1000 trials.
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Figure 24 Comparison of distributions of selected measures. R-F distributions for binary trees on free leafset, showing the number of
obtained pairs of trees (y axis) with certain distance values (x axis) in 1000 trials.
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Figure 25 Comparison of distributions of selected measures. R-F distributions for unconstrained trees on free leafset, showing the number
of obtained pairs of trees (y axis) with certain distance values (x axis) in 1000 trials.

Dynamics of Distances

For this test, one tree is randomly generated and then
the second tree is obtained with k mutation operations.
Here, we observe the dynamics of distance changes with
respect to number and type of mutations. Due to the
nature of most of the examined distances i.e. Edit Dis-
tance, No Forced Contraction Similarity Measure,
MAST and R-F, we use the following types of mutation:

« Contraction - we randomly remove a selected split
« Pruning - we randomly remove a selected leaf
+ Nearest Non-Brother Interchange (NNBI).

Nearest Non-Brother Interchange (NNBI) is a modifi-
cation of the NNI operation [15]. We choose the nearest
leaves that are not brothers and interchange the leaves
as shown on Figure 27. The motivation for such a type
of mutation is that we wanted to achieve such a modifi-
cation of a tree that both pruning and contraction can
be used to level the changes made by the operation.
Direct use of both C and P in the mutation process
leads to a situation where the number of leaves changes
and therefore the R-F distance is hard to be compared
to. The NNBI operation can be levelled with either one
contraction or one pruning operation if the cousins are
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Figure 26 Comparison of distributions of selected measures. Comparison of E(3,1) distance and MAST distributions, showing the number of
obtained pairs of trees (y axis) with certain distance values (x axis) in 1000 trials.
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Figure 27 Nearest Non-Brother Interchange of leaves f and d.
A

a (a)

3 edges away from each other. The resulting input trees
are of the same leafset so the R-F distance can also be
taken in the experiments which is exactly what we
wanted to achieve. For the trees shown in Figure 27, it
is possible to either prune leaf f (or d) from both trees
or contract splits eflabcd and ed|abcf to make the trees
identical.

To analyse the results, let us see the distances counted
with respect to the contraction operation (Figure 28).
All distances have similar linear dynamics and might
have been simply scaled to behave identically on these
data. It can be seen that all distances that have a cost of
contraction equal to 1, are identical. NFC(2,1) was not
identical but very similar, so it is illustrated with the
same line. Those distances with a cost of ¢ = 1 and
NFC(2,1) scale the most naturally as the distance is sim-
ply equal to the number of mutations, the distance is

directly proportional to the number of mutations with k
= 1. Increasing the cost of contraction makes the edit
distances increase quickly.

For a pruning mutation, the situation looks very simi-
lar (see Figure 29) i.e. all distances would have identical
values if scaled, however a few things should be pointed
out. The R-F distance here gets smaller with increasing
number of p operations. This is because it does not
work for trees with different leafsets, in such a case it
returns the maximum possible value, which is lower for
a smaller leafset, and this is exactly what is illustrated in
the Figure. Another point is that while the R-F was the
distance best scaled for contractions, MAST is the dis-
tance best scaled for pruning. This is natural because R-
F uses contraction while MAST uses pruning. So if we
consider not just pruning nor just contraction, but wish
to use both, then the distances do not have the same
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Figure 28 Comparison of distances with respect to number of contraction mutations.
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Figure 29 Comparison of distances with respect to pruning mutation.

dynamics. What is seen here is that NFC(2,1) scales best
for both contraction and pruning. This can be visualised
better when we see the reaction of distances on contrac-
tion and pruning on the same chart. In Figure 30, we

can see the reaction of R-F, MAST and NFC(2,1) with
respect to contraction, pruning, and Nearest Non-
Brother Interchange (i.e an operation that is neither
contraction nor pruning but the distance can be realised
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Figure 30 Comparison of distances with respect to all mutations. Comparison of distances with respect to pruning, contraction and NNBI
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by both of these operations). We can see that only the
NFC dynamics are similar irrespective of the type of
mutation used.

Conclusions

In this paper we have proposed new technique for mea-
suring distance between leaf labelled trees on free leaf-
set, and provided its evaluations with respect to
frequent subsplit based method and other measures.
The tree edit distance was proven to be a metric and
has the advantage of using different costs for contrac-
tion and pruning, therefore their properties can be
tuned depending on the needs of the user. It is difficult
to pick the best distance measure as they all have differ-
ent interesting properties and may be used in different
applications. Two of the presented methods carry the
most interesting properties. E(3,1) is very discriminative
(having a wide range of values) and has a very regular
distance distribution which is similar to a normal distri-
bution in its shape and is good both for similar and
non-similar trees. NFC(2,1) on the other hand is propor-
tional or nearly proportional to the number of mutation
operations used, irrespective of their type. All of these
distances have a great advantage in that they can take
different costs of contraction and pruning, therefore
their properties can be tuned depending on the needs of
the user. Future works will be dedicated to discovering
more efficient algorithm for tree edit distance and deep
experimental evaluation of tree edit consensus method
for leaf-labelled trees on the same leafset.
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