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Abstract

Background: Next-generation sequencing technologies allow genomes to be sequenced more quickly and less
expensively than ever before. However, as sequencing technology has improved, the difficulty of de novo genome
assembly has increased, due in large part to the shorter reads generated by the new technologies. The use of
mated sequences (referred to as mate-pairs) is a standard means of disambiguating assemblies to obtain a more
complete picture of the genome without resorting to manual finishing. Here, we examine the effectiveness of
mate-pair information in resolving repeated sequences in the DNA (a paramount issue to overcome). While it has
been empirically accepted that mate-pairs improve assemblies, and a variety of assemblers use mate-pairs in the
context of repeat resolution, the effectiveness of mate-pairs in this context has not been systematically evaluated
in previous literature.

Results: We show that, in high-coverage prokaryotic assemblies, libraries of short mate-pairs (about 4-6 times the
read-length) more effectively disambiguate repeat regions than the libraries that are commonly constructed in
current genome projects. We also demonstrate that the best assemblies can be obtained by ‘tuning’ mate-pair
libraries to accommodate the specific repeat structure of the genome being assembled - information that can be
obtained through an initial assembly using unpaired reads. These results are shown across 360 simulations on
‘ideal’ prokaryotic data as well as assembly of 8 bacterial genomes using SOAPdenovo. The simulation results
provide an upper-bound on the potential value of mate-pairs for resolving repeated sequences in real prokaryotic
data sets. The assembly results show that our method of tuning mate-pairs exploits fundamental properties of
these genomes, leading to better assemblies even when using an off -the-shelf assembler in the presence of base-
call errors.

Conclusions: Our results demonstrate that dramatic improvements in prokaryotic genome assembly quality can be
achieved by tuning mate-pair sizes to the actual repeat structure of a genome, suggesting the possible need to
change the way sequencing projects are designed. We propose that a two-tiered approach - first generate an
assembly of the genome with unpaired reads in order to evaluate the repeat structure of the genome; then
generate the mate-pair libraries that provide most information towards the resolution of repeats in the genome
being assembled - is not only possible, but likely also more cost-effective as it will significantly reduce downstream
manual finishing costs. In future work we intend to address the question of whether this result can be extended to
larger eukaryotic genomes, where repeat structure can be quite different.
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Background
Next-generation sequencing platforms such as Illumina,
ABI Solid, and 454 allow genomes to be sequenced
more quickly and at a lower cost than ever before. How-
ever, as sequencing technology has improved, the wealth
of available data has not made genome assembly easier.
In fact, the level of difficulty has increased, as the cost
savings provided by new technologies are accompanied
by a reduction in achievable read-length. Assembly soft-
ware is now faced with the task of assembling reads ran-
ging from approximately 35 to 500 nucleotides, in
contrast to the 800-2000 nucleotide reads previously
generated by the traditional Sanger technology. Addi-
tionally, the error characteristics of the newer technolo-
gies are not as well known as they were for traditional
Sanger sequencing. De novo assemblies (even in the case
of prokaryotic genomes) are highly fragmented [1]. In
addition, advances in sequencing technologies have not
been mirrored by corresponding improvements in fin-
ishing - a time-, labor-, and cost-intensive process
aimed at reconstructing a complete, gapless, genome
sequence from a fragmented assembly. As a result, the
majority of genomes remain in an incomplete ‘draft’
state, hampering studies that rely on long-range genome
structure information (e.g., analysis of operon/regulon
structure, or large-scale genomic variation).
Genomic repeats - DNA segments repeated in nearly-

identical form throughout a genome - are the main rea-
son why genome assemblers cannot automatically
reconstruct complete genome sequences from modern
sequencing data. Repeats have a number of biological
causes, including transposable sequence elements (which
can often be highly abundant in a genome), prophages,
highly-conserved gene clusters (e.g., the Ribosomal RNA
operons in bacteria), or large segmental duplications,
and can vary from short simple sequence repeats (e.g.,
AAAAA, ACACAC) to long stretches of DNA (thousands
to tens of thousands of base-pairs) that are highly or
completely identical. In the context of inexpensive next-
generation sequencing and assembly, some of the origi-
nal pitfalls of genome assembly, such as coverage gaps
and confusion caused by read errors, can often be
obviated by simply sequencing the genome to very high
coverage levels. Repeated sequences, on the other hand,
cannot be avoided by simply over-sequencing, and lead
to considerable ambiguity in the reconstruction of a
genome, providing limits on the length of the contigu-
ous DNA segments (contigs) that can be correctly
reconstructed using unpaired reads [2].
Graph-theoretic models of genome assembly provide

an effective framework for analyzing the impact of
repeats on the complexity of genome assembly [3]. The
genome assembly problem is commonly formulated as
finding a constrained path through an appropriately-

defined graph. Throughout this article we will rely on
an Eulerian formulation [4] that reduces the assembly
problem to finding a Chinese Postman path/tour (a
minimum length path through the graph that covers all
edges) within a de Bruijn graph (to be defined later).
Under this formulation, repeats appear as forks in the
graph that make it difficult to select the graph traversal
that corresponds to the correct reconstruction of the
genome from among an exponential (in the number of
repeats) number of possible Chinese Post-man paths.
Without additional information, genome assemblers can
only correctly reconstruct relatively short, unordered
segments of the genome (corresponding to those sec-
tions of the graph which contain no forks).
In addition to the collection of reads, most sequencing

technologies also produce pairwise constraints on the pla-
cement (approximate distance and relative orientation) of
these reads along the genome - mate-pair information.
This information can further constrain the possible traver-
sals of the assembly graph, thereby allowing longer seg-
ments of the genome to be unambiguously reconstructed.
Mate-pair information has been a critical component of
most genome projects, starting with Haemophilus influen-
zae [5] - the first free-living organism to be fully
sequenced. Most genome assemblers now include modules
that can use mate-pair information for scaffolding and
repeat resolution (Celera Assembler [6], Velvet [7], Euler
[3], Arachne [8], and ALLPATHS [9] to name just a few),
and stand-alone scaffolding tools such as Bambus [10]
allow the incorporation of mate-pair data into virtually any
assembly [11]. Furthermore, mate-pairs are frequently
used for the purpose of assembly validation in tools such
as BACCardi [12], Consed [13], and Hawkeye [14].
Most of the research on the use of mate-pair informa-

tion in genome projects has focused primarily on the
use of this information to achieve long-range connectiv-
ity by spanning long repeats and gaps in the assembly
due to insufficient sequencing coverage. As a result,
substantial efforts have been focused on the develop-
ment of robust protocols for constructing long-range (8-
10 kbp or longer) mate-pair libraries. Here, we explore a
complementary purpose for mate-pairs - the automatic
resolution of repeats during assembly. We argue that,
due to affordable high-throughput sequencing technolo-
gies, coverage gaps are far less frequent than they used
to be, and assembly fragmentation is primarily caused
by repeats. Thus improvements in repeat resolution
algorithms will translate into substantial improvements
in the quality of the resulting assemblies.

Resolving repeats with mate-pairs
All previously published techniques for repeat resolution
rely on the same basic observation: If a unique path in
the assembly graph can be found that connects the
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sequences at the ends of a mate-pair and the length of
this path matches the approximately known mate-pair
size, then this path can be inferred to be correct; i.e.,
the path represents a partial traversal of the graph that
is consistent with the correct reconstruction of the gen-
ome being assembled. Since the problem of finding a
path of predefined length through a graph is NP-hard
[15], the algorithms used during assembly rely on var-
ious heuristics for efficiently finding paths that support
mate-pair information.
The EULER assembler [3] greedily finds paths whose

lengths are consistent with the size of mate-pairs (the
authors indicate that such paths can be easily found for
a majority of mate-pairs), then converts these paths into
artificial long reads that can be processed through the
Eulerian superpath algorithm [4]. Conflicts between
paths through the graph are resolved by prioritizing
paths on the basis of their support (number of mate-
pairs that confirm a given path) [16]. The Velvet [7,17]
and ALLPATHS [9] assemblers take into account the
uniqueness of nodes in the assembly graph. Specifically,
mate-pair links are considered only if they are anchored
in contigs that correspond to non-repeated sequences in
the genome (usually determined through depth of cover-
age statistics).
Analyses of the effectiveness of such algorithms have

typically assumed the parameters of the sequencing
experiment to be fixed; i.e., the goal is to build the best
assembly possible given the types of data commonly
generated in current sequencing projects. An exception
is the study by Chaisson et al. [16] where the authors
evaluate the effect of read length and read quality on
the ability to reconstruct a genome. In other words, they
assume one can tune the read length generated by a
sequencing machine (which is a realistic assumption for
the Illumina technology) and estimate whether the
assembly improves, and by how much, if the length of
reads is increased. Such analyses are critical for provid-
ing a scientific basis for picking the optimal trade-off
between sequencing cost (which increases with the read
length) and quality of assembly.
In our work, we pose a complementary question: How

useful are mate-pairs for resolving repeats in de novo
assemblies created from short-reads? Which types of
mate-pair libraries most effectively resolve repeats and
minimize the amount of manual finishing needed to
complete the genome (given that there is some restric-
tion on the number of mate-pair libraries that can be
cost-effectively produced in a real sequencing experi-
ment)? Similar questions have been addressed by recent
publications in the context of sequence alignment. Chi-
khi et al. [18] evaluate how read length affects genome
resequencing experiments, and Bashir et al. [19] devel-
oped a method to identify the mate-pair sizes that are

optimal for detecting structural variation through map-
ping. However, the question of how effective mate-pairs
are for the resolution of repeats and how this parameter
of the sequencing experiment can be adjusted to
improve assemblies has not previously been analyzed in
a systematic fashion.

Measuring assembler performance
Metrics commonly used for comparing the quality of
genome assemblies are primarily focused on statistics
derived from the global distribution of contig sizes. Sta-
tistics such as the number of contigs, average contig
size, and N50 contig size are frequently reported in the
literature. (N50 contig size is the size c for which 50%
of the bases in the genome are contained in contigs of
size at least c.)
When the correct answer is known (e.g., reassembly of

a known genome), one can also record the number of
errors found in the assembly. An alternative approach is
proposed by Chaisson et al. [16] where they compare
the results of an assembly to a theoretical optimal: the
best assembly that can be reconstructed without errors
from a genome, given the repeat graph (see Methods) of
that genome.
In our study we are specifically targeting this theoreti-

cal optimum: in an idealized setting (perfect sequencing
data), what is the best possible assembly that can be
obtained given the parameters of the sequencing pro-
cess? While aiming for this theoretical optimum, we
also maintain a dose of reality about certain aspects of
sequencing projects, restricting ourselves to the use of
only two mate-pair libraries (a fairly standard procedure
due to costs) and use of read-lengths that are reflective
of inexpensive next-generation sequencing. Like Chais-
son et al. [16] and Kingsford et al. [2], we start with the
idealized repeat graph of a genome (see Methods), the
structure of which is determined by the read length.
Although we are attempting to maximize the size of
contigs that can be unambiguously reconstructed from
this graph, contig size statistics are difficult to compare
across genomes and may not adequately describe the
amount of repeat resolution that a set of mate-pairs
provide. Therefore, we focus instead on a measure of
assembly ambiguity that is directly related to unresolved
repeats. Specifically, we measure the number of manual
experiments that would be necessary to completely
resolve the structure of a genome during finishing.
Briefly, a path through the repeat graph can be uniquely
determined by pairing up the edges adjacent to repeat
nodes. This pairing is commonly determined during fin-
ishing through targeted PCR experiments.
We measure the usefulness of a mate-pair library in

terms of the amount of manual finishing effort that can
be saved through its use (see Methods for details). We
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show that, in the context of high-depth prokaryotic
sequencing experiments, very short mate-pairs are more
useful than long mate-pairs (sizes as high as 40,000 bp
are often generated in sequencing projects) for resolving
repeats, and that choosing mate-pair sizes based on the
repeat structure (defined in Methods) of the assembly
graph is a powerful approach for creating more com-
plete assemblies. Our results hold across 360 ‘ideal’
sequencing experiments (see following section) as well
as when using an off-the-shelf assembler in the presence
of base-call errors (assembly of 8 bacterial genomes
using SOAPdenovo [20]). These results can serve as a
basis for developing new algorithms and sequencing
strategies that will improve de novo assemblies. Due to
computational efficiency considerations we limited our
analysis to prokaryotic genomes. Whether or not our
results can be extended to eukaryotes (whose repeat
structure is often quite different from prokaryotes)
remains an exercise for future work.

Results
We simulated ideal sequencing projects (no gaps, no
errors, known mate-pair sizes) for 391 complete bacter-
ial genomes using a range of read lengths and mate-pair
sizes. Read lengths were chosen to be reflective of reads
that can be affordably obtained using next-generation
sequencing platforms. In addition, for 360 of these gen-
omes, we performed a direct comparison of the amount
of repeat resolution that can be obtained when applying
information provided by long mate-pairs (libraries
between several thousands to tens of thousands of base-
pairs are commonly generated in current sequencing
experiments) vs. mate-pairs whose sizes are ‘tuned’ to
the repeat structure of the genomes being assembled.
Finally, we show that the results of our simulated com-
parison are recapitulated when assembling 8 bacterial
genomes in the presence of base-call errors using an off
-the-shelf assembler (SOAPdenovo).
We assume a refined version of the repeat graph for a

genome; specifically, the graph that can be obtained
through a series of lossless transformations on the origi-
nal de Bruijn graph (see Methods). Since all of the
transformations used simply convert unambiguous paths
from the original graph into single nodes, the resulting
simplified structure is equivalent (in terms of the spec-
trum of possible graph traversals) to the original graph.
The simplified version of the graph is more compact
and better highlights the complexity introduced by
repeats, since every node in the simplified graph is
either a repeat itself or is one of a set of possible nodes
to traverse in between a pair of repeats. (For more infor-
mation on this graph refinement process, see Methods
and a more in depth description in an article by King-
sford et al. [2].)

Throughout most of our analysis, we consider k-mer
size (the size of sequences used in initial construction of
the de Bruijn graph) and read-length to be interchange-
able, denoting both with the letter k. Although read-
length and k-mer size are not typically the same in a
real sequencing and assembly experiment (in reality
longer reads are decomposed into shorter k-mers), we
consider the distinction to be irrelevant throughout
much of the discussion of our simulations; the only
exception being the discussion of SOAPdenovo assem-
blies. Since our ‘idealized’ graphs (see Methods) are con-
structed from complete genomes decomposed directly
into k-mers, we implicitly imagine that we have perfect
reads of length k and that they can be used in their
entirety during graph construction. Since a read of
length k can provide a k-mer of length at most k, ignor-
ing the distinction still provides a valid (if perhaps leni-
ent) upper-bound on what one can expect to achieve if
using reads of length k with a real assembler.
Our results begin with some theoretical analysis of the

usefulness and limitations of mate-pairs and then pro-
ceed to an empirical investigation into the benefits of
‘tuning’ mate-pair libraries to target repeats of high
complexity. It should be noted here that due to limita-
tions of our current implementation to handle larger,
eukaryotic de Bruijn graphs, we have restricted the
scope of our results to cover only assembly of prokaryo-
tic genomes. We intend to explore whether or not these
results can be extended to eukaryotic assemblies in
future work. A complete set of data files produced for
this experiment is available at: http://www.cbcb.umd.
edu/~wetzeljo/matePairs/.

Performance of shortest-path heuristic
Our study relies on a simple heuristic for the use of
mate-pair information: mate-pairs are only used if an
unambiguous shortest path through the assembly graph
connects its end-points and is consistent with the insert
length. Medvedev et al. [21] use a similar shortest-path
approach in their maximum likelihood genome assem-
bler. While more elaborate approaches have been pro-
posed (e.g. searching for the ‘best’ path from among
multiple paths that connect the endpoints of a mate-
pair [9]), such methods are computationally expensive.
Furthermore, we find that the length of a shortest path
connecting the two ends of a mate-pair exactly matches
the insert length almost 90% of the time, even for rela-
tively long (8 kbp) libraries and short reads (35 bp) (see
Table 1). For longer reads and shorter mate-pairs, this
statistic approaches 100%. The shortest-path heuristic is
less effective only when using very long mate-pair
inserts (35 kbp) with short reads (35-50 bp). In this
case, as few as 62% of the mate-pairs correspond to a
shortest path.
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While a large fraction of mate-pairs could, in princi-
ple, be used during assembly through the shortest-path
heuristic, the vast majority of mate-pairs do not span
repeat nodes, and many cannot yield unambiguous
paths (see Methods). Thus, most mate-pairs are not use-
ful for repeat resolution. For example, on average only
0.5% of all mate-pairs from a 400 bp library could be
used to resolve repeats (as outlined in Methods) in
assemblies constructed from 100 bp reads (see Table 1).
This result is unsurprising when the mate-pair length is
short with respect to the read-length, as both ends of
the mate-pair are usually found within the same node of
the assembly graph. However, even in the case when
mate-pairs are significantly longer than the read length,
only a small fraction of the mate-pairs are ultimately
usable (e.g., 6.77% when using 35 bp reads and mate-
pair library of 8 kbp insert size). An intuitive explana-
tion for this phenomenon is the observation that the
genomic repeats that cause most of the complexity in a
genome represent just a small fraction of the size of the
genome. Only mate-pairs that span these, relatively rare,
complexity hot-spots are useful during assembly. While
Table 1 highlights the mate-pair statistics discussed
here, Table 2 provides a comprehensive set of statistics
for all read/mate-pair-length combinations studied.
As a corollary to the above observation, the value of

mate-pairs is maximized only once sufficient coverage is
achieved to ensure that virtually all resolvable repeats
are adequately spanned. The necessary number of mate-
pairs is a function of the genome size G and the k-mer
length k used for graph construction (roughly 10G/k;
see Methods for details).

’Localized complexity’ is common in short-read assembly
graphs
A surprising result of our study has been the fact that,
for the majority of the genomes studied, assembly

ambiguity can only be decreased up to a certain point
irrespective of depth of coverage and library size, i.e.
mate-pair information appears to have limited value in
resolving repeats. Closer inspection of the assembly
graphs reveals a common motif that limits the applic-
ability of mate-pair information. Specifically, we find
pairs of repeat nodes (R1, R2), separated by two or more
non-decision nodes of equal lengths. Frequently, chains
of such patterns (commonly called ‘bubbles’) can be
found in many genomes. Assembly bubbles are difficult
to resolve with mate-pairs because multiple equal-length
paths can be found between the endpoints of mate-pairs
that span the bubble structure. Thus mate-pairs which
span bubbles provide no information on the order in
which the intermediate non-decision nodes (between R1

and R2) need to be visited. An example is shown in
Figure 1. These regions of ‘localized complexity’ can
only be resolved by mate-pairs that tightly span exactly
one of the two repeats. As we will show later, this phe-
nomenon is common in bacterial genomes and high-
lights the need to tune mate-pair libraries to the specific
repeat structure of each genome.
In order to estimate the extent of genomic complexity

introduced by the bubble pattern described above, we
define a measure of the localized complexity of a genome
as follows. For each repeat node, v Î G, we define the
node to be ‘trivial’ if all of its successor nodes have dis-
tinct lengths, and ‘non-trivial’ otherwise. The motivation
for this nomenclature is that if v has multiple successors
of the same length, it is likely that v fits the description of
repeat R1 in the above stated example of an assembly
bubble, and will be difficult to resolve without targeting
at least one mate-pair to barely span its length. On the
other hand, if all successors of v are of different lengths, v
cannot fit the description of R1 in the above example, and
the proper traversal order of v can likely be resolved
using mate-pairs of arbitrary (longer) length. Thus we
define the localized complexity of a genome, C-Statistic,
to be the percentage of the finishing complexity of the
genome contained in non-trivial nodes (C-Stat(G) = 100(∑

v∈NCv/
∑

v∈SCv
)
, where N is the set of non-trivial

nodes in the assembly graph, S is the set of all nodes in
the assembly graph, and Cv is the contribution of node v
to the finishing complexity of the genome (see Methods
for details on finishing complexity).
As seen in Figure 2, roughly 60% of the 35, 50, and

100-mer graphs have a C-statistic ranging between 60
and 90. In other words, in about 60% of the graphs cre-
ated from short reads, 60-90% of their total finishing
complexity is contained within repeats that are difficult
to resolve using mate-pair information. The amount of
localized complexity appears to be significantly lower for
graphs created from longer reads: for 250-mer graphs,

Table 1 Mate-pair statistics

Read/MPLen(nt) Short.Path(%)a Usable(%)b Compl.Red(%)c

100/400 99.96 0.48 57.97

100/8000 95.85 2.69 60.13

100/35000 84.60 6.55 58.27

35/400 99.5 1.06 35.87

35/8000 87.84 6.77 33.66

35/35000 62.29 10.78 31.62

A table summarizing average (mean) statistics across 391 prokaryotic
genomes (see Additional file 1) when applying 50,000 mate-pairs of a
particular length to a graph constructed from k-mers of a particular length.
aPercentage of mate-pairs that can be mapped to a shortest path in the
graph when comparing exact length of the insert to length of the path.
bPercentage of mate-pairs that can ultimately provide unambiguous
information for repeat resolution (see Methods on repeat resolution). cPercent
reduction in finishing effort (see Methods on finishing complexity) that the set
of mate-pairs can provide.
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the average C-Statistic was 48.58%, and for the 500-mer
graphs the average C-statistic was 33.61%. This implies
that longer reads may be critical if the goal of assembly
is to reconstruct entire genomes in an automated
fashion.
The existence of bubbles in assembly graphs has been

noted before, and several approaches have been sug-
gested for resolving such regions (see, e.g., Chaisson et
al. [16]). Our results imply that any such methods will
be of limited use unless the mate-pair libraries are
tuned to match the repeat structure of the genome
being assembled.

’Ideal’ mate-pairs are short
We further explored the hypothesis that ‘tuning’ mate-
pair libraries to accommodate a genome’s specific repeat

structure could lead to higher quality assemblies. All
repeats in a genome were grouped according to size
into bins of width 4k, where k is the read length. For
each bin we calculated the fraction of the total finishing
complexity (see Methods) of the genome that is due to
the repeats from that bin. We then selected the two
bins with the highest finishing complexities, and con-
structed mate-pair libraries that just span repeats in
these bins by using inserts that were 3k longer than the
average repeat size for each bin. We restrict our analysis

Table 2 More complete mate-pair statistics

K-mer MP Size(nt) PathLenMatcha CrossForkb MatchSeqc Uniqued Usablee ComplReducf

100 400 99.96 0.78 91.84 83.33 0.48 57.97

2000 98.99 2.90 63.82 59.71 1.03 58.87

6000 96.86 6.05 62.21 61.42 2.20 60.50

8000 95.85 7.41 62.01 61.60 2.69 60.13

35000 84.60 20.43 60.89 62.21 6.55 58.27

50 400 99.68 1.87 72.72 64.92 0.75 47.22

2000 97.72 4.58 61.08 64.42 1.69 46.84

6000 93.72 9.18 62.42 67.93 3.63 47.09

8000 91.87 11.16 62.75 68.69 4.39 46.98

35000 72.98 29.16 62.74 69.43 8.98 45.17

35 400 99.5 2.68 68.5 65.67 1.06 35.87

2000 96.45 6.56 63.66 69.57 2.82 34.17

6000 90.51 13.30 66.05 72.61 5.77 33.90

8000 87.84 16.04 66.47 72.99 6.77 33.66

35000 62.29 38.43 66.47 73.91 10.78 31.62

In the table below, a library of 50,000 mate-pairs of a particular length was applied to each of the graphs for each of the 391 genomes listed in Additional file 1.
The values refer to average percentages. The first four columns refer the percentages retained by successive filtration steps used to identify and remove
unusable mate-pairs: a% which had a shortest path of the prescribed length between end sequences, b% which crossed forks, c% which shortest path matched
insert sequence, and d% which had a unique shortest path. The final two percentage values (e% of mate-pairs that were usable, and f % reduction in finishing
complexity) refer to overall percentages across all 50,000 mate-pairs for each category.

R1 R2

length = 10

length = 10

Figure 1 An assembly ‘bubble’. An assembly ‘bubble’ that
complicates repeat resolution with mate-pairs. Shaded nodes are
non-decision nodes (in- and out-degree equal to 1). The nodes R1
and R2 are decision nodes (repeats). There are two possible paths of
the same length from one end of the mate-pair to the other (black
nodes), leading to ambiguity in the graph traversal.

0 10 20 30 40 50 60 70 80 90

C Stat Range

%
 o

f G
ra

ph
s

0
5

10
15

20

C Stat Range

%
 o

f G
ra

ph
s

Read Length
35mer
50mer

100mer

Figure 2 C-statistic across 391 bacterial genomes . The
percentage of short-read (35, 50, and 100-mer) graphs with C-
Statistic in a particular range. Here we see that in about 60% of the
graphs created from short-reads, 60-90% of the finishing complexity
is contained in repeats that are difficult to resolve using mate-pair
information.
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to just two libraries for any given genome to match the
setting commonly encountered in practice.
Mate-pairs selected in this fashion end up being

roughly proportional in size to the read length, k, aver-
aging from 4.5k to 6k. This is significantly shorter than
commonly constructed long-range libraries (6,000 bp or
longer).
As expected, the tuned insert length is greater for

graphs with less localized complexity (lower C-Statistic)
than it is for graphs with greater amounts of localized
complexity (higher C-Statistic). For 35, 50 and 100-mer
graphs with a C-Statistic of at least 50, the mean ideal
insert size was consistently short (4.5k to 6k), while gen-
omes with a lower C-Statistic resulted in longer and
more varied library sizes (see Figure 3). Increased varia-
tion in ideal mate-pair size for graphs with lower C-Sta-
tistic can likely be attributed to there being fewer graphs
in this category (compare Figures 2 and 3).
These results are similar in spirit to, and complement,

the EULER-PCR algorithm proposed by Mulyukov et al.
[22]. In EULER-PCR, the assembler uses information
about the repeat length (along with the known
sequences on either side of the repeat) in order to mini-
mize the number of primers and multiplex PCR experi-
ments needed to resolve tangles in the graph.
Essentially, the assembler is leveraging the repeat struc-
ture of the graph to find optimal sets of short mate-
pairs to reduce manual finishing. In the context of pro-
ducing mate-pair libraries via sequencing, we cannot
target individual repeats, so we instead attempt to find
the mate-pair sizes that are most likely to resolve a large
fraction of a genome’s repeats.

’Tuned’ mate-pair libraries perform well in a simulated
setting
To evaluate the effectiveness of the ‘tuned’ mate-pair
libraries just described, we analyzed through simulations
360 bacterial genomes (each marked by an * in Addi-
tional file 1) across 5 different read lengths. (Several of
the 391 genomes we originally analyzed required prohi-
bitive computational resources and these genomes were
excluded from the current analysis.) For each genome
we compared the performance of the ‘tuned’ mate-pair
libraries to a mixture of 2,000 and 8,000 bp libraries.
The latter mixture deserves a brief explanation: the
majority of genome projects (irrespective of sequencing
technology, see e.g. [23,24] and jgi.doe.gov) rely on a
mixture of library sizes, one of which is relatively long
(possibly exceeding 10,000 bp and even as long as
40,000-50,000 bp in the case of fosmid libraries). As we
cannot feasibly test all possible combinations of library
sizes, we chose a combination that is reasonable and
roughly matches the ‘typical’ scenario used in Sanger
sequencing projects. In both cases (tuned libraries or
long libraries) the depth of coverage was the same, and
was chosen to ensure that all repeats can be adequately
spanned (see Methods). For each genome we recorded
the finishing complexity (see Methods) before and after
the incorporation of mate-pair information, as well as
the localized complexity (C-Statistic) of the genome.
The tuned libraries, which generally consisted of very

short mate-pairs (see previous section of Results), vastly
outperformed the long-range libraries on graphs con-
structed from short reads (35, 50, and 100 bp). The
average reduction in finishing complexity was 82.66%
when using tuned libraries, in contrast to only 47.44%
when using a combination of long-range libraries (see
Figure 4).
For a combination of two long mate-pair libraries, one

can see a clear inverse relationship between reduction in
finishing complexity and C-Statistic (two graphs on
right in Figure 4). However, this relationship is greatly
diminished for the tuned libraries (two graphs on left in
Figure 4). This result is consistent with the observation
that tuned library sizes are longer for the low complex-
ity genomes, where chains of trivial repeats can often be
resolved simultaneously by a single mate-pair.
While the results of simulations on 250-mer graphs

were very similar to the results of simulations on the
shorter-read graphs (tuned mate-pairs outperformed
long mate-pairs), the performance improvement over
our ‘standard’ library mixture decreases for 500-mer
graphs (see bottom two graphs in Figure 4). This can be
attributed to the fact that the standard insert size of
2000 bp is short (exactly 4k) with respect to the original
read length for the 500-mer graphs, while it is long
(exactly 8k) with respect to the original read length of
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Figure 3 ’Ideal’ mate-pair lengths across 391 bacterial
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short insert sizes, while those with a lower C-Statistic had longer
inserts and higher variance. Error bars represent standard deviation.

Wetzel et al. BMC Bioinformatics 2011, 12:95
http://www.biomedcentral.com/1471-2105/12/95

Page 7 of 14



the 250-mer graphs. This result indicates that the need
for tuning mate-pair lengths to the genome structure
may be unique to the use of very short reads.

’Tuned’ mate-pair libraries improve performance when
using off-the-shelf assembly software
In order to analyze the effectiveness of ‘tuned’ vs. long
mate-pair libraries in a more realistic context, we cre-
ated 30× coverage of 8 complete bacterial genomes (see
Table 3) with 100 bp reads using MetaSim (see Meth-
ods). We then reassembled each genome given its set of
reads and different combinations of long or tuned mate-
pair libraries using SOAPdenovo v. 1.04 (see Methods).
For each genome, one pair of tuned libraries was based
on the ‘ideal’ lengths predicted by our 35-mer graphs
(since we used SOAPdenovo’s maximum k-mer length
of 31 bp) and another pair was based on the ideal
lengths predicted by our 100-mer graphs (since our

reads were 100 bp long). See Table 3 for ideal mate-pair
lengths for each genome.
We found that in all but two of the cases, the pair of

tuned libraries predicted by our 35-mer graphs were
most effective at improving assemblies in terms of
increasing average and maximum contig size, producing
fewer total contigs, and increasing N50 contig size (see
Table 4). These libraries consisted of one library of
length at most 165 bp and a second of less than 800 bp
in all cases. For the two cases in which the tuned
libraries did not perform best, a single 200 bp library
performed best. However, when splitting read-coverage
between libraries of size 200 and 6000 bp, performance
always suffered in comparison to the 200 bp library
alone. These findings highlight our previously stated
result that shorter mate-pairs are generally more helpful
in assembly of prokaryotes than are longer mate-pairs.
Interestingly, the tuned libraries predicted by our 100-

0−10 20−30 40−50 60−70 80−90

0
20

40
60

80

%
 R

ed
uc

tio
n

Read Length

35mer
50mer

100mer

0−10 20−30 40−50 60−70 80−90

0
20

40
60

80
10

0

C−Stat Range

%
 R

ed
uc

tio
n

Read Length

250mer 500mer

0−10 20−30 40−50 60−70 80−90

0
20

40
60

80
10

0

Read Length

35mer
50mer

100mer

0−10 20−30 40−50 60−70 80−90

0
20

40
60

80
10

0

C−Stat Range

Read Length

250mer 500mer

A B

Figure 4 Reduction in finishing complexity for ‘tuned’ vs. standard mate-pairs. Graphs on left (A) depict the mean percent reduction in
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the C-Statistic). The ideal libraries are graph-specific, but the smaller of the two libraries averaged between 4.5 k and 6 k, where k is the original
k-mer size (read length) used to construct the graph. Graphs on right (B) depict the same statistics when using a mixture of two long libraries
(2000 and 8000 bp).
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mer graphs typically perform quite poorly despite the
fact that the assembly is built from 100 bp reads. This
indicates that despite the ‘read-threading’ procedure
used by SOAPdenovo, information initially contained in
a read is being lost when it is broken into shorter k-
mers (31 bp is the maximum k-mer size for SOAPde-
novo). There is little to no overlap between SOAPdeno-
vo’s assembly algorithms and the methods we have
described for applying mate-pairs to ideal graphs in our
simulations; yet tuned libraries perform better in both
situations, indicating that they are capturing a funda-
mental property of the genome structure.

Discussion
There are a few difficulties we encounter when attempt-
ing to apply the exact quantitative analysis we describe
above (and in Methods) to real assembly graphs. First,
while our ideal graphs are unambiguously directed, real
assembly graphs are inherently bi-directed since DNA is
double-stranded. Therefore, it is not possible to directly
transform graphs created from real data into unambigu-
ously directed graphs so that the exact finishing com-
plexity (by our definition) can be computed. Specifically,
our quantitative analysis requires that we know the in-
degree and out-degree of a particular node, yet the
direction in which the edges are traversed in a real
graph is often not known until the assembly process.
Additionally, since edge multiplicities in real sequencing
experiments must be estimated based on various metrics

such as depth of coverage and errors occur during
sequencing, real assembly graphs are often disconnected
and certainly not fully Eulerian, further limiting the
exact analysis described.
Nonetheless, the strategy for choosing the ‘tuned’

mate-pair sizes should be applicable to real genome pro-
jects. Note that our strategy for tuning the library sizes
requires information about the amount of genomic
complexity implied by a particular set of repeats of simi-
lar size, i.e. it is not sufficient to simply estimate the
number and size of repeats from a genome assembly.
Instead, the assembly graph (commonly output by many
modern assemblers) needs to be analyzed in more detail.
As we already mentioned, real assembly graphs have a
different structure than the graphs used in our simula-
tion. In order to accommodate the non-Eulerian nature
of real assembly graphs, the methods we proposed can
be converted to a Chinese Postman traversal setting, i.e.,
find a minimum-length tour of a non-Eulerian graph
that covers each edge at least once. An efficient algo-
rithm for solving this problem on bi-directed de Bruijn
graphs has been recently published [25]. The resulting
Chinese Postman tour implies an underlying Eulerian
graph (which is implicitly constructed while solving the
traversal problem) within which the algorithms
described in our work can be applied. Specifically,
within this implied graph we can compute, for each
repeat, the corresponding finishing complexity which,
together with the repeat size (already known from the
original assembly graph), can be used as outlined in the
Results (subsection titled “Ideal mate-pairs are short”) to
heuristically determine appropriate mate-pair sizes. In
future work we plan to build a software package that
performs this analysis for commonly used genome
assemblers.

Conclusions
Our results demonstrate that dramatic improvements in
the quality of prokaryotic genome assemblies can be
achieved by tuning mate-pair sizes to the actual repeat
structure of a genome, suggesting the possible need to
change the way that such sequencing projects are
designed. In many sequencing projects, library sizes are
chosen based on the ease with which certain size
libraries can be effectively constructed in the lab. Vir-
tually always, the mate-pair libraries are constructed at
the beginning of the project, before having an opportu-
nity to evaluate the repeat structure of the genome
being sequenced. This ‘one-step’ approach was unavoid-
able in the case of Sanger sequencing where mate-pairs
were a by-product of the sequencing process (sequen-
cing would ultimately cost the same whether or not
mate-pairs are generated).

Table 3 Genome-specific mate-pair lengths used in
SOAPdenovo assemblies

Organism K-mer Size t1 (bp) t2 (bp)

Acinetobacter baumanii 35 165 276

100 454 1708

Bacillus anthracis 35 157 451

100 464 839

Bacteroides thetaiotamicron 35 159 297

100 462 1759

Deinococcus radiodurans 35 145 745

100 485 930

Mycobacterium tuberculosis 35 155 288

100 491 824

Rickettsia prowazekii 35 170 288

100 467 N/A

Staphylococcus aureus 35 154 436

100 461 943

Vibrio parahaemolyticus 35 161 298

100 440 N/A

’Tuned’ mate-pair lengths used when performing SOAPdenovo assemblies.
The values t1 and t2 refer to the best and second best mate-pair lengths
respectively. These values are based on determination of ‘ideal’ mate-pair
sizes for the 35 and 100-mer graphs (as described in Results).
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Table 4 Results of SOAPdenovo assemblies

Organism Libs Num Total Size Min Size Max Size Avg Size Median Size N50

Acinetobacter baumanii 200 6327 4064963 68 37142 642.48 100 7905

200+6000 8192 4003114 33 29829 488.66 100 2455

165 6991 4032232 40 18098 576.77 100 3653

165+276 6014 4069844 26 48396 676.73 100 12063

454 8544 4015574 33 20322 469.99 100 2919

454+1708 8038 4069168 33 21003 506.24 100 3425

Bacillus anthracis 200 9102 5928608 33 48738 651.35 100 7943

200+6000 10302 5884980 23 28576 571.25 100 4948

157 10654 5865861 21 15749 550.58 100 2872

157+451 9184 5956270 12 43427 648.55 100 9257

464 12716 5831216 33 14895 458.57 100 2724

464+839 16578 5686718 32 12862 343.03 100 1204

Bacteroides thetaiotaomicron 200 11092 7094608 34 49008 639.61 100 8114

200+6000 12638 7044065 33 31728 557.37 100 4418

159 12993 7033473 94 19688 541.33 100 2941

159+297 11024 7133929 38 63771 647.13 100 10826

462 15383 6975016 32 15352 453.42 100 2747

462+1759 13948 7106347 32 22002 509.49 100 3703

Deinococcus radiodurans 200 5222 3053941 11 57264 584.82 100 7449

200+6000 6436 2975712 33 10788 462.35 100 2142

145 6166 2977456 21 12433 482.88 100 1952

145+745 7033 2957901 16 13154 420.57 100 1715

485 7822 2962094 22 11751 378.69 100 1744

485+930 9452 2892284 26 11512 306 100 913

Mycobacterium tuberculosis 200 8906 5075368 31 25729 569.88 100 6301

200+6000 11220 4978074 23 17275 443.68 100 2095

155 10022 4996604 25 18585 498.56 100 2520

155+288 12160 4931391 33 12018 405.54 100 1544

491 12851 4959477 32 11915 385.92 100 1929

491+824 12285 5065937 33 19438 412.37 100 2368

Rickettsia prowazekii 200 1933 1275800 58 34779 660.01 100 8633

200+6000 2455 1254405 33 21498 510.96 100 2782

170 2064 1258665 100 16628 609.82 100 4242

170+288 1846 1275767 38 47307 691.1 100 11463

467 2639 1255736 33 16084 475.84 100 2833

Staphylococcus aureus 200 5099 3240933 20 34464 635.6 100 7206

200+6000 6428 3177307 33 18574 494.29 100 2465

154 6066 3202427 16 17004 527.93 100 2602

154+436 5089 3263973 20 62134 641.38 100 9162

461 6940 3184253 33 20378 458.83 100 2783

461+943 6466 3242406 33 19545 501.45 100 3498

Vibrio parahaemolyticus 200 3396 2151560 100 48275 633.56 100 8169

200+6000 4238 2119692 34 16163 500.16 100 2697

161 3897 2129657 65 16127 546.49 100 3125

161+298 3350 2159809 35 45188 644.72 100 10626

440 4304 2128652 32 17300 494.58 100 3567

Contig statistics for various assemblies using SOAPdenovo with ‘tuned’ and ‘standard’ mate-pair libraries. The standard sizes used were always 200 bp inserts or a
combination of 200 bp and 6000 bp inserts. Tuned sizes varied according to the prediction of ideal mate-pair sizes provided by analysis of our 35-mer and 100-
mer graphs (corresponding to sizes listed in Table 3). All assemblies used 30× coverage with 100 bp reads created by MetaSim. The best assembly (in terms of
N50 contig size) for each organism is bold-faced.
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In the case of next-generation sequencing technolo-
gies, however, the protocols were originally developed
for creating unpaired reads, and the generation of mate-
pairs generally increases the costs (in terms of prep
time, reagents, and machine runtime) of sequencing. In
this context, the two-tiered approach we propose - first
generate an assembly of the genome with unpaired
reads and evaluate the repeat structure of the genome;
then generate the mate-pair libraries that provide most
information towards the resolution of repeats in the
genome being assembled - is not only possible, but
likely more cost-effective in the long run. The tuned
mate-pair libraries produced by this process will be
more usable by the assembler, leading to better assem-
blies (longer correct contigs), which will dramatically
reduce the cost of downstream manual finishing.
Across all of the genomes examined, as read lengths

get shorter, the overall efficacy of mate-pairs in reducing
finishing complexity is almost always diminished regard-
less of the amount of localized complexity present in
the genome. This result is supported by the empirical
observation that genome assemblies constructed from
short-read data (e.g. ABI Solid or Illumina) are typically
substantially more fragmented than those constructed
with longer reads (454 or Sanger) [1], further underscor-
ing the need to develop affordable sequencing technolo-
gies that generate long reads.
Many advances have been made in the field of auto-

matic genome assembly in the past several years. Here
we have shown that a novel, two-tiered approach to
sequencing projects (along with the development of
technologies which can reliably and affordably produce
mate-pairs of a desired size) can greatly improve auto-
mation. However, even under ideal circumstances (idea-
lized graphs, error-free reads, perfect coverage, and
tuned mate-pair sizes), we still found ourselves unable
to produce completely gapless assemblies in many cases.
On average, approximately 17% of the original finishing
complexity of a given genome still remained after apply-
ing mate-pairs. Thus, although the automation process
continues to improve, the development of high-through-
put and cost-effective approaches for genome finishing
will also be of great importance in the years to come.

Methods
Idealized repeat graphs
A commonly used formulation of the assembly problem,
based on de Bruijn graphs, was introduced by Pevzner
et al. [4]. Specifically, a de Bruijn graph of order k is a
graph that contains a node for every (k - 1)-length string
(referred to as a (k - 1)-mer) over a given alphabet, and
that contains an edge for every pair of (k - 1)-mers that
overlap by exactly (k - 2) letters (the two nodes and the
edge thus represent one of all possible k-mers). In the

context of assembly, we focus on the sub-graph of the
de Bruijn graph that corresponds to the k-mers that are
actually present in the genome being assembled (for
simplicity we will refer to this sub-graph as the de
Bruijn graph as well).
We constructed de Bruijn graphs from the complete

genome sequences of 391 prokaryotes (obtained from
ftp://ftp.ncbi.nlm.nih.gov; see Additional file 1 for gen-
ome identifiers) as follows. We first chose a k-mer size,
k (values 35, 50, 100, 250, 500 bp were used to be repre-
sentative of read-lengths achievable through a range of
modern sequencing technologies). For each (k - 1)-mer
present in the genome, a node was created (without
repetition of nodes for repeated (k-1)-mers). For each k-
mer present in the genome, a directed edge was created
connecting the node representing its first (k - 1) letters
to the node representing its last (k - 1) letters. If a k-
mer was repeated in the genome, then a number of
edges equal to the number of instances of the k-mer
were created. Thus we created ‘ideal graphs’ that are
representative of perfect sequencing experiments
(exactly one read for every k-length substring in the
genome and no sequencing errors). In a real sequencing
experiment, due to the double-stranded nature of DNA,
each read and its reverse complement must be consid-
ered, resulting in a bi-directed graph. For the sake of
simplicity, our graphs were constructed using only reads
in the forward direction.
A series of lossless simplifications were applied to the

resulting de Bruijn graphs as described by Kingsford et
al. [2]. The first is a standard path compression in
which if there exists a pair of nodes u and v, where u is
the only predecessor of v, and v is the only successor of
u, the nodes are combined into a single node with the
same predecessors as u, and the same successors as v.
The new node is labeled with the concatenated
sequences of nodes u and v (accounting for the overlap
between these sequences). A second type of compres-
sion is based on the idea that all areas of the de Bruijn
graph whose cycle decomposition is a tree has a unique
Eulerian tour, and can therefore be collapsed into a sin-
gle node representing the sequence given by this traver-
sal. The third technique iteratively ‘unzips’ half-decision
nodes (those nodes with only one predecessor but mul-
tiple successors, or vice versa) by duplicating them and
then performing standard path compression on the
resulting unambiguous areas of the graph traversal.
The simplified graphs are significantly smaller in

terms of number of nodes and edges, yet the same set
of Eulerian traversals exist before and after simplifica-
tion since the transformations simply condense unam-
biguous paths into single nodes. Additionally, these
graphs provide a very clear picture of the genome’s
‘repeat structure’ (see Figure 5): Every node in the
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refined graph is either a repeat itself (has several pairs of
in -and -out edges) or it is a non-repeat (has exactly one
pair of in -and -out edges) that resides sandwiched
between two repeats. Thus the length of each repeat, as
well as the number of times it appears in the genome,
can be clearly seen in the refined graph.

Simulating mate-pairs
We simulated mate-pairs along the original genome
sequence using the following procedure. Given a library
size l, we chose a mate-pair specific size d at random
from a Gaussian distribution with mean l and standard
deviation 0.1l. A starting point s along the genome was
selected uniformly at random, and two reads of length k
(same as the value used in constructing the graph) were
selected starting from positions s and s + d - k. The
reads were identified within the graph through a simple
look-up, and the corresponding nodes were paired. In
simulations involving mate-pairs of varying lengths, an
equal number of mate-pairs of each length was used.
Throughout the analysis we assume to know the exact

length d for each mate-pair, while in a practical setting
only an approximate distance between mated-reads is
known. Since there may be many paths of approximately
the distance implied by a mate-pair, using our assump-
tion can eliminate uncertainty as to whether a mate-pair
implies a truly unambiguous path. Thus choosing not to
model the uncertainty of mate-pair sizes allowed us to
focus on understanding the effect of insert size on
repeat resolution, rather than becoming stymied by
ambiguity or resorting to heuristics aimed at choosing
the ‘most-likely’ of potentially many paths implied by
the mate-pair. In practice, this approach also allows us
to use a great many mate-pairs in our simulation that
might not have been usable by a real assembler.
Although we do not model uncertainty about mate-pair
sizes, we do take into account the variability in mate-
pair sizes within one library that occurs during real
mate-pair creation by choosing the mate-pair size from
a Gaussian distribution (as described above).

Repeat resolution through mate-pairs
We map each end of a mate-pair to a specific node in
the graph. Because the graphs and mate-pairs are con-
structed from the same known sequence, the coordi-
nates of each node in the assembly graph with respect
to the reference genome is known, and this information
is used to determine the placement of the mated reads
within the graph. In a practical setting, this placement
of mated reads can be determined by finding all good
alignments (or some subset of the best of these align-
ments) of the mated sequences to nodes in the graph,
then choosing a placement that most closely reflects the
length of the insert based on some path-finding
heuristic.
We check the graph for a shortest path that both con-

nects the endpoints of a mate-pair and is consistent
with the exact insert length. If a mate-pair cannot be
mapped to a shortest path in the graph it is eliminated
from further consideration. Mate-pairs whose ends map
to a same node were excluded from further analysis as
they can clearly provide no additional connectivity infor-
mation. Similarly, we excluded from further analysis
those mate-pairs whose ends mapped to two adjacent
nodes in the graph. Since such mate-pairs do not span
repeats, we see no clear way to use them for repeat
resolution. Additionally, if more than one shortest path
connects the ends of a mate-pair, there is ambiguity as
to which path is the correct one, so the mate-pair is not
used. Essentially, only mate-pairs connected by a unique
shortest path that is exactly consistent with the known
insert length are used for repeat resolution.
Mate-pairs fitting the above criteria are considered

useful for disambiguating repeats. Specifically, these
mate-pairs indicate that the Eulerian tour through the
graph that is consistent with the correct reconstruction
of the genome must contain the shortest path connect-
ing their endpoints, thereby eliminating the uncertainty
introduced by decision nodes (forks) along these paths.
More sophisticated heuristics for using mate-pair

information could be applied here (several have been
previously proposed as outlined in the Background sec-
tion). We rely on a shortest path heuristic in order to
ensure computational tractability since, in the general
case, finding a path of a given length within a graph is
NP-hard [15]. While this heuristic may fail in certain
circumstances (i.e. a unique path, consistent with the
mate-pair length, exists between the two ends yet it is
longer than the shortest path), our results show that, in
practice, the vast majority of mate-pairs have lengths
consistent with a shortest path between the mated
sequences (see Results). Thus more sophisticated heuris-
tics should only have a limited impact. In addition, simi-
lar shortest path approaches have been previously used
in genome assembly (see, e.g. Medvedev et al. [21]).

R1 R3

R4
R2

Figure 5 A simplified de Bruijn graph. A small de Bruijn assembly
graph after the simplification process is complete. The nodes R1, R2,
R3, and R4 are repeats (decision nodes), and the shaded nodes are
non-decision nodes. Note that non-decision nodes can only reside
sandwiched between repeats.

Wetzel et al. BMC Bioinformatics 2011, 12:95
http://www.biomedcentral.com/1471-2105/12/95

Page 12 of 14



Finishing complexity of the graph
In order to quantitatively characterize the benefit of
mate-pair information for repeat resolution, we define a
new measure of assembly complexity. Our measure,
which we call ‘finishing complexity’, estimates the num-
ber of manual fishing experiments that would be
required in order to correctly resolve all repeats and
reconstruct a complete and correct version of a genome
given the current state of the assembly graph. By using
such a measure we assume that the primary goal of the
assembly process is to automatically reconstruct as com-
plete a picture of the genome sequence as possible. This
measure may not directly apply to other contexts; e.g.,
in a project that only attempts to correctly reconstruct
the genes, rather than the full sequence, of an organism.
A straightforward strategy for manually resolving a

repeat is to choose an arbitrary in-edge of the repeat and
try pairing it with each possible out-edge using targeted
experiments (e.g. through targeted PCR) until the correct
pairing is found, at which point both the in-degree and
out-degree of the repeat are effectively reduced by 1.
This process is then repeated for the remaining edges.
The last pairing is implicit, as only one in-edge and one
out-edge remain. Thus we define a node’s finishing com-
plexity to be

∑ a
i=2i =

(
a2 + a

)
/2 − 1, where a can be

either the in-degree or out-degree of the node. Since our
graphs are Eulerian, the in-degree and out-degree of any
particular node are always equal. The total finishing com-
plexity of the graph is simply the sum of the finishing
complexities of all nodes.

Determining the optimal number of mate-pairs
Our results on ‘localized complexity’ (see Results) indi-
cate that it is frequently necessary to target mate-pairs to
tightly span repeats of a particular size if we wish to pro-
duce mate-pairs that can imply truly unambiguous paths.
However, simply picking an insert size that can poten-
tially span repeats of this size is not sufficient to ensure
that (when mate-pairs are randomly generated) all such
repeats will be disambiguated by the resulting library. It
is also necessary to generate sufficient coverage such that
each instance of every repeat of the targeted size is actu-
ally spanned by at least one mate-pair. This is especially
important if very short mate-pairs are being used.
By applying Poisson statistics, we can see that a level

of coverage of approximately 10 at the read level is suffi-
cient to virtually ensure that at least one mate-pair will
span every instance of each repeat in the genome. Here
we assume that coverage of the genome is uniform,
which is a reasonable assumption, although it may not
hold true for all current data sets. Specifically, let X be a
random variable denoting the number of mate-pair arri-
vals across a sequence of any given k nucleotides in the

genome. Let l be the mean arrival rate for mate-pairs
(coverage), which can be achieved by creating l(G/k)
mate-pairs, where G is the length of the genome in
nucleotides and k is the original k-mer length used for
construction of the graph. If we create 10(G/k) mate-
pairs in total, then l = 10, and the following holds:

P [X = x] =
(
λxe−λ

)/
x

⇒ P [X = 0] = 1
/
e10

⇒ P [X ≥ 1] = 1 − 1
/
e10

Thus if we create 10(G/k) mate-pairs, we virtually
guarantee at least one mate-pair arrival across any
stretch of k nucleotides in the genome. Since no nodes
in the graph are shorter than k, there should be at least
one mate-pair starting in each node that directly leads
into a repeat (with at least one additional mate-pair for
each additional traversal of the node), and the determi-
nation of ‘ideal’ insert size (see Results) should guaran-
tee that the other end of the mate-pair is just on the
other side of the repeat (for the repeats of the size being
targeted).

SOAPdenovo assemblies
For each of 8 bacterial genomes to be assembled (see
Table 3), 30× coverage in 100 bp reads were created
using MetaSim v. 0.9.1 with an empirical error model
derived from the 80 bp model provided by MetaSim
(assuming the last 21 bp have the same error character-
istics). Several sets of mate-pairs were constructed for
the various assemblies, chosen to be reflective of either
standard libraries, ‘ideal’ libraries (see Results) for a 35-
mer graph, or ideal libraries for a 100-mer graph. The
mate-pair lengths were distributed normally around the
mean with a standard deviation of 10%. SOAPdenovo v.
1.04 was run with option -K31 (the largest k-mer size
allowed by SOAPdenovo) and configuration options
reverse_seq = 0 (standard mate-pair orientation), asm_-
flags = 3 (try harder to build large contigs), pair_num_-
cutoff = 2 (minimum number of mate-pairs required to
link contigs), map len = 60 (minimum length match
between a read and a contig during scaffolding).

Additional material

Additional file 1: A list of the 391 genomes used in the study,
along with their identifiers. The 360 genome subset of these that are
discussed in the Results subsection regarding simulated comparison of
‘tuned’ vs standard mate-pair libraries are each marked with an asterisk
(*).
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