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Abstract

Background: Immunosignaturing is a new peptide microarray based technology for profiling of humoral immune
responses. Despite new challenges, immunosignaturing gives us the opportunity to explore new and
fundamentally different research questions. In addition to classifying samples based on disease status, the complex
patterns and latent factors underlying immunosignatures, which we attempt to model, may have a diverse range
of applications.

Methods: We investigate the utility of a number of statistical methods to determine model performance and
address challenges inherent in analyzing immunosignatures. Some of these methods include exploratory and
confirmatory factor analyses, classical significance testing, structural equation and mixture modeling.

Results: We demonstrate an ability to classify samples based on disease status and show that immunosignaturing
is a very promising technology for screening and presymptomatic screening of disease. In addition, we are able to
model complex patterns and latent factors underlying immunosignatures. These latent factors may serve as
biomarkers for disease and may play a key role in a bioinformatic method for antibody discovery.

Conclusion: Based on this research, we lay out an analytic framework illustrating how immunosignatures may be
useful as a general method for screening and presymptomatic screening of disease as well as antibody discovery.

Background
The human immune system is a rich source of informa-
tion about the health and disease status of an individual
[1-4]. Immunosignaturing is a new technology that may
be useful to decode the vast amounts of health informa-
tion contained in the immune system. An immunosigna-
ture is a pattern containing multiplexed signals from
chronic or recently matured antibodies. These signals
come from a sufficiently diverse set of peptide targets
on a microarray. Thousands of peptides of random
sequence (mimotopes) provide the density and diversity
sufficient to discriminate different diseases. An initial
question, and the aim of this paper, is how best to ana-
lyze and decode the information from immunosignatur-
ing studies. Previous reports [1-3] used frequentist
statistics (ANOVA or t-test) and cluster analysis (hier-
archical clustering and Principal Components) to

identify features that classify disease states. We examine
other methods that may yield better performance in
immunosignature analyses. Corrected T-Tests as well as
logistic and multinomial logistic regression models have
demonstrated an ability to differentiate between patients
with different disease states even after stringent correc-
tions for running multiple statistical tests (alpha infla-
tion). Confirmatory factor analysis is an additional
method which provides an abundance of information
relating to the clustering of samples as well as providing
an alternative method for categorizing and determining
the disease state of a single sample. Descriptive statistics
help to paint a better picture of the overall immune sys-
tem activity. Finally, structural equation modeling and
mixture models can help explain the underlying struc-
ture of an immunosignature.
For these analyses we examined a dataset containing

breast cancer samples along with patients who had a
second primary tumor (not a recurrence). The group
with a second primary tumor was included in the ana-
lyses because if these patients could be diagnosed as
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having a high probability of developing a second tumor,
they could be more closely monitored.
In an immunosignaturing study, sera samples are col-

lected from participants and the physical information
from the immune system is extracted using high density
peptide microarrays. Each microarray contains a large
number of peptides; in this case 10,375 peptides. The
selection of these peptides was designed to give broad
spectrum coverage of relevant antigens in the human
immune system. The relevant nature of each peptide
capitalized on early phage display research [1]. The deci-
sion was made to use a peptide microarray instead of
phage library panning because of the increased speed
and efficiency offered by a peptide microarray [1]. Ide-
ally, if we can better understand the information cap-
tured by the peptide microarrays we may be able to
develop quick, accurate, unobtrusive and inexpensive
screening tests for many types of disease.
Classic peptide microarrays are created by spotting

overlapping peptides corresponding to linear sequences
of proteins known to be involved in an infectious dis-
ease. These arrays cannot identify non-linear epitopes.
The epitopes are identified when B-cells produce antibo-
dies (usually IgG) specific to 8-12 residue peptides that
are components of the antigen protein. In contrast,
immunosignaturing arrays utilize random-sequence pep-
tides. Random sequence peptides have some specific and
reproducible affinity to antibodies, and determining the
level and pattern of binding is core to determining the
difference between patients with different diseases.
Although much research has been done on statistical

analyses using microarrays, immunosignaturing microar-
rays pose a number of novel challenges not encountered
in traditional microarrays. In nucleic acid microarray
technologies, binding is essentially only between two
types of molecules of complementary sequence. For
example, in a genotype array, genomic DNA binds to
complementary nucleic acid probes that have either
matches (e.g., perfect match, PM) or mismatches (MM)
and the signals from the different probes are combined
to make homozygous and heterozygous base calls for
individual single nucleotide polymorphisms (SNPs). In a
gene expression microarray, only a specific fragment of
RNA will bind to the oligonucleotide on the array. With
modern microarrays, as long as there is a sufficient
abundance of RNA on the array, it will generally bind
only to the specific complementary probe, with very lim-
ited non-specific binding.
With immunosignaturing microarrays, the intensity

values are a continuous value from 0-65,000 and binding
is not restricted to a single “complementary” molecule.
Multiple antibodies in IgG could bind to the same
20mer peptide on the array. Also, although the immu-
nosignaturing arrays are designed to measure IgG, there

may still be competitive binding from other material in
the sera and from other types of immunoglobulin. Com-
petitive binding could result in an IgG antibody not
binding at all or binding with a lower affinity. This
could be potentially problematic if the auxiliary particle
reducing binding affinity does not differ systematically
across groups. Furthermore, a single antibody may also
bind to multiple peptides on the array; a problem almost
non-existent in genotype or gene expression arrays.
With the potential for so many different things to

bind to a peptide on the array, it is not immediately
clear how accurately traditional and more novel statisti-
cal methods would perform. One primary goal of the
research reported here was to determine if the proposed
statistical methods were capable of effectively analyzing
the data and producing a correct pattern of results. For
example, with a number of different things binding to a
peptide and antibodies binding to multiple peptides it
was initially uncertain if this would produce erratic sig-
natures which would lead to incorrect results when cer-
tain methods were used.
Despite a number of new complexities created by

immunosignaturing microarrays, these challenges give
us the opportunity to test the performance of classically
used methods such as factor analysis models in a differ-
ent environment while also allowing us to ask new and
fundamentally different research questions. In order to
answer these new research questions, there is a need to
use different statistical models not commonly used to
analyze microarray data. This is because more tradi-
tional models used to analyze microarrays lack the ver-
satility to adequately capture and explain the
complexities of immunosignatures. Here, we explore the
use of structural equation models in order to try to
determine whether the immunosignature formed by the
fluorescent values of the 10,375 peptides is mostly ran-
dom or if there is a consistent underlying pattern or fac-
tor structure to an immunosignature that correlated
with disease. This research question is made possible
because of the novelty in immunosignaturing arrays that
that allow a single antibody to bind to multiple peptides
on the array. This research shows that there are com-
plex and consistently reproducible structures underlying
peptides which differentiate groups. Such patterns can
be used as biosignatures for disease as well as provide
deep insight into antibodies and immune response to
disease. Although there are new analytic challenges in
immunosignaturing, it is these exact challenges that pro-
vide the promise of new discoveries while laying the
groundwork for applications in future research and
technologies.
In this paper we present a range of statistical methods,

their use and demonstrate what type of information they
can provide researchers in immunosignaturing studies.
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We show the ability to classify samples into their
respective disease categories and find peptides which
significantly predict disease status. This provides a pro-
mising method for screening and potentially presympto-
matic screening of disease. We also identify a number of
latent factors using SEM. We hypothesize that the latent
factors being modeled may represent specific antibodies
that differ among disease classes.

Methods
Patient samples are analyzed by applying the sera or
plasma to the array at a 1:500 dilution, detected with an
anti-human fluorescent antibody, and the signals are
read using an Agilent C laser scanner. Images are pro-
cessed using GenePix Pro 8 providing a text file of
values for each peptide. Binding affinity is a continuous
value from 0-65,500 (16 bit image). Genepix software
was used to convert the 16-bit TIFF images to values,
median non-background subtracted values were used
and log10 transformation was done on the median nor-
malized intensity values. Three distinct datasets were
used in these analyses. One was a set of samples from a
random group of individuals without breast cancer, a
second set of samples is from a group with breast can-
cer and finally the third set of samples is from a group
of patients who were diagnosed with a second primary
tumor. The normal samples were a convenient sample
of individuals without any known breast cancer history.
The breast cancer samples were a sample of current
breast cancer patients with different levels of disease
progression and diverse demographic backgrounds.
There were 52 samples from normal individuals without
cancer, 98 samples from cancer patients with a single
primary tumor and there were 21 samples with second
primary tumors. Human subjects protection was
observed, collaborators ensured all samples were col-
lected under the same protocol. All of the sample came
from females between the age of 45 and 54. The specific
ages for each sample was kept from us because of
HIPPA and patient privacy concerns. All pre-processing
was median-normalization per microarray slide, to
adjust for global intensity bias. Data was also log10
transformed. The spot intensity was the median signal
(obtained by GenePix Pro) with no local background
subtraction. Background subtraction was not used
because the arrays showed consistent background across
the 1172 empty spots which were spread across the phy-
sical surface of the array. Technical replicates also
showed greater reproducibility without background sub-
traction than with, indicating that the method for sub-
tracting background was not useful. Additionally, the
local and global background estimates were, on average,
150-300 RFU, which for any microarray is extremely
low considering the 3+ logs of dynamic range.

It is common in similar lines of research, such as gen-
otype experimentation to use a pattern matched experi-
mental design. Matching participants in an experiment
has the effect of increasing homogeneity among groups.
As a result, the reduced within class variation which
often accompanies matching designs has the effect of
reducing the standard error and denominator of com-
mon statistical tests. This in turn leads to higher statisti-
cal power. Additionally, more homogeneous groups
often enable easier classification in exploratory models.
In the data analyzed here, the normal non-cancer sam-
ples were not matched to either the cancer groups, how-
ever research has shown that the signature of immune
response is far less susceptible to the type of personal
factors that genetic studies are - even HLA has only a
minor effect on the consistency of a disease state immu-
nosignature pattern [1,2].
Given that immunosignaturing is a new technology,

early investigations, contrary to initial belief actually
capitalize on the lack of rigid experimental designs. This
is because additional sources of variance in the data
allow us to better understand the robustness of the
technology and related statistical analyses. If a method
can perform well in a somewhat noisy environment with
loose experimental designs, it is highly likely to perform
even better when well curated studies (such as matched
designs) are performed. In many respects, testing immu-
nosignaturing data with loosely structured and curated
data provides a much more stringent test of the technol-
ogy and methods. Being able to obtain statistically sig-
nificant results with the correct patterns of results from
such unstructured data illustrates the versatility of
immunosignaturing technology and the statistical meth-
ods tested here.
Understanding the robustness of the technology pro-

vide guidance for future experiments using this technol-
ogy while giving insight into the potential clinical use of
immunosignaturing. Biologically, it is possible that
healthy normal individuals with no active infection are
responding immunologically to their environment, and
persons with an infection have a focused immune
response. It is likely that high variation in immune
response to an environment would be present across
individuals. Therefore, in order to be clinically useful, it
is imperative that the technology and methods are
robust enough to function accurately outside of pre-
cisely controlled laboratory settings; as would be
encountered during clinical deployment of the
technology.

Results
Descriptive Statistics
Table 1 provides basic descriptive fluorescence intensity
statistics of each of the three disease groups. Descriptive
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statistics of an immunosignature provide a significant
amount of insight into the underlying immune response
during disease states. Of particular biological interest in
this sample is the difference in the range of values from
the three groups. The normal and single tumor cancer
samples have ostensibly the same floor value while the
second primary tumor cancer samples have a much
lower floor value. This may suggest a suppression of the
immune system in second primary tumor cancer sam-
ples. The single tumor cancer and second primary
tumor cancer samples have progressively higher maxi-
mum values which may suggest an increased immune
response associated with cancer and a reoccurrence of
cancer.
Although there are large differences in the ranges, in

order to have any predictive validity, the differences in
ranges need to be consistent across samples within each
group. For example, a high fluorescence value over
45000 in the second tumor samples needs to occur on a
given peptide with regularity to produce a statistically
significant result.

Classical Statistical Significance Tests
There are a number of statistical tests which could
potentially be used to test whether the differences
between groups across peptides are significant beyond
what would be expected by chance alone. Some of these
methods include the T-Test, corrected T-Tests, Logistic
Regression and Multinomial Logistic regression. The
standard T-Test divides the mean difference between
two groups by a standard error to produce a T-Statistic
used for null hypothesis significance testing. One pro-
blem with the standard T-Test is that normal theory
underlying the test makes the assumptions that the var-
iances in both groups are equal. The problem of
unequal variances in a T-Test is commonly known in
the statistics literature as the Behrens-Fisher problem
and has been researched for the better part of the last
century in various contexts. If the assumption of equal
variances is violated, the T-Statistic can be either
inflated or deflated depending on the samples sizes in
each group. As a result, the analyses were conducted
using a Satterthwaite corrected T-Test. The

Satterthwaite test is one of numerous corrections for
unequal variances that have been proposed over the
years. The Satterthwaite test works by adjusting the
degrees of freedom in the test. The resulting correction
produces an asymptotically correct T-statistic when
groups have unequal variances. The Satterthwaite cor-
rection works by modifying the degrees of freedom via
equation 1:

df =
(w1 + w2) ∗ 2

w1 ∗ 2
n2 − 1

+
w2 ∗ 2
n2 − 1

(1)

A Satterthwaite corrected T-Test and a number of
similar test corrections which could have also been used
such as a Brown-Forsythe correction in an ANOVA
model tended to produce statistically significant results
after a Bonferroni correction for multiple testing (alpha
inflation). A Bonferroni correction was used to protect
against alpha inflation because with a standard alpha
level of .05, purely by chance alone, 1 out of 20 tests
will be significant. The Bonferroni correction divides the
alpha value by the number of tests run; in this case
10,375, or one for each peptide on the microarray. This
resulted in a corrected p-value threshold of 4.819*10-6.
Nonetheless, despite this much lower p-value, highly sig-
nificant results are still obtained for Satterthwaite cor-
rected T-Tests comparing normal versus single tumor
cancer samples, normal versus second diagnosis samples
and single tumor cancer versus second primary tumor
cancer samples. Table 2 shows the top 10 significant
peptides for a Satterthwaite corrected T-Test comparing
normal samples to cancer samples. Logistic and Multi-
nomial logistic regression may also be of interest and an
alternative method for comparing groups to the tests
used here. One place in which logit models may be use-
ful is if a researcher in future studies has a known set of
covariates they wish to control for. For example, in the
study of diabetes, it may be of interest to control for
body mass index or HB1AC test results.

Exploratory Factor Analysis
Factor analytic models have previously been used in
analyzing immunosignatures and are quite common in
analyzing high dimensionality microarray data [2,5,6].
Each of the models explored during this line of research
were investigated in order to determine its feasibility for
answering a specific research question. Exploratory fac-
tor analysis (EFA) was examined as a method to be able
to differentiate samples based on disease states with no
prior clinical knowledge of the samples. Estimation of
EFA models was performed using ordinary least squares
(OLS). EFA with Promax rotation proved significantly
better than chance at classifying samples. EFA is a set of

Table 1 Fluorescence intensity and descriptive statistics
for the three disease groups

Group Mean Minimum Maximum Std.
Deviation

Variance Range

Normal 329 207 9672 93 10336 9465

Single
Tumor

336 204 16702 115 16258 16498

Second
Tumor

676 36 49880 549 339301 49844
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procedures that accounts for the relationship among a
set of variables in terms of a smaller set of underlying
latent constructs or factors. (For example, a factor is a
disease state.) We specifically use principal axis factoring
with iterated communalities. Although PCA and EFA
are quite similar, an important difference between the
two methods is that PCA makes the assumption that all
of the variance in an item is a reflection of common
variance shared among all items whereas EFA posits
that each item shares some common variance with all
other items but also has its own unique variance. Math-
ematically the difference between PCA and EFA is the
addition of single matrix; D2.

Rzz = A ∗ Rf ∗ A’ + D2 (2)

In equation 2 Rzz is the correlation matrix among the
observed variables. A is a matrix of factor loadings, Rf is
the correlation matrix among the factor loadings, the A’
denotes the transpose of the A matrix of factor loadings
and thus ARfA’ is the matrix representation of the com-
mon factor structure. D2 is a diagonal matrix that cap-
tures the unique variance weights and distinguishes EFA
from PCA.
Varimax and Promax rotation methods were

explored in depth. This is in part because Varimax is
often a starting point for a Promax rotation. A sample
is said to “load on” a given factor when the model sug-
gests a strong fit on the given factor. Rotation in EFA
is a method for making factor loadings more interpre-
table. Rotation methods change the relationship
between items and the factors (which are geometrically
represented as axes). Rotation does not change the
relationship among the individual items. Since rotation
methods only make changes to the axes and not to the
communalities (variance accounted for), rotation does
not mathematically change the initially obtained
results. Rotation makes the factor loadings more
interpretable.

Varimax uses a complexity function to maximize the
variance of the squared loadings on each factor. This
results in loadings with a more even spread across the
factors; as opposed to having an overabundance of load-
ings on a first factor. Varimax is an orthogonal rotation
that maintains the orthogonal (90 degrees) intersection
of the axes. This has the result of keeping the correla-
tion between the factors at zero because the cosine of
90 degrees is 0.
Promax is an oblique rotation that allows the angle

between the axes to vary. In statistics, variance has to be
accounted for in some part of the model. Allowing the
axes to vary and thus a correlation between the factors
is another path to account for variance. Allowing var-
iance to be expressed in terms of correlations between
factors has the result of not forcing variance between
factors to be represented as between item variance. This
can result in cleaner factor loadings. Additionally, the
assumption that there is no correlation between factors,
or in this analysis, disease states, is unlikely because
there will always be some additional common variance
and similarities in immune samples due to basic
immune responses and structures present across all
samples.
Unlike Varimax, Promax does not use a complexity

function. Rather, Promax rotation is a procrustean rota-
tion to a target matrix. In Promax, a pattern matrix of
loadings (often derived from Varimax rotation) is taken
to some power (i.e., squared, cubed etc.) to form a tar-
get matrix. The original loading components are then
rotated to get as close as possible to the newly formed
target matrix. A number of EFA models with Promax
rotation were run to investigate the utility of this
method for differentiating between groups with no prior
knowledge of group membership. Table 3 provides sum-
mary results. The number of factors was known to be 2
for each comparison. Scree plots were used to validate
the hypothesis. None of the plots suggested the presence

Table 2 Top 10 significant peptides for a Satterthwaite corrected T-Test comparing normal samples to cancer samples

Variable ID Peptide Sequence T-Value Degrees Of
Freedom

P-Value

V2833 HFRKWHKRRWKHHKKWKGSC -6.51 132.4 1.4372E-09

V3113 HRFKWHWKHRFHHFHRFGSC -6.29 144.41 3.5843E-09

V6772 QKFKHQQGSFKLPWLSMGSC -6.29 144.84 3.5843E-09

V9732 WRRSTPVGPWTWFGKFLGSC -6.12 146.1 8.1933E-09

V7196 RFGRPQHQHDFRRHAIYGSC -6.06 146.8 1.1046E-08

V6978 QSHMTLAPGIRRYKKFNGSC -6.06 146.32 1.1046E-08

V7387 RMGFGLYERLWGKTNHYGSC -6.01 134.26 1.6532E-08

V9561 WKWKRHWKWPHRRKHFFGSC -5.95 144.49 1.9475E-08

V6987 QSIGLGYSAFMPKWPFRGSC -5.93 140.13 2.2543E-08

V3249 HWKRHHRPKHKHHRHKHGSC -5.9 145.4 2.4586E-08
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of a strong third factor. A scree plot plots the eigenva-
lues for each component. The largest components
before a leveling off is used to determine the appropriate
number of factors. Factor loadings greater than .3 were
said to load on a given factor. If loadings for both fac-
tors were less than .3 the sample was said to not
counted as a correct classification on either match.
Catell (1966) provides a more detailed description of
how to use eigenvalues and scree plots for determining
the number of factors [7].
An EFA between cancer samples and the samples from

patients who had a second primary tumor produced a
correct classification for 93.45% of the cases. Of the cases
that were miscategorized, all of them except one were
cancer cases that loaded more highly with the second pri-
mary tumor group. There are a few possible explanations
for this. This could simply be model error resulting from
the lack of homogeneity among the first time cancer
group. However, it is possible that the miscategorized
cases may represent individuals who will at some point in
the future develop a second primary tumor or are unbe-
knownst to the researchers already in the process of
developing one. All this says is that less than 10% of can-
cer samples are more closely related to the samples of
individuals who had acquired a second primary tumor
than the samples with a single primary tumor.
A second EFA was run between the normal or non-

cancerous samples and the samples with a second pri-
mary tumor. The overall classification accuracy was
84.8%. Within this model, 74.1% of the normal samples
loaded correctly on the same factor whereas 100% of
the second primary tumor samples loaded on the cor-
rect and same factor.
A third EFA was run exploring the relationship

between normal or non-cancerous samples and single
tumor cancer samples. Using the same model specifica-
tions as in the first model, this EFA produced a 68%
classification accuracy. Although this is quite low by tra-
ditional model building standards, there are a number
of factors relating to the data which may make this a
useful starting point. First, the normal patients were
taken from a wide range of convenient lab samples.
Some of the normal samples may have come from indi-
viduals outside of the age and traditional demographic
background to even be remotely at risk for breast

cancer. Secondly, the stage and progression of cancer
patients was unknown. As a result, an additional possi-
bility for the classification accuracy may be that the
cross loadings represent a mixture of early stage cancer
patients and those at high risk for or who are develop-
ing cancer.
Unfortunately, detailed information about the disease

state of the samples is unavailable and does make con-
jectures purely hypothetical. However, in all models, the
results are significantly better than chance and illustrate
in many ways the performance of the technology and
approach under adverse conditions. The three models
taken in concert illustrate that the lack of a concrete
and well curated control group is likely responsible for
the decremented classification accuracy in some models.
This can be most clearly seen when considering that the
single tumor cancer and second primary tumor cancer
samples consistently exhibit stable factor loadings with
relatively low cross loadings because the single tumor
cancer samples serve as a much cleaner control group
for the second primary tumor cancer samples than the
normal do for either of the cancer groups. This early
research suggests that future studies using more pre-
cisely selected control groups and experimental design
would have even better ability to classify cancer patents.
Beyond classification accuracy, the similarity between

different factor based models and rotations is extremely
informative from a biological perspective. All combina-
tions of PCA and EFA with Varimax or Promax gave
highly similar results with respect to overall classifica-
tion of groups across a number of different analyses.
Although specific factor loadings certainly had different
values, the overall picture and classification accuracy
was relatively constant. Brief investigations into other
rotations such as Oblimin were also explored in the
context of EFA models and produced similar results to
Varimax and Promax.
First, with respect to PCA versus EFA, the lack of differ-

ence suggests that the vast majority of the variance
accounting for classification is at the factor level (ie. osten-
sibly disease state) and not the individual level. This is
because as the D2 matrix which differentiates the two
methods captures the unique variance in an EFA model
and as the D2 matrix approaches zero, an EFA model
approaches a PCA model. Therefore, since the D2 matrix
is the only difference in the equation and an analytic solu-
tions exists due to Ordinary Least Squares estimation, we
can conclude that the lack of difference was because there
was relatively little unique variance present.

Confirmatory Factor Analysis
Since EFA models showed the ability to differentiate
samples, a logical clinical application of immunosigna-
turing would be to screen a single sample from an

Table 3 Exploratory Factor Analysis Results

EFA Model Correct
Classification

Single Primary Tumor and Second Primary Tumor
Samples

93.45%

Non-Cancerous and Second Time Cancer Samples 84.4%

Non-Cancerous and First Time Cancer Samples 68%
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individual to determine his or her disease status. Confir-
matory factor analysis (CFA) was chosen as an ideal
method for investigating this question due in part to the
similarity with EFA and because of the versatility to
examine one specific sample in detail. EFA is an
exploratory method that should be used when the num-
ber of groups or structure of the data is not well under-
stood. Conversely, CFA is a confirmatory method that
can be used when the structure of the data is well
understood. As the name implies, exploratory factor
analysis, EFA models should not be used as confirma-
tory model or to confirm a hypothesis.
Both CFA and EFA attempt to explain the underlying

structure in a dataset. However, CFA and EFA approach
the problem from two distinct directions. EFA makes
almost no prior assumptions about the structure of the
data and attempts to sort through the data to help a
researcher determine what the underlying structure of
the data is. In this research, the general group member-
ship was known and thus the appropriate number of
factors was specified apriori. In a CFA model, the
researcher explicitly identifies not only the number of
factors but which cases load on each factor as well as
factor variances, covariances between the factors and
disturbances for each item. CFA models are not data
mining approaches and require well formulated notions
about the underlying structure of the data.
Mathematically, the simplest formulation of a CFA

model in matrix notation is:

X = ∧ ∗ ξ ∗ �L (3)

In Equation 3, × is a vector of observed variables, Λ is
a matrix of factor loadings, ξ is a matrix of scores for
each variable on a factor or latent construct and Δ is a
vector containing measurement error.
In the CFA models analyzed here, one sample from

each factor (disease state) was chosen at random as a
scaling constraint in order to ensure identification in
these models. Maximum likelihood estimation with
robust standard errors was used to estimate these CFA
models. The known disease status was the basis for
defining the factor loading for each sample. A sample
was allowed to load only on a single factor and fixed to
zero on the other. Variances and covariances between

all factors were estimated. Summary results are provided
in Table 4.
For a CFA comparing single tumor cancer samples and

second primary tumor samples, 89.9% of samples loaded
on the specified factor. For a normal versus second pri-
mary tumor CFA, 93.1% of the samples loaded on the
specified factor and a normal versus single tumor CFA
produced sample loadings on the specified factor 83.4%
of the time. The difference in classification accuracy
between the CFA and EFA models is due to a number of
factors; some of which include model variance and covar-
iance specifications as well as different estimator types.
One primary advantage CFA models have over EFA

models are fit indices which give some quantitative mea-
sure of how accurately the specified model is. Although
there are a plethora of fit indices that have been proposed
within the structural modeling framework that CFA
models reside, the chi-square difference test, root mean
square error (RMSEA) and standardized root mean error
(SRMR) are among the most common and widely cited.
The chi-square test ostensibly tests how well the speci-

fied model reproduces the covariance matrix from the
original data. The problem with this test is that it is so
sensitive that it is nearly impossible to obtain statistically
non-significant results. It is important to note that the
null hypothesis of this test is that there is no difference
between the specified model’s covariance matrix and the
covariance model in the actual data, a non-significant p-
value is the desired outcome. Because it is of interest to
find no difference between the specified model and the
data, a non-significant p-value is the goal. The chi-square
test for all of the CFA models was significant with p <
.001 suggesting that there is a statistically significant dif-
ference between the specified model covariance matrix
and the covariance matrix of the original data. However,
the chi-square test is extremely sensitive and often
detects trivial differences [8,9]. Noting the sensitivity of
the test is not meant to suggest that in fact the specified
CFA models are perfect fits or deny lack of fit. Rather,
the test is noted because it is among the most common
fit indices and the issues with the test are noted as a
means of providing appropriate context for the results.
The Root Mean Square Error of Approximation

(RMSEA) and the Standardized Root Mean Square Resi-
dual (SRMR) are two common fit indices used in the
Structural Equation Modeling (SEM) framework
description; of which CFA is a part of. The basis of the
RMSEA is a non-centrality parameter. The simplest
reduced form of the RMSEA equation is:

RMSEA =

√√√√√
(
x2

df

)
− 1

n − 1

(4)

Table 4 Confirmatory Factor Analysis Results

CFA Model Correct
Classification

Single Primary Tumor and Second Primary Tumor
Samples

89.9%

Non-Cancerous and Second Time Cancer Samples 93.1%

Non-Cancerous and First Time Cancer Samples 83.4%
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In equation 4, X2 is the model generated chi-square
value, df is the degrees of freedom and n is the sample
size. Smaller RMSEA values suggest better fit. The
SRMR measures the standardized difference between
the observed covariance matrix and the model implied
covariance matrix.
For the CFA model for single tumor samples versus

second primary tumor samples, the RMESA was .083
and the SRMR was .071. For the CFA model comparing
normal versus second primary tumor samples the
RMSEA was .097 and the SRMR was .076 while the nor-
mal versus single tumor samples produced a RMSEA of
.07 and a SRMR of .074. These are marginally significant
results because traditional benchmarks cite .05 as a cut-
off for statistical significance [8]. RMSEA and SRMR
values in the .05-.08 range are usually regarded as mar-
ginally significant. Although the results do not meet the
rigid .05 level, they are actually quite impressive when
considering the experimental design and the fact that a
portion of the lack of fit may actually be representing
natural biological patterns such as the development of a
first or second tumor.
Perhaps the real utility of a CFA model for immuno-

signaturing could come in the form of diagnostic testing.
Given the accuracy of the CFA model with this data,
once a well curated set of samples for a certain disease
or collection of diseases has been established, a CFA
model could be specified where a new unknown sample
could be allowed to load on both (or multiple) factors.
By comparing the relative loadings on the factors, it
would be possible to determine to which group the sam-
ple most likely belongs. For example, there are numer-
ous subtypes of breast cancer and different stages of
disease progression. If a collection of samples was avail-
able as a concrete reference set, a CFA model could be
easily and accurately employed as a new method for aid-
ing in the diagnosis as well as perhaps early detection of
breast cancer.

Structural Equation Models
From EFA, CFA and descriptive statistics we know that
the immunosignatures as a whole are in fact different
across groups while corrected T-Tests show that there
are statistically significant systematic variations. The
logical question arising from these findings is how pre-
cisely do the immunosignatures differ from one another?
Is there a clear, consistent and reproducible pattern
underlying the differences in immunosignatures across
disease states? Because a single antibody can bind to
multiple peptides and different antibodies can bind to
the same peptide, a coherent pattern of peptide fluores-
cence across an immunosignature is much more infor-
mative than the fluorescence of individual peptides on
their own. Furthermore, being able to identify common

relationships and covariances between groups of pep-
tides is of even greater utility. This can be accomplished
by modeling latent factors.
On a genotype microarray, the probe is directly mea-

suring an individual’s genotype at a specific location. In
contrast, the peptide probes on an immunosignature
array are indirectly measuring immune response and
antibodies present in the sera. When measures are not
directly observed they are often referred to in statistical
and structural equation modeling literature as latent fac-
tors. If there are clear, consistent and reproducible pat-
terns caused by specific antibodies in a sera sample
binding to peptides on an immunosignaturing array, it
should be possible to model individual antibodies as
latent factors. For example, when reading the tick marks
on a mercury thermometer, one is not reading a direct
measure of temperature but rather displacement of mer-
cury. The latent factor measured by displacement of
mercury is temperature because from a purely physics
standpoint, temperature is the kinetic energy of an
object; usually measured at the molecular level. Another
example of a latent factor is depression. Psychologists
cannot directly measure depression but they can ask a
series of questions that cumulatively allow them to
model the latent construct of depression. Each question
in a depression inventory gets at one small piece of the
latent factor depression in much the same way that pep-
tides on an immunosignaturing array provide an indirect
measure of immune response; as measured primarily by
IgG antibodies.
Structural equation modeling (SEM) is specifically

designed for modeling latent variables. SEM models
have two parts: a path model comprised of regressing a
set of variables on another and a measurement model in
which CFA is used to form latent variables. When a set
of measured variables is set to load on a given factor,
the result is a latent factor. In SEM, the resulting latent
variables can be treated as either endogenous or exogen-
ous variables; depending on the research question of
interest. A full SEM model is a collection of equations
defining each variable and their relation to one another.
Since complex models can quickly generate a large
number of equations, SEM models are often represented
graphically for quicker interpretation. Since confirma-
tory factor analysis is a major component in a full latent
variable structural equation model, attempting to classify
samples with factor analytic methods lent evidence to
the feasibility of SEM models. These early models also
provided a plethora of background information which
aided in the testing of full SEM models.

Initial SEM Testing
Despite evidence from previous factor analytic models
that SEM models should be feasible, since these are
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highly complex models, an incremental approach was
taken to building and testing large scale SEM models.
To start with, a measurement model and full structural
equation model was run using the top three peptides
from the normal versus single tumor cancer samples
(Table 2) to predict disease. The measurement model
(ostensibly a confirmatory factor analysis) in a SEM
model tests the loadings of individual peptides onto
latent variables. In this model one peptide was set as a
scaling constraint and the other two were freely esti-
mated. Three peptides were chosen because that is the
minimum needed for model identification and provides
for the simplest model. Because of the iterative nature
of the maximum likelihood algorithms used in SEM
models, starting with a simple model reduces computa-
tional time and aids in convergence. Furthermore, start-
ing with the simplest model and building up is good
practice in modeling.
Since a measurement model with 3 factors is just

identified or has no extra degrees of freedom, fit indices
cannot be calculated. However, all the variables load
strongly on the latent factor with loadings greater than
.7. This finding suggests that the top 3 peptides are indi-
cative of a single underlying latent factor.
In order to help rule out the possibility that the con-

sistent loadings in the first model were not type 1 error
or false positive, the same model specification was run
in an attempt to see if the top 3 peptides differentiating
single tumor cancer samples from second primary
tumor cancer samples. In this model the top 3 peptides
also loaded on a single latent variable. Like the first
model, the second model illustrated the same pattern of
results with the top 3 peptides all significantly loading
on a single latent factor.
The same pattern of results can be replicated with two

disease contrasts. Replicating the finding with normal
versus a single primary tumor cancer and second pri-
mary tumor cancer versus single primary tumor drama-
tically reduces threats to validity against causal
conclusions proposed by SEM models of immunosigna-
turing data.
When investigating models that differentiate two dis-

tinct groups from a baseline group (in this case single
tumor cancer samples) there are three potential out-
comes. First, a complete lack of model fit and no consis-
tent underlying factor structure. In this case, none of the
peptides would load consistently and correctly on either
of two specified factors suggesting that peptide flores-
cence is random. The second possibility is that all of the
peptides would load on one factor. This result could
result from any number of potential biases in the tech-
nology itself, printing or processing of the microarrays.
Another reason all of the peptides might load on one
common factor is that they are all part of a single latent

factor. However, because the significance of each pep-
tide varies quite precipitously across group contrasts, it
seems unlikely that a single underlying latent factor
would produce different significance values across dis-
ease contrasts. The third possibility is that the peptides
significantly load on two separate factors and that the
peptides for each contrast exhibit no cross loadings.
A series of analyses was run using significant peptides

from normal versus single tumor cancer corrected T-
Tests as well as second primary tumor samples versus
single tumor samples combined into a single model.
The first model was a measurement model which added
the first two CFA’s into one model. The top 3 peptides
for normal versus single tumor samples and single
tumor samples versus second tumor samples each were
set to load on a separate latent factor. A covariance
between the two latent variables was also estimated. The
path diagram in Figure 1 illustrates this model. In Figure
1’s path diagram, the square boxes represent measured
variables, which, in this case are peptide fluorescent
values. The large circles are the unmeasured latent vari-
ables. The arrows between the latent factors and mea-
sured variables show which measured peptides load on
which latent variable. The curved arrow represents an
estimated covariance between the two latent variables.
In path diagrams, the arrows represent the causal flow

of information. The arrows are pointing from the latent
variables to the measured variables because the argu-
ment in SEM models is that there is some unmeasured
and underlying latent construct that is responsible for
the observed results of the measured variables. The
immune response and antibodies present in the sera
samples is the ultimate causal factor of peptide
fluorescence.
The model tested in Figure 1 was estimated using

maximum likelihood estimation with robust standard
errors (MLR). The model exhibits excellent model fit
with an RMSEA of .063 and an SRMR of .031. In

Figure 1 Latent & measured variables in immunosignaturing:
See Table 2 for peptide sequences.
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addition, the Chi-Square test was not significant, Chi-Sq
= 14.054, df = 8, p = .0804. A non-significant Chi-
Square test is the desired result. Again, this is because
the null hypothesis of this Chi-Square test is that there
is no difference between the observed covariance matrix
(input data) and the covariance matrix implied by the
model in Figure 1. These results strongly suggest excel-
lent model fit and that the latent factors are unique con-
structs. Biologically, this suggests that a different latent
factor is underlying each latent variable.
To further confirm the interpretation that the latent

factors are different, one peptide from each factor was
switched. V3113 and V10218 were set to load on the
opposite factor from the first model. In this new model,
there was a complete lack of fit. In addition to poor
loadings, the fit indices dramatically decreased. The
RMSEA was .354, the SRMR was .192 and the Chi-
Square was 198.704, df = 8, p < .0001. Thus further sug-
gests two different underlying constructs rather than
statistical anomalies.
An additional set of analyses were run using the top 5

peptides instead of just the top 3. The first models run
in this sequence were Varimax and Promax exploratory
factor analyses. Both models gave 100% classification
with extremely strong loadings on each factor. Table 5
is the rotated factor pattern or a two group EFA taking
the top 5 peptides from each disease contrast. This
clearly illustrates the top five peptides strongly load on
factor one while the last five strongly load on the second
factor. The loadings of peptides are consistent with the
groups from which each peptide was selected. For exam-
ple, v4356, v10218, v7869, v8672 and v8170 were the
top 5 most significant peptides differentiating first time
cancer samples from second time cancer samples. In
combination with earlier results, this very clear and con-
sistent loading pattern strongly suggests that the top
peptides for each class form unique latent variables and
they are almost irrefutably measuring different

constructs. Biologically, this suggests that the latent fac-
tor which is more active in single tumor cancer samples
compared to normal samples is not the same latent fac-
tor that appears to be present in second tumor samples.
The same result was also found by running a two

group exploratory factor mixture model with Geomin
rotation. Geomin rotation is another oblique rotation
method similar to Promax. A more complete discussion
of the mathematical differences of rotation methods can
be found in Browne (2001) [10]. In this data, the
observed peptides as a whole form a single distribution.
In mixture modeling, the underlying notion is that the
distribution formed by all of the observed data is the
product of two or more underlying distributions; each
of which represents a distinct class. Ostensibly, an
exploratory factor mixture model is trying to answer the
same question as PCA and EFA, PAF/Factor Analysis
but via a different mathematical framework. Despite the
complexity of mixture modeling, the basis of an explora-
tory factor mixture model is for a categorical latent class
variable C, for a specific class k. The model estimated is:

Yp = Vkp + λkp ∗ η ∗ εp (5)

In equation 5, for a variable Yp, Vkp is an intercept
parameter, lkp is a vector of loadings, h is a vector of
latent factors and εp is a residual term. In addition,
there is a correlation matrix Ψk for the latent factors h
of class k along with a distribution for the latent class
variable C: Pk = P(C = K). In this equation, for a depen-
dent variable P, the probability of C is equal to k. Also,
other constraints are added to this basic framework for
purposes of identification but are related to model spe-
cific decisions such as orthogonal or oblique rotation.
EFA mixture models were estimated using Maximum

Likelihood with Robust Standard Errors (MLR) estima-
tion and 20 random start values. Random starting values
were used in part due to the complexity inherent in
mixture models and to check for local solutions. By run-
ning the analysis with multiple random start values log
likelihood (LL) values can be compared. To the extent
that different LL values are obtained, the random start
values can be directly input into the model and the
results can be compared to the best fitting LL model.
This is useful because if different start values produce
dramatically different results, this might suggest that the
algorithm converged at a local maxima instead of global
maxima or that the results are unstable.
Fit statistics such as the Bayesian Information Criter-

ion (BIC) provide a more quantitative analysis of model
fit for a series of nested models. EFA mixture models
were estimated for one, two and three class models.
This approach allows us to confirm that a two class
model is in fact the best fit for the data.

Table 5 Rotated factor pattern for two group EFA of
significant peptides

Peptide ID Peptide Sequence Factor1 Factor2

V4356 KYQFAGQRSGKQYRWRIGSC 0.88773 0.05624

V10218 YQPPPRKAVIQMDWLSYGSC 0.92126 0.06844

V7869 SKFRDVLTFNEPSRFVSGSC 0.51657 0.04716

V8672 TVHESMIYRMRFMTFKHGSC 0.93261 0.04783

V8170 SWRRMRMHKNFMISNLDGSC 0.87997 0.06368

V2833 HFRKWHKRRWKHHKKWKGSC 0.11128 0.7436

V3113 HRFKWHWKHRFHHFHRFGSC 0.06271 0.82673

V6772 QKFKHQQGSFKLPWLSMGSC 0.12145 0.73203

V9732 WRRSTPVGPWTWFGKFLGSC 0.05844 0.88795

V7196 RFGRPQHQHDFRRHAIYGSC 0.035 0.88098
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The series of EFA mixture models suggested the same
pattern of results as traditional EFA models; that there
are two distinct and separate underlying classes formed
by the top 5 peptides for each disease contrast. In addi-
tion, mixture models also produce a statistic for the
average latent class probability:

P
(
Yp = j|C = K

)
= ϕ − 1 (T ∗ kpj) − ϕ − 1 (T ∗ kpj − 1) (6)

In equation 6 T*kpj is a threshold parameter on a stan-
dardized correlation metric and � is a matrix of resi-
duals for the latent factors [11]. For both two and three
class models, the average latent class probability for the
most likely latent class membership was greater than
99% for both class 1 and class 2. In other words, for the
subgroup of samples classified as being part of class 1
by the model, more than 99% of the time, class 1 was
also their most likely class membership. This further
reaffirms the excellent model classification. The three
class model produced nearly identical average latent
class probability values because the model did not clas-
sify any of the peptides as belonging to the third class.
The BIC was used to assess the best fitting model.

The BIC is estimated as follows:

BIC = −2 ∗ LL + p ∗ log (n) (7)

In equation 7 LL is the log likelihood value of the
model, p is the number of parameters and n is the num-
ber of observations. The lower the value of the BIC the
better the model fit. Often times, BIC values or plots
are used ostensibly in the same fashion that scree plots
and eigenvalues are used in PCA or traditional factor
models where a researcher looks for the point at which
the decrease in values levels off. However, in this analy-
sis, the two class model had the lowest BIC and some-
what unexpectedly, the three class model actually saw a
slight increase in the BIC This result further reaffirms
the excellent fit of a two class model.
As is common in model building, a series of full struc-

tural equation models (SEM) were run in increasing
levels of complexity. To start with, the two latent vari-
ables were regressed on their respective disease states in
individual models. A path diagram for the normal versus
single tumor samples is presented in Figure 2.
These models were estimated using MLR. The latent

variable regression was performed using logistic regres-
sion and was significant, p < .001. Additionally, the odds
ratio was 1.841. This suggests that having the attributed
measured by the latent variable makes an individual
1.841 times more likely to develop breast cancer. The
same model specification for single tumor versus second
tumor samples produced similar results with p < .001
and an odds ratio of 3.49. In other words, there appears
to be a latent factor that is present in those who have a

single tumor that is not present in those samples with a
second primary tumor.
Furthermore, another SEM model was run combining

the above two analyses so that the two distinct latent
variables were used to predict disease status. The esti-
mation of disease status was done via multinomial logis-
tic regression. This was done because when the models
were combined there were three levels of disease. In a
multinomial logistic regression model, one level (in this
case single tumor samples) was set as the reference
group. Then n-1 logistic separate regression equations
are run; where n is the number of levels of the depen-
dent variable. Therefore, since each latent variable was
regressed on disease status, there were two logistic
regression equations run. Both latent variables predicted
their respective disease status with p < .01. Again, this
suggests that normal, single tumor cancer and second
tumor cancer samples are separated by different sets of
latent variables.
The first set of SEM models provided an initial proof

of concept for full SEM models. This laid the ground-
work for the more interesting question of what the
underlying structure looks like for unique parts of the
immunosignatures. Since further investigations are
meant to look at the overall differences in immuno-
signatures as a whole, it is hypothesized that the latent
factors differentiating groups are specific antibodies pre-
sent in the sera samples; as explained above. Two
experimental tests were conducted: a series of structural
equation models and an examination of the peptide
means across groups.

SEM Models of Significant Peptides and Antibodies
Next, all of the peptides that were statistically significant
after a Bonferroni correction in the normal versus single
tumor and second tumor versus single tumor contrasts
were selected for further analysis. Following the same
pattern as before, exploratory factor analysis models
were run to determine how many underlying factors

Figure 2 Path diagram for normal versus cancer peptides SEM
model.
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appeared to be present. This was done because selecting
the top peptides might yield more than one factor; sug-
gesting more than one antibody. For the normal versus
single tumor contrast there were 176 peptides that were
significant and there were 30 significant peptides for the
second tumor versus single tumor contrast. The eigen-
values and scree plots suggest a three factor solution for
the normal versus single tumor contrast and a one fac-
tor solution for the second tumor versus single tumor
contrast. A scree plot for the second tumor versus single
tumor contrast is shown in Figure 3. In other words, for
the normal versus single tumor, the hypothesis is that
there are three antibodies that differentiate the groups
while there is only a single antibody differentiating the
second tumor versus single tumor groups.
In the second tumor versus single tumor contrast, fac-

tor loadings from exploratory factor mixture models and
Promax EFA models confirm an unstable second factor.
This is because the loadings on the second factor are
generally low and minimally larger than the first factor
loading on the same peptide. Additionally, a two factor
solution produced Heywood cases in which there were
communality estimates greater than one; suggesting a
problem with the two factor model. When single factor
models were run, all of the peptides loaded highly on
the one factor. As a result of the EFA models suggesting
a single factor solution, a full SEM model was run in
which all of the top 30 peptides were set to load on a
single latent variable which was then regressed on dis-
ease status. In this model, the stable latent factor signifi-
cantly correlated with disease status, p < 0.001. The
odds ratio of 3.148 suggests that the single hypothesized
antibody confers significant risk for acquiring a second
tumor. Also, the means for all of the peptides in the sec-
ond tumor samples were lower than the means for the

single tumor samples. This suggests immune suppres-
sion. In other words, there appears to be an antibody
present in samples with a single tumor that is not pre-
sent in samples with a second tumor.
The normal versus single tumor samples is a bit more

complex. A full SEM model containing all three
hypothesized factors was unable to be estimated because
there were more peptides than samples. Therefore, there
were not enough degrees of freedom to run a full model
containing all 3 groups. As a result, subsets and indivi-
dual factors were tested individually. When tested indi-
vidually, all of the three factors/hypothesized antibodies
significantly correlate with disease, p < 0.01. Two of the
latent factors positively correlated while the third nega-
tively correlated with disease status.
Within the 176 significant peptides for normal versus

single tumor samples, 162 peptides increase or have a
higher mean in the cancer samples than in the normal
samples increase. Conversely, 14 decrease or have a
higher mean in the normal group than in the cancer
group. In other words, there appears to be two new
antibodies present in cancer samples not present in nor-
mal samples and one antibody present in normal sam-
ples that is not present in cancer samples.
Immunosignatures are unique in analysis of the humoral
response in that they can detect decreases in reactivity
relative to normal levels.
One finding of particular note is a high covariance

between the two positive factors (or proposed antibodies
present in cancer that are not in normal samples). The
high covariance and multicollinearity suggests that the
two are very similar. When regressing both of the posi-
tive latent variables on disease, in every instance, only
one of the latent factors was significant with p < .05.
This is likely due to the way in which multiple regres-
sion partitions variance. In a multivariate regression
model, the effect of one variable (x) is the unique con-
tribution of that variable with all others held constant.
Because there is so much common or shared variance, a
vast majority of the variance is used up or accounted for
by the first factor, not leaving enough unique unex-
plained variance left for the second factor to be signifi-
cant as well.
A two level measurement model was run to test to see

if the two factors were measuring a similar underlying
construct. In this model, the two latent factors were set
to load on a third latent variable. The theory behind
this test was that if the two latent factors loaded on a
single second level latent factor then the two original
factors would be measuring the same underlying con-
struct. One way this could occur is if the antibody had a
highly complex structure. However, this model was not
significant, RMSEA = .21, SRMR = .09. This suggests
that the two factors are unique albeit highly similar.

Figure 3 Scree Plot for Single Tumor versus Second Primary
Tumor.
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There are a number of potential interpretations of this
result. One of the more plausible biological hypotheses
is the presence of subpopulations. Among two different
cancer subtypes of single tumor breast cancer, there are
likely two distinct antibodies; one for each subtype. If
subpopulations are present in the data, it seems plausi-
ble that these two antibodies are quite highly similar
because in the end they are still responding to breast
cancer. The variations that lead to different subtypes
may in fact be what makes the two positive latent fac-
tors separate and distinct from one another. The high
covariance and multicollinearity may be a function of
the fact that the two different subtypes are still breast
cancer. The multicollinearity may be because they vary
together, not that they have a similar sequence and see
the same antigen. If two different antigens consistently
arose in a tumor they would raise antibodies that varied
together in samples but would see totally different
antigens.
A second possibility is that this is modeling different

times in the disease progression. As disease progresses it
is likely different antigens are presented by the tumor to
the immune system. If so, the relative amount of parti-
cular marker antibodies will also change.

Discussion
We have explored a number of statistical models for
analyzing immunosignatures. Each method explored
herein helps answer a different research question relat-
ing to the analysis of immunosignatures. Descriptive sta-
tistics about an immunosignature can provide high level
information about the general immune response in a
signature. Exploratory factor analytic models (PCA and
EFA) can be useful for classifying immunosignatures
into different disease groups without any clinical infor-
mation. CFA models can classify samples onto specified
factors and could be developed into a useful model for
determining the disease status of a single sample. As an
extension, SEM models find some interesting and robust
latent factor structure to immunosignatures which war-
rant further investigation.

Implications of SEM Models
Latent factors can be reliably extracted from immuno-
signatures. These latent factors are clear, consistent and
replicable patterns which differentiate disease state in a
statistically significant fashion. At the very minimum,
these latent factors can serve as strong biomarkers for
disease. Given the design of the technology and the fact
that antibodies are binding to peptides on immuno-
signature arrays, it is highly plausible that the latent fac-
tors are modeling individual antibodies.
Although future research is needed to conclusively

confirm the relationship between modeled latent factors

and antibodies, the potential of having a high-through-
put bioinformatics-driven method for antibody discovery
creates countless potential avenues for future applica-
tions. The primary benefit of this methodological
approach is to reduce the time it takes to identify anti-
bodies associated with various clinical situations. Doing
so will reduce cost and increase the speed of advance-
ment in biomedicine. Additionally, the reduced cost and
speed may open doors that were beyond the realm of
consideration just a short time ago. For example, a
method for quickly and inexpensively detecting an anti-
body could play a crucial first step in developing perso-
nalized vaccines.
Below we present a multi-step procedure for detecting

latent factors and potentially antibodies in an immuno-
signaturing study. The first step is to run an exploratory
factor analysis on the data with rotation. Various rota-
tions can be explored but Promax or Geomin are
recommended. EFA models are a useful starting place
for multiple reasons. First, it ensures that the groups are
different constructs and significantly different from one
another. This determination can be made by looking at
scree plots and eigenvalues to assess the probable num-
ber of groups in the model; which should be equal to
the number of known disease states. The samples
should load correctly on a given factor with a high clas-
sification rate.
At this point, cross loadings in an EFA model can be

investigated. If clinical data exists, it would be of use to
try to assess if there are potential reasons for why a spe-
cific sample may be cross loading. For example, is there
a history of cancer in a normal sample that cross loads
on a cancer sample which might suggest the person is
in a transition phase? This may be a way of detecting
aberrant cases or outliers. That said, haphazardly remov-
ing cases from a dataset is NOT advocated in any fash-
ion. Cross loadings were not analyzed in this paper due
to a lack of additional information and clinical data
upon which to draw any relevant conclusions.
From here, an appropriate test statistic comparing the

groups can be run on the peptides in order to test for
statistical significance. T-Tests or logistic regression and
their multivariate extensions ANOVA and multinomial
logistic regression are a few potential methodological
tools. The specific test should be picked with respect to
the features of the data being analyzed. For example, in
this paper, we used a Satterthwaite corrected T-Test
because of unequal samples sizes and variances. A cor-
rection should be made to protect against alpha infla-
tion. Although a number of tests exist for this purpose,
the Bonferroni correction is among the most common;
even if it may be somewhat conservative.
A traditional EFA model or an exploratory factor mix-

ture model can be used to infer the structure of the
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significant peptides within each group. This information
can be used to create a full structural equation model.
However, as part of good model building practices,
starting with a CFA measurement model is recom-
mended; especially because the iterative nature and
complexity of these models may lead to convergence
problems. Additionally, information from these simpler
models can be used to specify starting values in full
SEM models if convergence problems occur. CFA mea-
surement models specify which peptides load together
on a given latent factor. Checking the fit of the mea-
surement models can confirm the accuracy of the
model. However, given that CFA is so similar to EFA
methods, it is unlikely that differing results would be
obtained.
Once a working measurement model has been

obtained, a full SEM model can be created by regressing
the latent factors on disease state. It is important to test
a full SEM model for a number of reasons. Although
EFA and CFA models may suggest that a group of sig-
nificant peptides are related in some way, without a full
SEM model, there is no way of knowing whether the
relationship is a significant predictor of a specific disease
state. In the absence of predictive validity for a specified
disease state, any relationship among the peptides is tri-
vial and would not suggest that it is because of a com-
mon antibody. The same conclusion can made if the
latent factor is predictive of disease states beyond the
hypothesized state.
If a significant SEM model can be obtained, wet lab

validation can then attempt to determine if the model is
correct. One potential way of testing this in the wet lab
would be to use the designated peptides to affinity pur-
ify the antibody from the sera. The prediction is that
the different peptides would purify the same antibody.
This could be tested by immunosignaturing the antibo-
dies purified.

Screening and Presymptomatic Screening for Disease
The relative ease from which samples can be classified
and differentiated with all of the methods explored
herein makes this technology an excellent use for dis-
ease screening. Whether examining the loadings of new
samples in a CFA model or as part of a larger SEM
model, this technology can allow researchers to screen
patients in a variety of contexts. This initial research
suggests that immunosignaturing could be developed
into a quick and inexpensive method of screening for
cancer. Taking a small sera sample from an individual is
much less expensive and intrusive than traditional
screening methods such as mammograms. One early
potential use for immunosignaturing would be to help
follow at risk populations; such as those individuals with
a family history of cancer. Immunosignatures could be

taken at regular intervals between regularly scheduled
mammograms. If the generated immunosignature from
an interim test started to suggest a closer similarity to
cancer, this could prompt physicians to follow the
patient more closely or advise additional screening.
Immunosignatures could be used in the same way for
individuals who already have cancer. In this case, if an
immunosignature suggested the person was developing
an antibody signature indicative of a second tumor (or
more closely loading on a latent factor biomarker), the
individual could be followed more closely to detect the
presence of a second primary tumor.
Screening for a specific disease state is fairly straight-

forward. A well curated collection of disease samples
would form baseline control factors. A sera sample
would be taken from an individual and their sample
would be allowed to freely load in a CFA model across
relevant disease conditions. A significant loading on a
disease factor would provide strong evidence for the
person having a given disease.
There are a number of ways in which a presympto-

matic screening test could be developed from immuno-
signatures. This could be done by collecting a
longitudinal or time series sample of sera from an indi-
vidual and following the factor loadings on a disease
state over time. As the loadings on a disease factor tend
to increase the individual could be watched more closely
and additional screening for a disease could be recom-
mended by a physician. A number of statistical methods
and time series analyses such as latent transition analysis
(LTA) could be employed to model this.

Conclusion
Immunosignaturing is a novel approach for understand-
ing disease. A number of statistical methods including,
exploratory factor analysis, confirmatory factor analysis,
descriptive statistics, corrected t-tests, ANOVA, logistic
and multinomial logistic regression, mixture models and
structural equation modeling have shown promising
abilities for analyzing different dimensions of immuno-
signatures. Immunosignaturing in the context of breast
cancer has been shown to be a good platform for differ-
entiating groups of samples based on disease status,
determining the disease status of specific samples as
well as potentially serving a role in the discovery of anti-
bodies for specific diseases.
Despite many new challenges posed by immunosigna-

turing microarrays such as competitive binding and
binding to multiple sites, the analyses conducted here
clearly illustrate the usefulness of classical analytical
methods to produce accurate results. The results are
particularly noteworthy because of the lack of structure
in the data and lack of a full pattern matched experi-
mental design. The early results of structural equation
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modeling are very promising. Although wet lab valida-
tion is needed for the proposed methodology of anti-
body discovery, even if the latent factors turn out not to
be a specific antibody, the model can still serve as an
excellent biosignatures for disease screening.
Early detection of cancer is among the best predictors

of survival. Continued development of immunosignatur-
ing into a screening and presymptomatic screening diag-
nostic tool will aid in early discovery and help turn the
corner in the fight against cancer. Future research in
this field should aim at validating the hypothesis that
the latent factors modeled here are in fact antibodies
and to develop the technology into a diagnostic screen-
ing tool.
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