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Abstract

Background: Phosphorylation motifs represent common patterns around the phosphorylation site. The discovery
of such kinds of motifs reveals the underlying regulation mechanism and facilitates the prediction of unknown
phosphorylation event. To date, people have gathered large amounts of phosphorylation data, making it possible
to perform substrate-driven motif discovery using data mining techniques.

Results: We describe an algorithm called Motif-All that is able to efficiently identify all statistically significant motifs.
The proposed method explores a support constraint to reduce search space and avoid generating random
artifacts. As the number of phosphorylated peptides are far less than that of unphosphorylated ones, we divide the
mining process into two stages: The first step generates candidates from the set of phosphorylated sequences
using only support constraint and the second step tests the statistical significance of each candidate using the
odds ratio derived from the whole data set. Experimental results on real data show that Motif-All outperforms
current algorithms in terms of both effectiveness and efficiency.

Conclusions: Motif-All is a useful tool for discovering statistically significant phosphorylation motifs. Source codes
and data sets are available at: http://bioinformatics.ust.hk/MotifAll.rar.

Background
Protein phosphorylation is an essential post-translational
modification event for the regulation and maintenance
of most biological processes. Recent advances in high-
throughput methods such as tandem mass spectrometry
enable rapid and direct discovery of hundreds of phos-
phorylation sites in a single experiment [1]. The avail-
ability of large amounts of phosphorylation sites makes
it possible to perform phosphorylation motif finding
using data mining techniques.
According to [2] and [3], phosphorylation motif dis-

covery is defined as finding a set of motifs that appear
more often in the set of phosphorylated peptides P than
in the set of unphosphorylated peptides N. That means
each phosphorylation motif is “over-expressed” in P.
Here all peptides have the fixed length L and they are
aligned on the phosphorylated residue. We often call P
the foreground set and N the background set.

The discovery of phosphorylation motifs is computa-
tionally challenging. Suppose a motif resides in the pep-
tides of length L. This motif is a consensus sequence
(including the phosphorylation site) that consists of con-
served positions and wild-card positions that can match
any residue. The number of all possible phosphorylation
motifs is then 21(L–1) – 1. Though the length L is
usually fixed to be a small value (e.g., 13) in previous
studies [2,3], it is still infeasible to perform exhaustive
search to check all potential phosphorylation motifs.
Besides, it is also unclear which metric is more suitable
to measure the statistical significance of the motif.
To efficiently find phosphorylation motifs, two heuris-

tic methods have been proposed. The Motif-X method
[2] is a greedy algorithm that reports motifs in an itera-
tive manner. In each round, one most statistically signif-
icant motif is detected. The peptides matching the motif
identified in the first round are removed prior to the
second round of searching. This procedure repeats a
number of rounds until no significant motifs can be
found. The MoDL method [3] is an optimization-based
algorithm, which formulates the motif-finding problem
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as the minimization of description length. In other
words, MoDL tries to optimize the expressiveness of a
set of motifs rather than quantifying the significance of
a single motif. However, both Motif-X and MoDL can
only find a small subset of phosphorylation motifs. They
cannot guarantee to find all statistically significant
motifs so that some important phosphorylation patterns
remain unknown to biologists. Furthermore, Motif-X is
limited to discover non-overlap motifs while MoDL
unusually reports at most three motifs.
In this paper, we present a new algorithm called

Motif-All for the discovery of all statistically significant
phosphorylation motifs. Motif-All uses the odds ratio to
quantify the over-expressiveness of each motif in the set
of phosphorylated peptides against the background set.
To avoid exhaustive search, we impose a support con-
straint for each motif on the set of phosphorylated pep-
tides. The use of support constraint enables us to
borrow ideas from association rule mining [4] to gener-
ate and prune candidates in a level-wise manner before
calculating the odds ratio.
To demonstrate the superiority of Motif-All method,

we conduct experimental studies using the PhosPhAt
database 3.0 of Arabidopsis phosphorylation sites [5,6].
Motif-All performs better than Motif-X and MoDL in
finding more significant phosphorylation motifs.
Furthermore, it is very fast and is able to finish the
mining of large data sets within a reasonable time
period.
The rest of the paper is organized as follows: Section 2

presents the Motif-All algorithm. Section 3 shows the
experimental results. Section 4 gives some discussions
and Section 5 concludes the paper.

Methods
There are two critical issues in phosphorylation motif find-
ing. The first is how to measure the over-expressiveness of
each motif. The second is how to perform the search in an
efficient manner. In the proposed Motif-All method, we
use odds ratio to evaluate if one candidate motif is over-
expressed. To search efficiently, we use the following stra-
tegies to improve the running efficiency of Motif-All.
• We impose a support constraint on each candidate

motif. Here the support for a motif is defined as the
percentage of phosphorylated peptides that match this
motif. The notation of support is widely used in associa-
tion rule mining [4]. One motif is said to be frequent if
its support is no less than a given threshold. The aim of
introducing support constraint is two-fold: on the one
hand, it can filter out non-frequent motifs that may cor-
respond to random artifacts; on the other hand, it
makes it possible to generate and prune motifs in a
level-wise manner so as to avoid brute-force search.

• We divide the mining process into two stages. In the
first stage, we perform frequent motif finding using only
the data set P since the number of phosphorylated pep-
tides is much smaller than that of unphosphorylated
ones. In the second stage, we collect support informa-
tion using the data set N to calculate the statistical sig-
nificance of those candidate motifs from the first stage.
We will report all phosphorylation motifs whose
p-values are no larger than a user-specified significance
threshold.

Odds ratio and statistical significance score
The odds of an event is the probability that this event
occurs divided by the probability that it does not occur.
The odds ratio is defined as the ratio of the odds of an
event in one group to the odds in the complementary
group [7].
In the context of phosphorylation motif discovery, the

first group corresponds to the set of phosphorylated
peptides P and the second group is the set of unpho-
sphorylated peptides N. For a given motif m, we can
construct a contingency table as shown in Table 1. In
this table, c00, c01, c10 and c11 are non-negative “cell
counts” and m denotes that the motif m doesn’t exist.
Then, the calculation of odds ratio reduces to:

OR m
c c

c c
( ) .= 00 11

10 01
(1)

An odds ratio of 1 means that the target motif is
equally likely to exist in both P and N. An odds ratio
greater than 1 indicates that this motif is more likely to
appear in the set P.
To conduct statistical inference, one approach is to

use large sample approximations to the sampling distri-
bution of the log odds ratio. More precisely, the sample
log odds ratio is:
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and the standard error for the log odds ratio is
approximately:

SE m
c c c c

( ) .= + + +1 1 1 1

00 01 10 11
(3)

Table 1 A contingency table for a phosphorylation motif

m m
P c00 c01
N c10 c11
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Then, the z-value
Z(m) = LOR(m)/SE(m), (4)
follows a standard normal distribution.
Finally, we can calculate the p-value to assess the

statistical significance of each motif.

Frequent motif mining
Given a set of phosphorylated peptides P and a user-speci-
fied support threshold s, the objective of frequent motif
finding is to discover all motifs whose supports are no less
than s. The support for a motif is the percentage of phos-
phorylated peptides in P that match this motif. In other
words, a motif m is frequent if and only if its cell count c00
in Table 1 satisfies c00 ≥ |P|s with | • | denoting the size of
a set. Note that a similar occurrence constraint is utilized
in the Motif-X algorithm [2], which represents the mini-
mal number of phosphorylated peptides needed to match
the residue/position pair in its greedy search procedure.
There are two fundamental differences between our sup-
port constraint and their occurrence constraint:
• The support constraint is applied to the entire motif

rather a single residue/postion pair.
• The support constraint can be used to prune the

search space besides preventing the generation of ran-
dom artifacts.
One may argue that such a support constraint will

result in the loss of some less frequent motifs that are
statistically significant. We will explain its rationale
from two perspectives: First, since the motif describes
the phosphorylation pattern, it should be applicable to
many substrates; otherwise, such pattern might be ran-
dom artifact due to the limited number of known phos-
phorylation peptides. Second, we can use very small
support threshold in the mining process to avoid miss-
ing infrequent motifs. In the extreme case, setting s =
1/|P| will guarantee the completeness. Certainly, this
may result in the report of many meaningless motifs.
From this viewpoint, we can regard the support thresh-
old as a parameter for controlling the trade-off between
completeness and false positive.
More importantly, the use of support constraint

enables us to exploit a level-wise pruning strategy so as
to reduce the search space. This idea has been widely
used since the introduction of Apriori algorithm for
association rule mining [4]. The application of this strat-
egy to frequent motif finding is rather straightforward.
For the sake of completeness, we will describe the
mining procedure briefly.
In this paper, we focus on the discovery of pattern-

based phosphorylation motifs, e.g., consensus sequences
that consist of either conserved positions or wild posi-
tions (denoted by “.”) that can match any animo acids.
Each motif has a single phosphorylated residue, which is
denoted with a underlined character (S, T or Y).

We define the size of a motif as the number of con-
served positions in that motif. We also call a motif of
size k a k-motif. We define that one k-motif is the gen-
eralization of another motif if they have the same con-
served residues at k positions. For instance, “D…S..P”
and “D.Y.S..P” are 2-motif and 3-motif, respectively. And
the first motif is a generalization of the second one.
Furthermore, we use Fk to denote the set of all fre-

quent k-motifs and Zk to denote the set of all potential
frequent k-motifs.
To find all frequent motifs, we utilize the level-wise

search strategy rooted from the Apriori algorithm [4].
More precisely, the search procedure has multiple itera-
tions to obtain the set of all frequent motifs. In the first
iteration, we scan P to count the the number of phos-
phorylated peptides that match each possible 1-motif. In
the subsequent kth iterations, we perform the following
two operations:
1. Only the frequent motifs from Fk–1 are used to gen-

erate Zk since a k-motif will not be frequent if one of its
(k – 1) generalizations is infrequent. Therefore, the
search space for k-motifs is reduced. An example search
tree is given in Fig.1.
2. The set P is scanned to count the support of candi-

dates in Zk. Less frequent motifs are deleted from Zk to
generate Fk.
We stop the search when Fk is empty and return F =

∪Fk as the final result.

Motif-All algorithm
The Motif-All algorithm takes the support threshold s
and the significance threshold θ as input to find phos-
phorylation motifs from two sets: a set of phosphory-
lated peptides P and a set of unphosphorylated peptides
N. As shown in Fig.2, it consists of the following steps:
1. Finding the set of all frequent motifs F from

P using the level-wise search method introduced in the
previous subsection.
2. Scanning the set N to calculate the log odds ratio

for each motif m Î F. Those motifs whose p-values are
no greater than θ are returned to the user.
Note that the statistical evaluation of motifs can be

done in various ways. Thus, we can also use other mea-
sures in Motif-All by simply replacing the log odds ratio
with the new significance measure in step 2. The choice
of significance evaluation measure will not change the
completeness property of our algorithm.

Results
Data
To test the performance of Motif-All, we use the Phos-
PhAt database 3.0 of Arabidopsis phosphorylation sites
[5,6] to construct the set of phosphorylated peptides P.
Note that we only utilize unambiguous site identifications
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in the construction process. The length of each extracted
peptide is 21 with a measured phosphorylated residue in
the 11th position. To generate the background data set
N, we first extract all 21-mers with a phosphorylated resi-
due in the center position from the TAIR7 protein data-
base. Then, we remove all peptides already in P. The
remaining peptides form the background data.
One may worry that such background data generation

procedure will disable the extraction of meaningful
motifs since N contains many peptides that can be
phosphorylated but are not identified so far. We like to
point out that these potential phosphorylated peptides
are overwhelmed by those truly non-phosphorylated
peptides in N. Thus, this data generation does not
change the characteristics of the background set N.
Overall, we generate three groups of data for serine
(denoted by PhAtS), threonline (denoted by PhAtT) and
tyrosine (denoted by PhAtY), respectively. Their charac-
teristics are the following:

• PhAtS: It contains 2734 foreground sequences and
982050 background sequences.
• PhAtT: It contains 415 foreground sequences and

550574 background sequences.
• PhAtY: It contains 80 foreground sequences and

304344 background sequences.

Performance comparison
In the experiments, we compare our Motif-All algorithm
against the Motif-X algorithm [2] and the MoDL algo-
rithm [3]. Note that we didn’t include other motif find-
ing algorithms such as TEIRESIAS [8] in the
comparison. This is because these algorithms are not
designed for phosphorylation motif discovery and it has
been shown that MoDL [3] is superior to these
methods.
The results of Motif-All, Motif-X and MoDL are listed

in Fig.3. Some important observations are summarized
as follows.

{ }

D………S G………S

….

DS

….

S………G S………D

GP..……S

….

G...…RS S ……PG

….

S ……KG

GP..…RS GK..…RS

….

G...…TRS
Figure 1 An example search tree for browsing candidates in a level-wise manner. We start with an empty root node and perform width-
first search. Only the nodes of frequent motifs are expanded for further checking.
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Firstly, our algorithm is able to find more statistically
significant phosphorylation motifs than existing algo-
rithms. This is because our method has a theoretical
guarantee on the completeness of results under a given
parameter setting. In particular, almost all reported
motifs of Motif-X and MoDL are included in the motif
set of Motif-All. There are two exceptions: one is the
motif “TD” detected by Motif-X and another is the
motif “K . . T” found by MoDL. After checking these
two motifs carefully, we found that the p-value of “TD”
is 1.1 × 10–5 and the p-value of “K . . T” is 2.4 × 10–3

according to our significance test. Obviously, both
motifs are not statistically significant according to the p-
value threshold of 10–6. Secondly, the increase of sup-
port threshold for Motif-All will generate motif set that
is very similar to that of Motif-X and MoDL. This is
clearly visible in PhAtT and PhAtY. To further check if
this is true, we also perform motif finding on PhAtS at
the support threshold of 15%. We obtain three motifs
under this setting: “R . . S”, “S . S” and “SP”. This result
set is almost identical to that of Motif-X and MoDL

listed in Fig.3. This means that Motif-All not only can
find more useful motifs but also is capable of serving as
a substitute of existing algorithms in a flexible manner.
Finally, we can generate more motifs using Motif-X by

lowering the occurrence threshold. For instance, if the
occurrence threshold is set to 20 on PhAtS, Motif-X
will return 31 motifs. To test whether Motif-All can still
find these motifs, we use an approximately equivalent
setting of s = 1% to conduct the experiment. Totally,
Motif-All detects 1153 significant motifs that include all
31 motifs reported by Motif-X. The detailed results are
available at http://bioinformatics.ust.hk/MotifAll.rar.

Effect of support constraint
To test the effect of support threshold, we vary this
parameter from 0.03 to 0.09 and plot the corresponding
numbers of discovered motifs and the running time in
Fig.4 and Fig.5, respectively. Clearly, the number of
identified motifs will decrease when the support thresh-
old increases. Moreover, the use of a smaller support
threshold may generate too many motifs. Therefore, it is

DKYDREYPDR SSPGGRSPGFE
RKEYDGKPLE SDEEGDDDDEE
SPPAKGHQSR SVSPQDRRYEK
.. .. .. .. .. ..

P: Phosphorylation data set

Frequent Motif Finding

………….

Y..RS…R
ES..E

S………S
P...SD

………….

F: The set of frequent motifs

(1)

SCVNAVLKFL SPEHVSESIKR
TFDFHRLDSL SALLDAIATIG
PATAISSFQI SVGQSGTTNTT
VYEHIATIAQ STVMPCNLVDK
EEREELTRRA SLPPLPSKVRA
RSSTLTANSK SSRPSTPTSRA

.. .. .. .. .. ..

N: Background data set

ES..E
P...SD
…………. Statistical Significance Test

(2)

The set of statistically 
significant motifs

Figure 2 Overview of the Motif-All algorithm. In the first step, we find frequent motifs from P to reduce the number of candidate motifs. In
the second step, we perform significance test to report all over-expressed frequent motifs to the user.
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Dat a Set Motif- X M oDL M otif-All ( s=8%) Motif-Al l ( s=10% )
[KR] . . . . . . . . . S
[KER ] . . . . . . . . S
[KER ] . . . . . . . S

[KR] . . . . . . S
R . . . . S
[ER] . . . S

R . . S R . . S [ER] . . S R . . S
[SE] . S S . S
[GDR ] S D S

PhosAt S S P S P S [PDE ] S [PD]
S . [GDE] S . [DE ]

S . . E S . . [ DE ] S . . [ DE ]
S . . . [ DE ] S . . . E
S . . . . [ DER] S . . . . E
S . . . . . [ DER] S . . . . . E
S . . . . . . R
S . . . . . . . [ ER ]
S . . . . . . . . [ KER]
S . . . . . . . . . K

[KR] . . T R . . T R . . T
T P T P T P T P

PhosAt T T . D T . D
T D
Y . . . R Y . . . R Y . . . R Y . . . R

R . . . . . . . . Y R
Y . . . . Y . . P

PhosAt Y Y . . . . Y . . . E
Y . . . . . . A . E
Y . . . . . . . P E
Y . . . . Y . . PE

Figure 3 Performance comparison using data generated from PhosPhAt database 3.0. In Motif-All, we fix the p-value threshold to be 10-6

and report the results at the support threshold of 8% and 10%, respectively. Since it is not allowed to upload more than 10MB data to the
Motif-X server, we set the “background” option of Motif-X to “IPI Arabidopsis Proteome” to mimic the background data in our local machine. As
shown in [2], Motif-X is robust to the choice of background data. Therefore, it is acceptable to use such setting in the performance comparison.
Since the occurrence threshold of Motif-X has a similar effect as the support constraint of Motif-All, we set this parameter to be the value that is
equivalent to the support value of 8%, i.e., it is specified as 219, 33 and 6 for PhAtS, PhAtT and PhAtY, respectively. We download the Matlab
codes of MoDL to perform motif discovery using its default configurations. The notation “[]” denotes a conserved position that match any letter
contained in the bracket.
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Figure 4 The effect of support constraint on the number of identified motifs. Note that the number of identified motifs may far exceed
the number of phosphorylated peptides. This is because the number of potential phosphorylation motifs is 21(L–1) – 1, where L is the length of
each peptide.
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plausible to give priority to larger support thresholds in
parameter assignment.
The running efficiency test in Fig.5 shows that the

increase of support threshold will lead to the decrease
of running time as well. More importantly, Motif-All
can finish the motif finding procedure within 30 sec-
onds, which is faster than Motif-X and MoDL. This
means Motif-All is capable of discovering motifs from
large data sets very efficiently.

Discussion
The discovery of phosphorylation motifs is a computa-
tionally challenging problem. This paper tries to resolve
it through the introduction of Motif-All algorithm. Here
we discuss several related problems that may need to be
further investigated.
• Problem formulation: One critical question is how

to formulate the computational problem for phosphory-
lation motif discovery. Currently, it is casted either as a
search problem or as an optimization problem. Motif-X
falls into the first category while MoDL belongs to the
second category. In this paper, we opt for the first cate-
gory since such formulation guarantees that each identi-
fied motif is statistically significant. However, it may

report too many motifs than necessary as the statistical
significance may not necessarily agrees with the biologi-
cal interpretation. In this regard, optimization-based for-
mulation has the merit of generating a concise motif
set. Therefore, a better problem formulation incorporat-
ing the biological knowledge of phosphorylation is still
needed.
• Motif evaluation: In Motif-All, we use two mea-

sures for motif assessment: statistical significance and
support. Though our initial motivation of introducing
the support constraint was to reduce the search space,
we later found that it is also of practical importance in
motif evaluation. Without the help of support con-
straint, it is almost impossible to obtain a concise motif
set using only the significance test. From this perspec-
tive, we strongly recommend the adoption of support as
one standard measure for phosphorylation motif evalua-
tion in future studies.
Furthermore, we also need to develop new evaluation

measures since the combination of significance thresh-
old and support is still insufficient for separating true
phosphorylation motifs from false ones in some cases.
The general question of developing an effective evalua-
tion measure is open and needs more investigations.
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Figure 5 The effect of support constraint on the running time. Our algorithm is implemented with Java and is tested on a ThinkPad T400
notebook computer with 2.4GHz CPU and 3GB RAM.
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• Motif utilization: Experimental methods to identify
phosphorylation sites are time consuming, labor inten-
sive and expensive [9,10]. The identified motifs can be
used to predict potential phosphorylation sites before
biological validation. For instance, the recent released
Scan-X method [11] is one such representative, which is
built on Motif-X. The capability of finding more signifi-
cant motifs using Motif-All makes it possible to build
more accurate classifiers for better prediction.

Conclusions
We introduced the Motif-All algorithm for finding
phosphorylation motifs. Motif-All can identify all statis-
tically significant motifs under a given parameter setting.
Meanwhile, it is very fast such that it is able to find
hundreds of meaningful motifs from millions of peptide
sequences within one minute on a personal computer.
Our experimental results show that it outperforms exist-
ing phosphorylation motif discovery algorithms.
We have shown that Motif-All is able to find more

phosphorylation motifs than existing algorithms. How-
ever, it is very expensive and difficult to perform biolo-
gical validation. To measure the correctness of the
identified motifs that are not reported by other algo-
rithms, one alternative strategy is to perform permuta-
tion test so as to control the false positive rate.
Unfortunately, the permutation test is a very time-
consuming procedure since it needs to execute Motif-
All many times. To address this issue, our future work
will focus on the design and implementation of fast
algorithms that support large permutation test.
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