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Abstract

Background: A feature common to all DNA sequencing technologies is the presence of base-call errors in the
sequenced reads. The implications of such errors are application specific, ranging from minor informatics nuisances
to major problems affecting biological inferences. Recently developed “next-gen” sequencing technologies have
greatly reduced the cost of sequencing, but have been shown to be more error prone than previous technologies.
Both position specific (depending on the location in the read) and sequence specific (depending on the sequence
in the read) errors have been identified in Illumina and Life Technology sequencing platforms. We describe a new
type of systematic error that manifests as statistically unlikely accumulations of errors at specific genome (or
transcriptome) locations.

Results: We characterize and describe systematic errors using overlapping paired reads from high-coverage data.
We show that such errors occur in approximately 1 in 1000 base pairs, and that they are highly replicable across
experiments. We identify motifs that are frequent at systematic error sites, and describe a classifier that
distinguishes heterozygous sites from systematic error. Our classifier is designed to accommodate data from
experiments in which the allele frequencies at heterozygous sites are not necessarily 0.5 (such as in the case of
RNA-Seq), and can be used with single-end datasets.

Conclusions: Systematic errors can easily be mistaken for heterozygous sites in individuals, or for SNPs in
population analyses. Systematic errors are particularly problematic in low coverage experiments, or in estimates of
allele-specific expression from RNA-Seq data. Our characterization of systematic error has allowed us to develop a
program, called SysCall, for identifying and correcting such errors. We conclude that correction of systematic errors
is important to consider in the design and interpretation of high-throughput sequencing experiments.

Background
The technological advances that have produced “the
third phase of human genomics": sequencing of indivi-
dual genomes and the determination of rare variants
across populations by enabling whole genome sequen-
cing at low cost [1], are accompanied by higher error
rates [2,3]. Improved statistical methods that accommo-
date these high error rates are needed in the calling of
heterozygous sites from low coverage data [1]. The
design of effective statistical methods requires precise
characterization of error in high-throughput sequence
data. Previous work has examined the behavior of

individual base-call errors in sequence reads [3-5]. In
this paper we discuss a previously undescribed phenom-
enon in sequence data where these base-call errors
aggregate at specific genomic locations across multiple
sequence reads. We focus on Illumina technology,
although we have observed systematic error on other
platforms and return to this in the Discussion.
We begin by describing the types of sequencing error

that have been previously characterized, and their rela-
tionship to the systematic error we have discovered. The
likelihood of a base-call error occurring at any particular
location in a sequence read is influenced by several
parameters. It is known that base-call errors are more
likely towards the ends of reads and that surrounding
sequence motifs influence error frequencies [3-5]. For
example, errors are more likely at positions preceded by
GG or following a number of GGC motifs [5], but
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regardless of the preceding motif, errors become more
likely towards the end of reads [3]. However, we have
found that errors at some genomic positions appear with
greater frequency than can be explained by these effects,
and we refer to this as systematic error. Systematic error
manifests as many individual base-call errors from sepa-
rate sequence reads occurring at the same genomic
position (Figure 1). Thus, a systematic error comprises
many individual base-call errors (from different reads)
that fall at the same genomic location.
These errors have the potential to be especially trou-

blesome because they can confound methods that iden-
tify errors based on their sparsity among reads. For
example, we show systematic errors affect current SNP
(Single-Nucleotide Polymorphism) calling methods,
where the first step involves computing the posterior
probability for a SNP at every site based on relative
nucleotide counts [6]. Although filters based on the
depth of reads are frequently applied (mostly to screen
for indels, copy number variants, or other structural var-
iation) [7,8], most existing approaches will not identify
systematic errors, or distinguish them from true SNPs.
Similarly, the detection of RNA editing sites in RNA-
Seq data is complicated by systematic error, because an
accumulation of errors at a transcriptome site can

appear to be an edit event when compared with a refer-
ence genome that may have been sequenced using
another technology [9].
In this paper we present a thorough characterization

of systematic errors using Illumina short-read sequen-
cing data that is optimized for the detection of errors
because of high coverage and high numbers of paired-
end reads in which the paired reads overlapped. We
show that systematic errors must be accounted for
when annotating heterozygous alleles, and that although
improved base calling software can correct a small num-
ber of systematic errors, it is not sufficient by itself. We
present an efficient statistical algorithm for the detection
of systematic error and use it to show that systematic
errors are present in other datasets, including an RNA-
Seq dataset, a viral reference genome and new Illumina
HiSeq 2000 data from the 1000 genomes project.

Results and Discussion
To investigate the types of errors present in whole-gen-
ome Illumina high throughput sequencing data, we con-
ducted a paired-end methyl-Seq experiment on a male
human individual with read length of 76 bp (Methods). A
methyl-Seq experiment is ideal for investigating systematic
error because the experiment results in high average
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Figure 1 Types of errors. A screenshot from the IGV browser [21] showing three types of error in reads from an Illumina sequencing
experiment: (1) A random error likely due to the fact that the position is close to the end of the read. (2) Random error likely due to sequence
specific error- in this case a sequence of Cs are probably inducing errors at the end of the low complexity repeat. (3) Systematic error: although it
is likely that the GGT sequence motif and the GGC motifs before it created phasing problems leading to the errors, the extent of error is not
explained by a random error model. In this case, all the base calls in one direction are wrong as revealed by the 11 overlapping mate-pairs. In
particular, all differences from the reference genome are base-call errors, verified by the mate-pair reads, which do not differ from the reference.
Given the background error rate, the probability of observing 11 error-pairs at a single location, given that 11 mate-pair reads overlap the
location, is 1.5 × 10-26. Moreover, given the presence of such errors at a single location, the probability that all of the errors occur on the same
strand (i.e., on the forward mate pair) is 1

1024 = 0.00098 . Note that the IGV browser made an incorrect SNP call at the systematic error site
(colored bar in top panel).
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coverage due to the fact that only sites cut by the restric-
tion enzyme are assayed. The reads were mapped with
Bowtie [10] allowing up to two mismatches. Our experi-
ment spanned 29,827,077 genomic locations at an average
coverage of 35.4. Due to the small fragment size in
methyl-Seq experiments many of the mate-pair reads
overlapped, providing for each such location two base calls
sequenced from the same DNA molecule (Figure 1) albeit
from different directions. We made use of this to distin-
guish between base-call errors and true heterozygosity
calls in the following manner: each pair of bases originat-
ing from a single mate-pair and sequencing the same posi-
tion was denoted a reference-pair if both calls agreed with
the reference genome, a SNP-pair if both calls disagreed
with the reference genome and agreed among themselves,
and an error-pair if one of the calls agreed with the refer-
ence genome but the other did not. A SNP-pair could
consist of two base-call errors, in the case that both of the
paired reads had an error at the same location, but the
probability of such an event was low and we ignored such
cases in this study.
Because we focused on overlapping mate-pairs, we

report all results in terms of pairs. For example, when
stating coverage we state the number of pairs overlap-
ping a site (the coverage of the systematic error location
in Figure 1 is 11), and when we state a location has 40%
errors it means that of the pairs overlapping the location
40% were error-pairs. In our experiment 3,985,926 geno-
mic locations were covered by both reads of some mate-
pair but we restricted our analysis to the 2,226,445 of
these locations with a coverage depth of at least 10.
These 2,226,445 genomic locations where covered by a
total of 85,782,923 base-call pairs, 223,957 of which
were error-pairs.

Extent of systematic error
We found many locations at which there seemed to be
an accumulation of errors. To test the extent of this
phenomenon we computed the expected number of
locations with each possible proportion of error. Let c10,
..., cj, ..., c565 be the number of locations with coverage j
in our data (

∑
cj = 2, 226, 445 ), and

p := #error−pairs
#pairs = 0.002611 be the probability of sequen-

cing error. Let Bi be a random variable for the number
of locations from c10, ..., cj, ..., c565 with proportion of
errors i, and let Bij be a random variable for the number
of locations with coverage j and proportion of error i.
We computed the expected number of locations to have
each proportion of errors i as

E[Bi] =
∑
j

E[Bij] =
∑
j

cj

(
j
kij

)
pkij(1 − p)(j−kij),

where kij is the number of errors for coverage j that
results in proportion of error i. Figure 2 shows a log-
scale histogram of the expected and observed counts for
these different error-proportions. The observed counts
in the higher frequencies of errors are larger than the
expected counts, indicating that there are more loca-
tions than expected that have a high frequency of base-
call errors. We called such locations systematic errors,
and set out to determine the characteristics of these
locations, with the goal of lowering the false-positive
rates in calling heterozygous sites.
For further characterization, we annotated a set of

locations in which the number of error-pairs was signifi-
cantly higher than expected, given the observed fre-
quency of error. Setting p = 0.002611 as in the previous
section, we compute a p-value for a given location with
i errors and n coverage as

p(K ≥ i|n) =
∑n

k=i
(nk)p

k(1 − p)(n−k) , where K is a ran-

dom variable indicating the number of errors at a loca-
tion. Of the 2,226,445 locations with coverage of at least
10, 2,116 locations were annotated as systematic errors,
using a Bonferroni correction for a 0.05 significance
level. We used a Bonferroni correction because it
ensures that the probability of even one false-positive is
≤ 0.05, resulting in a set that is low in false-positives,
and therefore suitable for characterizing the nature of
systematic error. We note that this calculation yielded a
lower bound on the frequency of systematic errors in
our dataset of approximately 1 in 1000 bp.

Characterizing systematic errors
Having annotated the set of 2,116 systematic errors, we
looked for characteristic features that could be identified
in any high throughput sequencing experiment. Of the
2,116 sites we have determined as systematic errors, 953
had all base-call errors on the forward read and 1,062
had all base-call errors on the reverse read (an example
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Figure 2 Proportion of base call errors across genomic sites.
The observed (blue) number of locations with high base-call error
frequencies significantly exceeds the expected amount (red).
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is seen in Figure 1). We conclude from this that in sys-
tematic errors the base-call errors tend to appear on
just one of the sequencing directions (forward or
reverse). This tendency was noticed in [7], where the
directionality on which errors occurred was used to fil-
ter false-positives from the set of heterozygous sites
annotated. A possible explanation for this phenomenon
is that the sequencing of some motifs, which are differ-
ent on the opposite strands, have higher probability
than others for base-call errors, resulting in systematic
errors. This is consistent with the known overlap in
absorption spectra of the G and T channels identified
by a single laser in Illumina sequencing.
We therefore tested whether there are significant

motifs surrounding systematic errors by generating a
sequence logo [11,12] for the reference sequences
around the systematic errors (Figure 3). Interestingly, we
found that the first base upstream of the systematic
error has greater information regarding the presence of
a systematic error than the base at which the error is
present. We found that the large majority of systematic
errors are preceded by a G, and that two G bases fol-
lowed by a T at the error site is by far the most com-
mon and characteristic sequence at systematic error

locations. Although the GGT motif is a strong charac-
teristic of systematic errors, an analysis restricted to
GGT sites (estimating the expected error rate by that
observed at GGTs, see Methods) showed that 660 sites,
out of all 61,779 GGT sites, have a significant accumula-
tion of errors. This shows that systematic errors are not
accounted for by this motif alone.
To gain insight into the types of sequencing errors

present at systematic errors we computed the frequen-
cies of the different base substitutions in both systematic
errors and throughout the entire dataset (Figure 4). We
witnessed an extremely strong tendency for the T >G
error compared to all others. Our results show that
there is a higher substitution rate to Gs than to the
other nucleotides and that the substitution rate to A or
T is considerably lower than the substitution rate to C.
With respect to the reference bases at which systematic
errors occur, there is a stronger tendency of error at A
or T than at C or G. We divided the systematic error
locations based on the reference base at which the error
occurred, and tested for motifs in each of the four sets
(Figure 3.b). We concluded that the strongest motif at
systematic errors is that of GGT where the error is at
the T, resulting in an incorrect base call of G.

Figure 3 Sequence motifs at systematic error sites. (a) The motif around systematic errors reveals a strong enrichment for instances
preceded by an occurrence of GG and for the error to occur at locations where the reference genome is T. (b) Categorized by the nucleotide at
the error location. The number of systematic errors in each subset is denoted by n.
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To test whether the quality scores at the locations of
systematic errors account for the extent of base-call
errors observed, we computed a p-value for each loca-
tion given its specific quality scores: Given n (ordered)
quality scores let Ki be a random variable for the num-
ber of errors at locations 1 to i, and let Xi be an indica-
tor variable for whether there was an error or not at
location i. We then have that

p(Kn = k) = P(Xn = 1)P(Kn−1 = k − 1) + P(Xn = 0)P(Kn−1 = k),

and can use dynamic programming to compute the p-
value for each location in O(n2) time. Of the 2,226,445
positions with read count of at least 10, 268 had a sig-
nificant accumulation of error under a Bonferroni cor-
rection for a significance level of 0.05 (the probability of
even one false-positive is less than 0.05). It is interesting
that significant positions were found, given that in gen-
eral throughout the experiment the quality scores tend
to predict a higher error rate than that observed

( #error−pairs
#pairs = 0.002611 while the quality scores predict

an error-pair frequency of 0.00416).
The characteristics of systematic errors, occurring

mostly at GGT motifs where the error that occurs is a T
>G substitution, implies that the errors could be a result
of the sequencing technology, which makes it hard to
distinguish between a GGG and a GGT instance. It is
the base-calling algorithm that makes such distinctions,
given the images output from the Illumina machine. We
asked whether systematic errors could be accounted for
by base-callers that utilize sophisticated statistical tech-
niques to reduce error. To test this we compared the
systematic errors present in a dataset base-called by
Bustard (Illumina’s base-caller) to those present in the
same dataset when base-called by naiveBayesCall [13],
to our knowledge the most accurate base-calling algo-
rithm available. We used for this the dataset that was
used in [13] from the phiX174 virus (Methods). We
found 59 systematic errors in the Bustard called dataset

and 40 systematic errors in the naiveBayesCall dataset,
amounting to a systematic error rate of 1 in 91 bp and
1 in 135 bp respectively. We believe the higher fre-
quency of systematic errors is due to the phiX174 gen-
ome being richer than human in GGT motifs (data not
shown) and to the high sequencing coverage (see Con-
clusions section). These results show that while systema-
tic error can be reduced with more sophisticated base
calling, it is a persistent problem at a significant level
even when using state of the art methods.
To test replicability of the locations at which systema-

tic errors occur, we conducted a second methyl-Seq
experiment on the same individual (Methods). The error
frequency in this second experiment was determined as

p = #error−pairs
#pairs = 0.00162 and of the 2,419,666 locations

with coverage of at least 10 pair-calls, 3,272 locations
were annotated as systematic errors using a Bonferroni
correction of 0.05. From the 2,160,736 positions with at
least 10 pair-calls in both of the experiments, 1,916 and
2,519 were annotated as systematic errors in the first
and second experiments, respectively, and of those 1,279
locations were annotated as systematic errors in both
experiments. This shows that while there is some varia-
bility in the locations determined as systematic errors,
locations at which systematic errors occur are highly
replicable (the expected number of systematic errors to
be called at the same locations is 2). We tested whether
the significant overlap of the locations at which systema-
tic errors were detected was due to GGT motifs being
more prone for systematic errors than other motifs. Of
the 61,779 GGT sites that were overlapped by at least
10 pair-calls in each experiment, 1,596 and 2,080 loca-
tions were annotated as systematic errors in the first
and second experiments, respectively, and of these 1,095
locations were annotated as systematic errors in both
experiments (the expected number of systematic errors
to be called at the same locations when restricting to
GGT positions is 54). The lists of systematic errors for
both experiments are available at: http://bio.math.berke-
ley.edu/SysCall/systematic_error_lists/.

Identification and correction of systematic errors
The main concern regarding systematic errors is that
they may be incorrectly annotated as heterozygous
sites in an individual or as rare variants in a popula-
tion. Fortunately, in systematic error the extent of
error at a location usually does not result in an equal
ratio of reference to non-matching reference calls,
making it easier for methods that expect such a ratio
to identify these sites as non-SNPs. Nonetheless,
SAMtools [6] identified 12 of the 2,116 systematic
errors in our methyl-Seq dataset as SNPs (three of
these are annotated as SNPs in dbSNP130), and in the
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Figure 4 Base substitutions of systematic errors. Frequency of
different base substitutions in (a) all errors (b) systematic errors.

Meacham et al. BMC Bioinformatics 2011, 12:451
http://www.biomedcentral.com/1471-2105/12/451

Page 5 of 11

http://bio.math.berkeley.edu/SysCall/systematic_error_lists/
http://bio.math.berkeley.edu/SysCall/systematic_error_lists/


SNP-calling procedure for the 1000 genomes project a
filtering step based on directionality of sequencing
was used to account for systematic errors (supplemen-
tary material of [7]). Systematic error may pose an
even greater difficulty in population studies, where
allele ratios are not expected to be 1:1. This difficulty
also arises in RNA-Seq experiments in which variants
are annotated alongside expression levels [14]. Sys-
tematic error may also affect RNA-Seq experiments in
the bias it can introduce in coverage at systematic
error sites. Such bias can in turn affect expression
level estimates [15].
To account for this we have designed SysCall - a

classifier which given a list of potential heterozygous
sites and the reads from an Illumina experiment classi-
fies each location as a systematic error or a heterozy-
gous site (Figure 5). Our classifier uses logistic
regression to combine the different characteristics of
systematic errors and make predictions (Methods).
Importantly, SysCall does not assume that the experi-
ment preformed is paired-end or that the expected fre-
quency of variant observations is half, making it
applicable to the different types of high throughput
experiments discussed.
Assessing SysCall’s performance
In order to test SysCall’s performance we annotated a
set of locations in our methyl-Seq dataset that would be
candidates for heterozygous sites (where a significant
amount of the base-calls differ from the reference) and
for which using the overlap between paired reads we
could call as systematic errors or heterozygous sites
with high certainty. We used the same sets of locations
that were annotated for training SysCall (Methods): a
“SNPs” set consisting of 491 locations and a “Systematic
errors” set consisting of 338 locations. From each mate-

pair one of the reads was chosen at random to simulate
a non-overlapping (and non paired-end) dataset.
As a first test of our classification algorithm we ran

100 iterations in which we generated training and test
sets by randomly dividing the “SNPs” and “Systematic
errors” sets into halves (from each of the “SNPs” halves
169 instances were randomly selected in order to have
the same number of systematic errors and SNPs in the
training and test sets). In each iteration we generated a
feature matrix for the training and test sets, learned the
coefficients of the logistic regression classifier from the
training set, and classified the instances of the test set,
recording the percentage of instances that were classi-
fied correctly (as either systematic errors or heterozy-
gous sites). The distribution of the percentage of
instances classified correctly from the 100 iterations had
a mean of 99.0% and a standard deviation of 0.005.
A strong characteristic of systematic errors is that the

differences from the reference have a strong bias to
occur on either the forward or reverse direction. We
tested the ability to classify locations using the same
logistic regression classifier but using only the direction-
ality bias feature: ul = (ql1 - ql2). When running 100
iterations of training and testing as before using this
classifier, the distribution of the percentage of instances
classified correctly had a mean of 72.1% and a standard
deviation of 0.021. Therefore, a significant amount of
precision is gained when making use of all six features
in the classification process. This is mostly due to an
increase in the recall rate of the classifier, where SNPs
that are annotated as systematic errors when using only
the directionality bias criterion are recognized as SNPs
when making use of all features.
A main purpose when designing SysCall was to be

able to distinguish systematic errors from heterozygous
sites in datasets of lower coverage than that available to
us (35.4×). To evaluate SysCall’s performance on differ-
ent coverage depths, we simulated experiments of lower
coverage by randomly sampling a given percentage from
the initial set of reads. For each of 20%, 40%, 60% and
80% (resulting in coverage of 7×, 14×, 21×, and 28×
respectively), we ran 100 iterations where in each itera-
tion we randomly chose the given percentage from our
reads, refined our set of locations to those with at least
one base-call differing from the reference and proceed
as in the previous test: divide the locations into a train-
ing and test set (the number of instances in each being
half of the smaller sized set), compute features, train,
classify, and record the percentage of instances classified
correctly. The results for these tests, together with the
results for the same tests when using only the direction-
ality bias feature for classification are shown in Figure 6.
SysCall’s classifications are highly accurate at all of the
coverage rates tested, and the improvement relative to
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Figure 5 Using SysCall to distinguish heterozygous sites from
systematic errors. SysCall takes as input a list of genomic locations
indicating candidate heterozygous sites and the reads sequenced
from the experiment (in SAM format), and divides the initial
candidate list into two lists: a list of heterozygous sites and a list of
systematic errors, printing next to each site its posterior probability
of being a true heterozygous site.
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using only the directionality bias is negatively correlated
with the mean coverage rate, as expected.
To assess SysCall’s ability to detect false-positives in

SNP calls from Illumina datasets, we analyzed the GAII
sequencing data available for NA18507, chromosome 21
[16]. SAMtools called 61,867 SNPs in the dataset and
SysCall partitioned those locations into a set of 61,390
SNPs and 477 systematic errors. As a “gold standard”
dataset we used the SNP calls for individual NA18507
available from the HapMap project [17]. From the set of
SNPs called by SAMtools 11,984 (19.37%) were present
in the “gold standard” dataset. Of the 61,390 SNPs
called by SysCall 11,973 (19.50%) were in the “gold stan-
dard” set. Of the 477 systematic errors 11 (2.3%) were in
the “gold standard” set. Our results show that SysCall
helps clean the set of SNPs called by SAMtools from
false-positives. We note that in this analysis half of the
reads, in expectation, are expected to differ from the
reference. When searching for variants in experiments
where this is not the case (such as RNA-Seq, methyl-
Seq, rare variant detection etc.) it is easier to mistake
systematic errors for true variants and in such cases we
expect SysCall’s contribution will be even greater.

Presence of systematic errors in other datasets
In order to verify that systematic errors are not specific
for the methyl-Seq procedure we looked for evidence of
systematic errors in other high throughput datasets. We
believe systematic error will be extremely important to
correct for in RNA-Seq experiments, in which one
attempts to annotate both heterozygous sites and
expression levels to derive allele specific expression

estimates. We therefore looked for systematic errors in
the RNA-Seq dataset from Ambion Human Brain Refer-
ence by Illumina (accession SRA012427), on chromo-
some 1. Since this dataset did not contain overlapping
paired reads we could not annotate error-pairs. Instead,
we used directionality bias of the base-calls different
from the reference to annotate systematic error. We
could do so because the coverage in this dataset is high
(at transcripts that are highly expressed). For each of the
857,570 locations covered by at least 10 forward and 10
reverse reads we conducted a chi-square test, testing for
association between occurrence of mismatches and
directionality of sequencing. Under a Bonferroni correc-
tion for a 0.05 significance level, we found 991 systema-
tic errors. Thus we have approximately 1 in 1000 sites
that are shown to be systematic errors. The method
used here, using directionality bias, is statistically weaker
than the method with which we identified systematic
errors from the methyl-Seq experiment, where we used
overlapping mate-pairs to identify base-call errors. The
fact that the frequency of identified systematic errors in
the RNA-Seq dataset is as high as in the methyl-Seq
dataset implies that there are more systematic errors
present in the RNA-Seq data than in the methyl-Seq
data; this could be due to this dataset being produced
by an older version of Illumina’s GA.
We also looked at newer Illumina data generated by

the HiSeq 2000 machines as part of the 1000 genomes
project [7]. We analyzed exome data from chromosome
1 (accession ERX01220). We aligned reads to the refer-
ence genome with Bowtie and refined our analysis to
the 848,742 sites that were covered by at least 10 reads
in each direction. When conducting the same statistical
test as for the RNA-Seq data, only 2 sites were deter-
mined as statistically significant with respect to the dif-
ferences from the reference being present on one of the
sequencing directions. However, testing for directionality
bias of mismatches in this way has little power, and
many strong systematic errors are missed by this
method (Figure 7). This results in many locations that
are not detected by this method as systematic errors but
would be wrongly annotated as heterozygous sites due
to their characteristics. We therefore annotated a set of
candidate heterozygous sites as those locations with at
least 10% of the base-calls being different from the
reference sequence and with at least 5 differences from
the reference, resulting in a set of 1,712 locations. Run-
ning SysCall on this set, 316 locations were classified as
systematic errors. When annotating SNPs in the 1000
genomes project a filtering step was applied, detailed in
sections 5.1.1 and 5.2.1 of the supplementary informa-
tion of [7], designed specifically to filter out locations in
which the base-calls different from the reference are not
evenly distributed between the forward oriented and
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reverse oriented reads. The filtering step applied in [7]
to avoid calling systematic errors as SNPs can decrease
the number of false-positive SNP calls, but relies on
having a sufficient number of reads from each strand
and makes use only of the strand-specific characteristic
of systematic errors. As we have shown, distinguishing
between systematic errors and heterozygous sites can be
greatly improved by taking additional evidence into
account.

Conclusions
We have identified systematic error in Illumina
sequence that is prevalent in different types of datasets,
and that does not appear to be easily correctible during
base-calling. This systematic error has significant impli-
cations for SNP calling, especially at low coverage [18].
Moreover, while increasing the extent of coverage
enables the detection of rare variants in population stu-
dies and low expression rates in transcriptome studies,
it also reveals locations of weaker systematic errors
(locations at which there is a small accumulation of
base-call errors). Thus, the problem of distinguishing
systematic error from true heterozygous sites persists
regardless of the extent of coverage. We detected this

type of error, and could thoroughly characterize it,
thanks to a dataset with overlapping paired-end reads
and with very high coverage. Making use of our charac-
terization we have designed and implemented a classifier
to correct for systematic errors at much lower coverage
depths and with no need for paired-end reads. We have
shown that by using the different characteristics in the
prediction process we gain a significant increase in per-
formance over using directionality bias alone.
Although we have provided a preliminary characteri-

zation of systematic error, with further work and addi-
tional data it may be possible to better identify
sequences associated with error. In particular, it should
be possible to identify and characterize systematic error
resulting from other sequencing technologies. Although
such a comprehensive assessment is beyond the scope
of this study, we have looked at RNA-Seq SOLiD data
from [19] and have identified statistically significant sys-
tematic error. At the same time, we believe that as
sequencing technology improves systematic errors
should decrease, and we have observed this to be the
case based on the Illumina samples we have investi-
gated. Sequence from two years ago shows higher sys-
tematic error rates than recently sequenced data.

Figure 7 Systematic errors in HiSeq data. A screenshot from the IGV browser [21] showing two systematic errors in the HiSeq dataset
analyzed. These locations are not statistically significant under a chi-squared test for directionality bias (after correcting for multiple hypotheses),
demonstrating the weakness of this test.
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Nevertheless, we believe that systematic error is a conti-
nuing characteristic of Illumina sequence.

Methods
methyl-Seq experiments
The human sample was collected with IRB approval
from the Children’s Hospital and Research Center,
Oakland. The approval was granted for a single subject
to draw blood for the purpose of examining his methy-
lome and transcriptome, with the understanding that
the subject is fully aware of the implications of collect-
ing and analyzing personal genetic data. Immediately
after phlebotomy, leukocytes were isolated by Ficoll
centrifugation. B cells were isolated from the leukocyte
fraction with an indirect magnetic labeling system for
the isolation of untouched B cells which yields highly
pure B cell preparations (Miltenyi). DNA was extracted
by standard methods, and digested overnight with
HpaII (NEB). HpaII cuts the sequence CCGG; methy-
lation of the central cytosine on one or both strands
protects the sequence from digestion with HpaII [20].
HpaII fragments 50-300 bp in length were isolated on
an agarose gel. A paired-end sequencing library was
constructed with the standard Illumina kit, and
sequenced on an Illumina GAIIX to collect reads of 76
bases, resulting in 15,598,990 read pairs. Read pairs
that did not terminate at CCGG restriction sites were
removed, leaving 14,205,350 read pairs. The reads were
mapped to the human reference genome (hg18) using
Bowtie [10] as single end reads allowing 3 mismatches
and requiring that the alignments be unique. Those
that did not align were removed and the remaining
reads were mapped again, this time as paired end
reads with a mismatch limit of 2. The higher mismatch
limit of 3 was used in the initial alignment step to
avoid having reads with more base-call errors preferen-
tially pass the uniqueness requirement. This produced
6,939,310 aligned read pairs mapped to 313,789 dis-
tinct locations. The same procedure was followed for
the second methyl-Seq experiment from monocyte
DNA. The experiment generated 14,432,723 read pairs,
of which 7,265,035 were ultimately mapped to 274,230
distinct locations.

Annotating systematic errors at GGT sites
The error rate in our dataset at GGT sites was com-

puted as pGGT := #error−pairs at GGT
#all pairs at GGT = 0.0194 . We tested

whether there are specific GGT locations at which there
is a significant excess of errors by computing a p-value
for each GGT site, given the number of error-pairs and
coverage at the location, using pGGT, and using a Bon-
ferroni correction of 0.05. The number of significant

locations remained substantial at 660, out of 61,779
GGT sites considered.

Annotating systematic errors in the phiX174
To test the influence different base callers have on the
extent to which systematic errors are present in a data-
set we looked for systematic errors in the non-paired
reads reported in [13]. In [13], several sets of base-called
reads were obtained from one run of sequencing of the
phiX174 genome, each using a different base calling
method to process the images generated by the sequen-
cing machine. In this work we compared two base call-
ing methods: Bustard, which is Illumina’s base-caller,
and naiveBayesCall, presented in [13]. The sequencing
run generated 74,686 non-paired reads, resulting in an
extremely high coverage dataset for the 5,386 bp long
genome.
We mapped the reads from each method to the virus

genome using Bowtie, obtaining 382.2× coverage for the
Bustard called reads and 394.2× coverage for the naive-
BayesCall called reads. Since phiX174 is only 5,386 bp
long and has been thoroughly studied for heterozygous
sites due to its use as a sequencing control, we excluded
the five known SNP sites from our analysis, and at the
remaining sites called all base-calls that were different
from the reference as base-call errors. We computed the
probability of a base-call error for each dataset of

mapped reads by p = # base−call errors
# base calls , and identified loca-

tions with a significant accumulation of errors by com-
puting a p-value for every given location with i errors
and coverage n as previously described in the text, using
a Bonferroni correction for a 0.05 significance level. We
used the frequency of base-call errors in the Bustard
called reads of 0.0029 as the error probability for both
datasets, since this was the higher of the two
frequencies.
We found 59 systematic errors in the Bustard called

dataset and 40 systematic errors in the naiveBayesCall
dataset, amounting to a systematic error rate of 1 in 91
bp and 1 in 135 bp respectively. When restricting to
cases in which more than 10% of the base-calls had
errors we found 15 systematic errors for Bustard and 10
systematic errors for naiveBayesCall, 7 of which were at
the same sites.

SysCall’s design and implementation
In this section we describe SysCall, a logistic regression
classifier designed to distinguish heterozygous sites from
systematic errors, based on the characteristics of sys-
tematic errors we have discussed. We will begin with
describing the features used in SysCall’s model, continue
with how the model parameters were learned, and end
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with a description of the prediction procedure given a
new dataset. Importantly, the special features of the
methyl-Seq dataset (overlap of paired-reads and deep
coverage) were used only for the first two stages. There
is no need for the dataset on which SysCall is used to
have such features. As we show in Figure 6, SysCall pre-
forms well on a single-end dataset of 7x.
Model features
We have chosen features to be used in SysCall based on
our findings regarding the characteristics of systematic
errors. Given a dataset and a location, l, SysCall anno-
tates a vector of features, xl, as follows: First a sequen-
cing direction is chosen (forward or reverse) as the
direction with the larger proportion of base-calls that
differ from the reference. SysCall only considers sites at
which there is at least one base-call that differs from the
reference. Let ql1 and ql2 be that proportion for the cho-
sen and not chosen directions respectively. For example,
for the location annotated as a SNP in Figure 1, we
would choose the forward direction and have q1 = 1 and
q2 = 0. Let bi be the nucleotide that is i places from l in
the chosen direction and let wi be the vector of quality
scores at the location i places from l, attained from the
reads overlapping that location. A feature vector is then
annotated for l as:

xl = (b−2, b−1, b0, ql1 − ql2, ql1, PT(w0,w1)),

where PT(w0, w1) is the paired t-test result on the two
vectors w0 and w1. This paired t-test feature is com-
puted due to our observation that the quality scores at
systematic error locations tend to be lower relative to
the quality scores at their neighboring sites (Figure 8),

and this can help distinguish them from true heterozy-
gous sites. As an example, for the location annotated as
a SNP in Figure 1 the feature vector is (G, G, T, 1, 1,
-5.56).
Parameter estimation
We learned parameters for SysCall using training sets
constructed from our methyl-Seq dataset. In that data-
set, due to both overlap of paired-reads and high cov-
erage, it was possible to determine many sites with
high certainty as either heterozygous sites or systema-
tic errors. We annotated a list of locations that would
be candidates for heterozygous sites (where a signifi-
cant amount of the base-calls differ from the refer-
ence) and which we could call as systematic errors or
heterozygous sites with high certainty. Of the 905 loca-
tions in our dataset with coverage of at least 40
(paired-calls) and at which 10-90% of the base-calls on
the forward strand differed from the reference we
annotated two sets: (1) “SNPs” - the 491 locations at
which all differences from the reference were SNP-
pairs. (2) “Systematic errors” - the 338 locations at
which all differences from the reference were error-
pairs. From each mate-pair one of the reads was cho-
sen at random to simulate a non-overlapping (or non
paired-end) dataset. Also, 338 locations were chosen at
random for the “SNPs” set to ensure the predictions
were feature-based only. A feature matrix was built for
these 676 locations (the training set), and the para-
meters for a logistic regression model were computed
by maximum likelihood estimation using R. Note that
when assessing SysCall’s performance the data on
which the classifier was trained was different from that
used to asses its performance (in each iteration only
half of this dataset was used for training).
At different depths of coverage the different features

may be indicative to different extents. For example, at
high sequencing depths the paired t-test statistic and
the frequency of error on each direction may have a
more significant effect than at lower sequencing depths,
where the sequence motif is more informative. To
account for this we simulated experiments of lower cov-
erage by randomly sampling a given percentage from
the initial set of reads. For each of 20%, 40%, 60% and
80% (resulting in coverage of 7x, 14x, 21x, and 28x
respectively), we randomly chose the given percentage
from our reads, refined our set of locations to those
with at least one base-call differing from the reference
and proceeded as before to construct a different training
set for every coverage.
Prediction procedure
SysCall takes as input a list of genomic locations and a
sequencing dataset. For n given locations, SysCall con-
structs an n × 7 feature matrix, M, where Mi,* = (1, xi),
xi being the feature vector for location i. Then, SysCall
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Figure 8 The paired t-test statistic helps distinguish true SNPs
from systematic errors. The paired t-test (PT(w0, w1)) was
computed for the “SNPs” and “Systematic errors” sets used for
training SysCall. The histogram of paired t-test for the “SNPs” set
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computes the mean coverage for the given dataset and
uses the model parameters learned from the training set
with coverage closest to that observed, b, to compute
the vector of posterior probabilities as

pi =
1

1 + e−[βTMT]i

for i = 1, ..., n. Using a threshold of 0.5 on the poster-
ior probability, SysCall partitions the locations into “true
heterozygous sites” (pi ≥ 0.5) and “systematic errors” (pi
< 0.5) and prints out two files accordingly, along with
the posterior probability assigned to each location. In
the case of multiple mappings of reads, each mapping of
a read is considered by SysCall, independently of other
mappings.
SysCall is implemented in R. The running time for

classification is instantaneous, and the running time for
feature assembly depends on the number of sequenced
reads in the experiment and the number of locations
considered, currently taking 10 seconds per 100,000
reads when classifying 900 locations, and is trivially par-
allelizable. SysCall is available at http://bio.math.berke-
ley.edu/SysCall/.
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