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Abstract

Background: Hydrogen bonds (H-bonds) play a key role in both the formation and stabilization of protein
structures. They form and break while a protein deforms, for instance during the transition from a non-functional
to a functional state. The intrinsic strength of an individual H-bond has been studied from an energetic viewpoint,
but energy alone may not be a very good predictor.

Methods: This paper describes inductive learning methods to train protein-independent probabilistic models of
H-bond stability from molecular dynamics (MD) simulation trajectories of various proteins. The training data
contains 32 input attributes (predictors) that describe an H-bond and its local environment in a conformation ¢ and
the output attribute is the probability that the H-bond will be present in an arbitrary conformation of this protein
achievable from ¢ within a time duration A. We model dependence of the output variable on the predictors by a

regression tree.

Results: Several models are built using 6 MD simulation trajectories containing over 4000 distinct H-bonds
(millions of occurrences). Experimental results demonstrate that such models can predict H-bond stability quite
well. They perform roughly 20% better than models based on H-bond energy alone. In addition, they can
accurately identify a large fraction of the least stable H-bonds in a conformation. In most tests, about 80% of the
10% H-bonds predicted as the least stable are actually among the 10% truly least stable. The important attributes
identified during the tree construction are consistent with previous findings.

Conclusions: We use inductive learning methods to build protein-independent probabilistic models to study
H-bond stability, and demonstrate that the models perform better than H-bond energy alone.

Background

A protein is a long sequence of amino-acids, called resi-
dues. Under normal physiological conditions, various
forces (electrostatic, van der Waals, ...) lead the protein
to fold into a compact structure made of secondary
structure elements, a-helices and f-strands, connected
by bends (called loops). An H-bond corresponds to the
attractive electrostatic interaction between a covalent
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pair D—H of atoms, in which the hydrogen atom H is
bonded to a more electronegative donor atom D, and an
electronegative acceptor atom A. Due to their strong
directional character, short distance ranges, and large
number in folded proteins, H-bonds play a key role in
both the formation and stabilization of protein struc-
tures [1-3]. While H-bonds involving atoms from close
residues along the main-chain sequence stabilizes sec-
ondary structure elements, H-bonds between atoms in
distant residues stabilize the overall 3D arrangement of
secondary structure elements and loops.

H-bonds form and break while the conformation of a
protein deforms. For instance, the transition of a folded
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protein from a non-functional state into a functional
(e.g., binding) state may require some H-bonds to break
and others to form [4]. So, to better understand the pos-
sible deformation of a folded protein, it is desirable to
create a reliable model of H-bond stability. Such a
model makes it possible to identify rigid groups of
atoms in a given protein conformation and determine
the remaining degrees of freedom of the structure [7].
Since most H-bonds in a protein conformation are quite
stable, it is crucial that the model precisely identifies the
least stable bonds. The intrinsic strength of an indivi-
dual H-bond has been studied before from an energetic
viewpoint [5,6]. However, potential energy alone may
not be a very good predictor of H-bond stability. Other
local interactions may reinforce or weaken an H-bond.

Methods
I. Problem statement
Let ¢ be the conformation of a protein P at some time
considered (with no loss of generality) to be 0 and H be
an H-bond present in c. Let M (c) be the set of all phy-
sically possible trajectories of P passing through ¢ and =
be the probability distribution over this set. We define
the stability of H in ¢ over the time interval A by:
o (H.c,8) = [01], o(H,ca) Y [l.[Al(q, H,t)dt] (@), (1)
sem@| Ao

where I (g, H, t) is a Boolean function that takes value
1 if H is present in the conformation g(¢) at time ¢
along trajectory ¢, and 0 otherwise. The value
c_r(H, ¢,A) can be interpreted as the probability that H
will be present in the conformation of P at any specified
time t € (0, A), given that P is at conformation c¢ at
time 0. Our goal is to design a method for generating
good approximations ¢ of 5. We also want these
approximations to be protein-independent.

Il. General approach
We use machine learning methods to train a stability
model o from a given set Q of MD simulation trajec-
tories. Each trajectory g € Q is a sequence of conforma-
tions of a protein. These conformations are reached at
times t; =i x 0, i = 0, 1, 2, ..., called ticks, where 0 is
typically on the order of picoseconds. We detect the
H-bonds present in each conformation g(¢;) using the
geometric criteria given in [8]. Note that an H-bond in
a given protein is uniquely identified (across different
conformations) by its donor, acceptor, and the hydrogen
atom. So, we call the presence of a specific H-bond H in
a conformation ¢(¢;) an occurrence of H, denoted by #.
For each /s, we compute a fixed list of predictors,
some numerical, others categorical. Some are time-
invariant, like the number of residues along the main-
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chain between the donor and acceptor atoms. Others
are time-dependent. Among them, some describe the
geometry of %, e.g., the distance between the hydrogen
and the donor. Others describe the local environment of
h, e.g., the number of other H-bonds within a certain
distance from the mid-point of H.

We train o as a function of these predictors. The pre-
dictor list defines a predictor space ¥ and every H-bond
occurrence maps to a point in Y. Given the input set Q
of trajectories, we build a data table in which each row
corresponds to an occurrence 4 of an H-bond present
in a conformation ¢(¢;) contained in Q. So, many rows
may correspond to the same H-bond at different ticks.
In our experiments, a typical data table contains several
hundred thousand rows. Each column, except the last
one, corresponds to a predictor p and the entry (k, p) of
the table is the value of p for s. The entry in the last
column is the measured stability y of 4. More precisely,
let H be the H-bond of which /% is an occurrence. Let
I = A/o, where A is the duration over which we wish to
predict the stability of 4, and m < [ be the number of
ticks &, k=i + 1, i + 2,...,i + [, such that H is present in
q(tr). The measured stability y of 4 is the ratio m/l. We
chose [ = 50 in most of the tests reported below, as this
value both provides a ratio m// large enough for the
measured stability to be statistically meaningful, and
corresponds to an interesting prediction timescale
(50ps). Typically, most H-bond occurrences are quite
stable: over 25% have measured stability 1, about 50%
higher than 0.8, and only 15% less than 0.3.

We build ¢ as a binary regression tree [9]. This
machine learning approach has been one of the most
successful in practice. Regression trees are often simple
to interpret. The method can work with both categori-
cal and numerical predictors in a unified way, as
shown in Section III. Each non-leaf node in a regres-
sion tree is a Boolean split. So, each node N of the
tree determines a region of ¥ in which all the splits
associated with the arcs connecting the root of the tree
to N are satisfied. We say that an H-bond occurrence
falls into N if it is contained in this region. The pre-
dicted stability value stored at a leaf node L is the
average of the measured stability values by all the
H-bond occurrences in the training data table that fall
into L. We expect this average, which is taken over
many pieces of trajectories, to approximate well the
average defined in Equation (1).

Once a regression tree has been generated, it is used
as follows. Given an H-bond H in an arbitrary confor-
mation ¢ of an arbitrary protein, the leaf node L of the
tree into which H falls is identified by calculating the
values of the necessary predictors for H in c¢. The pre-
dicted stability value stored at L is returned.
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lll. Training algorithm

We construct a model o as a binary regression tree
using the CART method [9]. The tree is generated
recursively in a top-down fashion. When a new node N
is created, it is inserted as a leaf of the tree if a prede-
fined depth has been reached or if the number of % fall-
ing into N is smaller than a predefined threshold.
Otherwise, N is added as an intermediate node, its split
is computed, and its left and right children are created.
A split s is defined by a pair (p, r), where p is the split
predictor and r is the split value. If p is a numerical pre-
dictor, then 7 is a threshold on p, and s 2 p <r. If p is a
categorical predictor, then r is a subset of categories,
and s £ p er. We define the score w(p, r) of split s =
(p, r) at a node N as the reduction of variance in mea-
sured stability that results from s. The algorithm
chooses the split—both the predictor and the split value
—that has the largest score. Only a relatively small sub-
set of predictors selected by the training algorithm is
eventually used in a regression tree.

To prevent model overfitting, we limit tree depth to 5
in most of our experiments and limit the minimal num-
ber of training samples in an intermediate node to be
10. We further prune the obtained tree using the follow-
ing adaptive algorithm. We initially set aside a fraction
of the training data table called validation subset. Once
a tree has been constructed pruning is an iterative pro-
cess. At each step, one intermediate node N whose split
has minimal score becomes a leaf node by removing the
sub-tree rooted at N. This process creates a sequence of
trees with decreasing numbers of nodes. We compute
the mean square error of the predictions made by each
tree on the validation subset. The tree with the smallest
error is selected.

Results

I. Experimental setup

We used 6 MD simulation trajectories picked from dif-
ferent sources and called hereafter 1c90A, 1e85A,
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1g90A_1, and 1g90A_2 from [10], complex from [11],
and Ieia (generated by us). In all of them the time inter-
val 0 between two successive ticks is 1ps. Table 1 indi-
cates the protein simulated in each trajectory, its
number of residues, the force field used by the simula-
tor, and the duration of the trajectory. Each trajectory
starts from a folded conformation resolved by X-ray
crystallography.

From each trajectory we derived a separate data table
in which the rows represent H-bond occurrences. Last
two columns in Table 1 list the number of distinct
H-bonds detected in each trajectory and the total num-
ber of H-bond occurrences extracted. Note that complex
was generated for a complex of two molecules. All
H-bonds occurring in this complex are taken into
account in the corresponding data table.

The values of the time-varying predictors are subject to
thermal noise. Since a model o will in general be used to
predict H-bond stability in a protein conformation
sampled using a kinematic model ignoring thermal noise
(e.g., by sampling the dihedral angles ¢, v, and y) [7], we
chose to average the values of these predictors over /’
ticks to remove thermal noise. More precisely, the value
of a predictor stored in the row of the data table corre-
sponding to an H-bond occurrence in ¢(t,) is the average
value of this predictor in q(t;_y;), q(ti_ys2)r -, 4(t;)»
where t;_p,, =t; —(I'=k)x3& . Our analysis shows that
I = 50 is near optimal.

The performance of a regression model can be mea-
sured by the root mean square error (RMSE) of the pre-
dictions on a test dataset. For a data table T = {(xy, y1),
(%2, ¥2)}+-» (%, ¥,)}, where each x;, i = 1,...,n, denotes a
vector of predictor values for an H-bond occurrence
and y; is the measured stability of the H-bond, and a
model o, the RMSE is defined by:

RMSE(o,T) = \/%Zi(yi —o(x;))?. As RMSE depends

not only on the accuracy of o, but also on the table T,
some normalization is necessary to compare results on

Table 1 Characteristics of the MD simulation trajectories used to create the 6 datasets

Trajectory Protein # res. Force field Duration # H- #
bonds occurrences
1c90A Cold shock protein 66 ENCAD [12] with F3C explicit 10ns 263 363463
water model
1e85A Cytochrome C 124 Same as above 10ns 525 1253879
1g90A_1 PDZ1 domain of human Na(+)/H(+) exchanger 91 Same as above 10ns 374 558761
regulatory factor
1g90A_2 Same as above 91 Same as above 10ns 397 544491
complex  Efb-C/C3d complex formed by the C3d domain of 362 Amber 2003 with implicit solvent  2ns 1825 348943
human Complement Component C3 and one of its using the General Born solvation
bacterial inhibitors method [13]
Teia EIAV capsid protein P26 207 Amber 2003 with SPC/E water 2ns 757 379573

model
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different tables. So, in our tests we compute the
decrease of RMSE relative to a base model o,. The rela-
tive base error decrease (or RBED) is then defined by:
RMSE(c, T) — RMSE(c, T)
RMSE(c, T)

RBED(c, 0, T) = x100% . In

most cases, 0g is simply defined by o,(x) = lz Vir
n i

i.e., the average measured stability of all H-bond occur-
rences in the dataset. In other cases, 0, is a model
based on the H-bond energy.

Il Generality of models trained on multiple trajectories
Our goal is to train models to predict the stability of
H-bonds in any protein. So, we trained models on data
tables obtained by mixing subsets of 5 data tables and we
tested these models on the remaining data table. For
each combination of 5 data tables, we trained 4 groups of
models varying in the tree’s maximal depth (5 or 15) and
in the fraction of H-bond occurrences randomly taken
from each data table (10% or 50%). For each group we
trained 10 models. Hence, in total, 240 models were gen-
erated. Table 2 shows the mean RBED value for each
combination of data tables and each group of models. In
columns 3 through 8 we indicate the data table used for
testing the models trained on a combination of the 5
other data tables. Figure 1 shows a partial tree trained
with combinations of all tables, except 1c90A.

RBED values show that regression tree model signifi-
cantly reduces base error and keeps predictive power when
applied to a protein not present in the training data. More-
over, the variance of RBED values is very small, meaning
that the training process yields models that are stable in
performance. Furthermore, the RBED values are lower for
models tested on complex. Recall that the trajectory com-
plex was generated for a complex made of a protein and a
ligand, while every other trajectory was generated for a sin-
gle protein. So, it is likely that complex contains H-bonds
in situations that did not occur in any of the other trajec-
tories. Both deeper trees and larger data fractions tend to
improve model accuracy, but the very small gain is not
worth the additional model or computation complexity.

lll. Comparison with FIRST-energy model
We've checked whether regression models can predict
the stability of H-bonds more accurately than potential
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All rows
Count 602434
Mean Stability 0.81

Dist_H_A22.40 Dist_H_A<2.40
Count 123654 Count 477780
Mean Stability 0.38 Mean Stability 0.92

FIRST_energy=0.44 FIRST_energy<0.44 | | Dist_H_A22.15 Dist_H_A<2.15
Count 64771 Count 59883 Count 105929 Count 371851
Mean Stability 0.25 Mean Stability 0.53 Mean Stability 0.79 Mean Stability 0.96

Figure 1 Top 2 layers of a regression tree trained with combination
of all tables, except 1c90A. The actual tree contains 55 nodes. Each
path from the root to a node defines a conjunction of criteria for
H-bonds with a certain mean stability. Here, Dist_H_A (the distance
between the hydrogen and the acceptor atoms) is the most
differentiating predictor. For H-bonds with Dist_H_A>240A, the
mean stability is only 0.38, but it increases to 0.92 if
Dist_H_A<240A.

energy alone. Table 3 presents the mean RBED value for
a model obtained in the first row of Table 2 relative to
the base model that is a regression tree built from the
same training data using FIRST energy as the only pre-
dictor. FIRST _energy is a modified Mayo potential [5]
implemented in FIRST (a protein rigidity analysis soft-
ware) [7]. Comparison on all 6 data tables show that the
more complex models are significantly more accurate
than the models based on FIRST_energy alone.

IV. Identification of least stable H-bonds

Most H-bond occurrences tend to be stable. So, accu-
rately identifying the weakest ones is important if one
wishes to predict the possible deformation of a protein
[7]. To evaluate how well our models identify the least
stable H-bonds occurrences, we first identify the subset
S of the 10% H-bond occurrences with the smallest
measured stability in each test table 7. Using a regres-
sion tree ¢ obtained in Section II, we sort the H-bond
occurrences in 7T in ascending order of predicted stabi-
lity and we compute the fraction w € [0,1] of S that is
contained in the first 100xu% occurrences in this sorted
list, for successive values of u# € [0,1]. We call the func-
tion w(u) the identification curve of the least stable
H-bonds for o.

Figure 2 plots the identification curve for I1c90A. It
consists of three curves: the red curve is the (fictitious)
ideal identification curve, the blue curve is obtained
with one (randomly picked) regression tree computed in

Table 2 Mean RBED values of models trained on multiple trajectories

Fraction of data Max tree depth 1c90A 1e85A 1g90A_1 1g90A_2 complex Teia Average
0.1 5 46.92 5937 5093 4529 37.90 42.60 4717
05 5 4707 59.59 50.69 4545 38.08 43.15 47.34
0.1 15 47.24 59.03 5142 45.65 38.07 43.35 4746
05 15 46.87 59.04 51.38 45.89 3838 4346 47.50
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Table 3 Mean RBED values of models using single
predictor FIRST_energy

1c90A 1e85A 1g90A_1
26.36 2795 2263

1g90A_2
1963

complex Teia
1942 565

Section II, and the green curve is obtained by sorting H-
bond occurrences in decreasing values of FIRST_energy.
Plots on other proteins present similar curve shapes. For
models tested on data tables except complex, about 80%
of the 10% H-bond occurrences predicted as the least
stable are actually among the 10% truly least stable. The
results for complex are less satisfactory because of the
reasons discussed in Section II. The regression models
are consistently better than the FIRST energy-only
models, though for Ieia the difference is small.

Discussion

In all our regression trees the root split was done with
predictor Dist_H_A (the distance between the hydrogen
and acceptor atoms), which therefore appear as the
single most discriminative attribute to predict H-bond
stability. This observation is consistent with previous
findings. Levitt [6] found that most stable H-bonds have
Dist_H_A less than 2.07A. Jeffrey and Saenger [14] also
suggested that Dist_H_A is a key attribute affecting
H-bond stability, with a value less than 2.2A for moder-
ate to strong H-bonds. Consistent with these previous
findings, the split values of the deepest Dist_H_A nodes
in all our regression trees are around 2.1A. This dis-
tance was observed in [6] to sometimes fluctuate by up
to 3A in stable H-bonds, due to high-frequency atomic
vibration. This observation supports our decision to
average predictor values over windows of [’ ticks.

——

Identified
)
(&)
!

od L
T T T T T T T T T T T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Total

Figure 2 Identification curves of the least stable bonds for 7c90A

(see Results, Section V).
A\
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Predictor FIRST_energy is often used in splits close to the
root. This is not surprising since it is a function of several
other pertinent predictors: Dist H_A, Angle_D_H_A (the
angle between the donor, the hydrogen atom, and the
acceptor), Angle_H_A_AA (the angle between the hydro-
gen atom, the acceptor, and the atom covalently-bonded to
the acceptor), and the hybridization state of the bond.
Some other distance-based predictors (Dist_D_AA, Dis-
t_D_A, Dist_H_D), angle-based predictors and Ch_type
(describing whether the donor and acceptor are from
main-chain or side-chain) predictor appear often in regres-
sion trees, but closer to the leaf nodes. They nevertheless
play a significant role in predicting H-bond stability. For
example, as shown in Figure 1, if Angle H_A_AA is at least
105A°, the stability is very high (about 0.96); otherwise, it
drops to 0.71. The preference for larger angle matches well
with the well-known linearity of H-bonds [14].

In order to get a more quantitative measure of the
relative impact of the predictors on H-bond stability, we
define the importance of a predictor p in a regression

tree by: 1(p) = ZseN w(s) / n(s), where N, is the set

p
of nodes where the split is made using p, w(s) is the
score of the split s, and n(s) is the number of H-bond
occurrences falling into the node where split s is made.
We trained 10 models on data tables combining 10% of
each of the 6 data tables. Importance scores for each
predictor were averaged over these models and then lin-
early scaled to adjust the score of the least important
predictor (with non-zero average importance) equal
to 1. The average importance of every predictor appear-
ing in at least one model is shown in Figure 3. The fig-
ure confirms that distance-based and angle-based
predictors, as well as FIRST_energy, are the most
important. It also shows that a number of other

1E+00 1E+01 1E+02 1.E+03 1E+04 1E+05 1E+06

Dist_H_A 2.2E405
FIRST_energy 1.9E404
Ang_H_A_AA 1.8£403

Dist_D_AA 176403
Ang_D_A_AA 1E+02
Ch_type 7.9E402
Dist_D_A 4.6E+02
Ang_D_H_A 466402
Dist_H_D 346402
Resi_name_H 216402
Resi_name_A 9.9E+01
Surface 9.7€+01
Range 8.6E+01
Atom_type_D 536401
Dist_H_AA 5.06+01
Sec_type 3.8E+D1
Num_furcated_H 356401
Ang_planar 2.1E401
Num_hb_s 1.3£401
Num_hb_seqNbr 1.0E+01
Num_hb_spaceNbr 9.7E+00
Dist_A_AA 9.3E+00
Resi_sch_size_A jmmmmmmm 5.4€+00
Num_potential_As s 4.7E+00
Num_furcated_A jmmm— 4,6E1+:00
Resi_type_A s 3.4£400
Resi_sch_size_H s 1.9E+00
Hybrid_state | 1.0£+00

Figure 3 Predictor importance scores.
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predictors—including Resi_name_H, Resi_name_A, and
Range (difference in residue numbers of donor and
acceptor) —have less, but still significant importance.
Overall, we observe that predictors that describe the local
environment of an H-bond play a relatively small role in
predicting its stability. In particular, we had expected that
descriptors such Num_hb_spaceNbr and Num_hb_spa-
ceRgdNbr, which count the number of other H-bonds
located in the neighborhood of the analyzed H-bond,
would have had more importance. However, this may
reflect the fact that the MD simulation trajectories used in
our tests are too short to contain enough information to
infer the role of such predictors. Indeed, while transitions
between meta-stable states are rare in those trajectories,
predictors describing local environments may have greater
influence on the stability of H-bonds that must break for
such transitions to happen. So, longer trajectories may
eventually be needed to better model H-bond stability.

Conclusions

We have described machine learning methods to train pro-
tein-independent regression trees modeling H-bond stabi-
lity in proteins. Test results demonstrate that trained
models can predict H-bond stability quite well. In particu-
lar, their performance is significantly better (roughly 20%
better) than that of a model based on H-bond energy alone.
They can accurately identify a large fraction of the least
stable H-bonds in a given conformation. However, our
results also suggest that better results could be obtained
with a richer set of MD simulation trajectories. In particu-
lar, the trajectories used in our experiments might be too
short to characterize the stability of H-bonds that break and
form during a transition between meta-stable states.

We believe that the training methods could be
improved in several ways:

- It would be better to averaging predictor values
before sub-sampling MD simulation trajectories. This
would reduce the risk of filtering out changes in predic-
tor values that are important for H-bond stability.
Unfortunately, in our trajectories we only had access to
the data after sub-sampling.

- More sophisticated learning techniques could be
used. For example, instead of generating a single tree,
we could generate an ensemble of trees, such as Gradi-
ent Boosting Trees [16].

- Finally, the notion of stability itself could be refined,
for example by distinguishing between the case where
an H-bond frequently switches on and off during a pre-
diction window and the case where it rarely switches.
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