Zheng and Sankoff BMC Bioinformatics 2011, 12(Suppl 1):54
http://www.biomedcentral.com/1471-2105/12/51/54

BMC
Bioinformatics

On the PATHGROUPS approach to rapid small

phylogeny

Chunfang Zheng', David Sankoff*

From The Ninth Asia Pacific Bioinformatics Conference (APBC 2011)

Inchon, Korea. 11-14 January 2011

Abstract

sequence-based phylogeny.

We present a data structure enabling rapid heuristic solution to the ancestral genome reconstruction problem for
given phylogenies under genomic rearrangement metrics. The efficiency of the greedy algorithm is due to fast
updating of the structure during run time and a simple priority scheme for choosing the next step. Since accuracy
deteriorates for sets of highly divergent genomes, we investigate strategies for improving accuracy and expanding
the range of data sets where accurate reconstructions can be expected. This includes a more refined priority
system, and a two-step look-ahead, as well as iterative local improvements based on a the median version of the
problem, incorporating simulated annealing. We apply this to a set of yeast genomes to corroborate a recent gene

Background

Many comparative genomic problems, such as the
median [1], quartet [2], small phylogeny [3], halving [4]
or aliquoting [5] problems, require the reconstruction of
unknown ancestral genomes, more specifically their gene
orders, given the orders in one or more contemporary,
genomes. At the heart of many reconstruction methods
seeking a most economical solution in terms of genomic
distance (or rearrangement distance) is the strategy of
maximizing the number of cycles in breakpoint graphs
[4,6,7]. We recently introduced PATHGROUPS, a data
structure that is designed entirely for this type of strategy
[2], and implemented it for the quartet problem.
PATHGROUPS is a compact and highly cross-referenced
way of storing partially completed cycles, so that
genome-wide greedy searches are rapidly executed and
the data base quickly updated. A key advantage of the
method, and what sets it apart from other techniques, is
that its worst case running time depends only linearly on
genome size and not at all on the rearrangement dis-
tances among the input genomes, while the run time of
other reconstruction methods are highly dependent on
distance, so that they are not feasible for the large

* Correspondence: sankoff@uottawa.ca
’Department of Mathematics and Statistics, University of Ottawa, Canada
Full list of author information is available at the end of the article

( ) BiolVled Central

instances of biological interest. A trade-off against
its efficiency is that as the distances increase, the
PATHGROUPS approach becomes less precise.

In this paper, we present the first implementation of
PATHGROUPS for the small phylogeny problem, i.e., for
a given unrooted binary tree with a number of given gen-
omes as leaves, to infer the ancestral genomes so that the
total branch length (in terms of genomic distance) of
the tree is minimized. The computational complexity of
the median problem, which is just the small phylogeny
problem with only one ancestor, is NP-hard under rear-
rangement distances, as reviewed in [8] and [9], and so
hence is the small phylogeny problem. Thus it is not
unexpected that any efficient method will be imprecise
for some instances. Nevertheless, given the importance of
the small phylogeny problem for evolutionary genomics,
and the paucity of methods able to handle highly rear-
ranged genomes containing many thousands of genes, it
is worthwhile to try to improve the accuracy of the
PATHGROUPS approach, and to extend the range of
instances for which it is precise, without sacrificing its
computational efficiency.

We first sketch the notion of genomic distance and
formalize the small phylogeny problem. We then pre-
sent our approach to small phylogeny, including a
greedy algorithm which exploits the PATHGROUPS

© 2011 Zheng and Sankoff; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:sankoff@uottawa.ca
http://creativecommons.org/licenses/by/2.0

Zheng and Sankoff BMC Bioinformatics 2011, 12(Suppl 1):54
http://www.biomedcentral.com/1471-2105/12/51/54

data structure efficiently, making use of a simple, rapidly
updated, priority system - basically a one-step look-
ahead - to choose the next step. We assess the accuracy
of the method and implement various techniques to
improve it. The first is a new, more refined, system of
priorities for the median problem. The second improve-
ment is a two-step look-ahead for the median. The final
experiments improve the full small phylogeny solution
by iteratively recalculating each ancestral genome, using
the median instance of the method, and incorporating a
simulated annealing technique to avoid local optima.
We assess the extent to which these techniques improve
the results, and their computational costs.

As applied to a number of yeast gene orders, we show
that gene order data confirm the phylogeny previously
obtained from gene sequence data.

Methods

Preliminaries

Genomes and rearrangement operations

We model the evolutionary rearrangement of a genome
containing # distinct signed genes through the accumu-
lated operation of number of processes familiar in classi-
cal genetics: inversion, reciprocal translocation,
transposition, chromosome fusion and fission, operating
on linear chromosomes. We will not delve into the
details of the operations; formally they can all be sub-
sumed under a single operation called double-cut-and-
join (DCJ) which need not be described here. All that is
needed for our purposes is a formula due to Yancopou-
los et al. [10] that gives d(G;, G,), the minimum num-
ber of rearrangement operations needed to transform
one genome into another in terms of properties of the
“breakpoint graph” determined by G; and G,, the initial
and final genomes. To calculate D efficiently, we con-
struct and analyze the breakpoint graph as follows.

For each genome, each gene g with a positive polarity
is replaced by two vertices representing its two ends,
i.e., by a “tail” vertex and a “head” vertex in the order g,
gy for —g we would put g, g,. Each pair of successive
genes in the gene order defines an adjacency, namely
the pair of vertices that are adjacent in the vertex order
thus induced. For example, if i, j, —k are three neigh-
bouring genes on a chromosome then the unordered
pairs {ij, j} and {j,, k;} are the two adjacencies they
define.

If there are m genes on a chromosome, it has deter-
mined 2m vertices by this stage. The first and the last of
these vertices are called telomeres. We convert all the
telomeres in genome G; and G, into adjacencies with
additional vertices all labelled T or T, respectively. The
breakpoint graph has a blue edge connecting the ver-
tices in each adjacency in G; and a red edge for each
adjacency in G,. We make a cycle of any path ending in

Page 2 of 9

two T7 or two T, vertices, connecting them by a red
or blue edge, respectively, while for a path ending in
a T; and a T,, we collapse them to a single vertex
denoted “T”.

Each vertex is now incident to exactly one blue and
one red edge. This bicoloured graph decomposes
uniquely into « alternating cycles. If #n' is the number of
blue edges, then [10]:

d(Gy, Gy) =n' — k. (1)

For a given unrooted binary tree T on N given gen-
omes Gi, G,, ..., Gy (and thus with N — 2 unknown
ancestral genomes M;, M,, ..., My_» and 2N — 3
branches) as depicted in Fig. 1, the small phylogeny pro-
blem is to infer the ancestral genomes so that the total
edge length of T, namely Xxy gnd(X, Y), is minimal.

The computational complexity of the median problem,
which is just the small phylogeny problem with N = 1, is
known to be NP-hard and hence so is that of the gen-
eral small phylogeny problem. Our method will be
shown to run in linear time, so obviously it is not guar-
anteed to find an exact solution. One of the goals of
this paper is to determine for what range of instances
PATHGROUPS leads to accurate solutions, and how the
approach may be improved to extend this range.

Data structure and algorithm

In this section we first discuss PATHGROUPS in some
detail as it applies to the median problem with three
given genomes and one ancestor to be reconstructed.
Then we describe how this works for the simultaneous
reconstruction of all the ancestors in the small phylo-
geny problem.

Paths and fragments

We generalize our definition of a path to be any con-
nected subgraph of a breakpoint graph, namely any con-
nected part of a cycle. Initially, each blue edge in the
given genomes is a path.

Gs

Figure 1 Representation of the median (left) and more general
small phylogeny (right) problems. Grey squares indicate given
genomes, red squares those to be reconstructed. Each line
connecting two genomes represents a breakpoint graph and a
distance.




Zheng and Sankoff BMC Bioinformatics 2011, 12(Suppl 1):54
http://www.biomedcentral.com/1471-2105/12/51/54

A fragment is any set of genes connected by red edges
in a linear order. The set of fragments represents the
current state of the reconstruction procedure. Initially
the set of fragments contains all the genes, but no red
edges, so each gene is a fragment by itself.

Pathgroups

The objective function for the small phylogeny problem
consists of the sum of a number of genomic distances, one
distance for every branch in the phylogeny. Each of these
distances corresponds to a breakpoint graph. A given gen-
ome determines blue edges in one breakpoint graph, while
the red edges correspond to the ancestral genome being
constructed. For each such ancestor, the red edges are
identical in all the breakpoint graphs corresponding to dis-
tances to that ancestor. A pathgroup is a set of three paths,
all beginning with the same vertex, one path from each
partial breakpoint graph currently being constructed. Initi-
ally, there is one pathgroup for each non-T vertex. (We do
not construct pathgroups for each T vertex separately, to
be explained later, though paths ending in T vertices are
found in other pathgroups.)

Pathgroups overlap because most paths are in two
pathgroups, one associated with its initial vertex and one
with its final vertex. With respect to a given path xy, we
say the pathgroup determined by vertex x is the partner
of the pathgroup determined by y. For the kind of binary
(or bifurcating) trees we use, each pathgroup may have
up to three distinct partners.

Priorities

Our main algorithm aims to construct three breakpoint
graphs with a maximum aggregate number of cycles. At
each step it adds an identical red edge to each path in
the pathgroup, altering all three breakpoint graphs. This
removes two (partner) pathgroups, turning one or more
of their paths into cycles and concatenating each of
their remaining paths with a path in some other
pathgroup. We do not add red edges incident to T ver-
tices. It is always possible to create one cycle, at least, (if
not all the paths in the pathgroup end in 7) by adding a
red edge between the two ends of any one of the paths.
The strategy is to create as many cycles as possible. If
alternate choices of steps create the same number of
cycles, we choose one that sets up the best configuration
for the next step. Thus the pathgroups are prioritized,

1. first by the maximum number of cycles that can be
created within the group, without giving rise to circular
chromosomes.

2. second, for those pathgroups allowing equal num-
bers of cycles, by considering the maximum number of
cycles that could be created in the next iteration of step
1, in any one pathgroup affected by the current choice.

A pathgroup may receive no priority, if creating any
cycle within the pathgroup necessarily creates a circular
chromosome. Note that in adding a red edge xy, this

Page 3 of 9

causes not only the disappearance of two partnered
pathgroups, but it also changes paths in other pathgroups,
which we call secondary pathgroups. Furthermore, each
secondary pathgroup may itself have partner pathgroups
whose paths, though not affected by the addition of xy,
may have changed priorities. We call these tertiary
pathgroups.

The pathgroups and the priorities are illustrated in
Figure 2.

The makeCycles algorithm

By maintaining a list of pathgroups for each priority
level, and a list of fragment endpoint pairs (initial and
final), together with appropriate pointers, the algorithm
makeCycles requires O(x) running time.

Algorithm makeCycles

input: pathgroups each consisting of three blue one-
edge paths

output: ancestral genome

while: there remain pathgroups with priorities

1. add red edge to pathgroup of highest priority, creat-
ing at least one cycle, thus deleting this pathgroup and
its partner.

2. update the paths in the secondary pathgroups
affected by the addition of the red edge, and update the
red fragment extended by this edge or created by the
joining together of two existing red fragments.

3. update the priorities of the secondary pathgroups,
the tertiary pathgroups, and the at most two pathgroups
associated with the endpoints of the red fragment
extended or created in step 2.

Not all the red fragments output by makeCycles are
complete chromosomes of the ancestral genome; they
may just be chromosome fragments. We know

Proposition [2]:Adding a red edge xy in a pathgroup
creates at most four secondary pathgroups and atmost
eight tertiary pathgroups.

The proposition, together with the two facts:

1. the total number of pathgroups decreases by two by
each step

2. the calculation or recalculation of the priority of
each pathgroup requires constant time

ensure the O(n) running time of the algorithm. If we
had allowed red edges to connect T vertices or allowed
pathgroups determined by T vertices, the number of
potential secondary and tertiary pathgroups affected by
the addition of a red edge would have increased consid-
erably, depending on the number of chromosomes in
the genomes, but this would not have affected the O(n)
property.

Seven priority levels are illustrated in Figure 2, based
on the construction of

1. three cycles,

2. two cycles setting up a) three, b) two or ¢) one in
the look-ahead, or



Zheng and Sankoff BMC Bioinformatics 2011, 12(Suppl 1):54
http://www.biomedcentral.com/1471-2105/12/51/54

Page 4 of 9

3-cycle pathgroup
G1 X—— .- ——y
G2 x—— .- ——y
Gz X—— - ——y
priority 1
~
X—— e ——y X =y
~
[ YCR—— __yq X—— - ——y
7 N\
X—— e ——y X e ——y
2-cycle pathgroups
G1 Xx—— . ——y G1 Xx—— . ——y
Gz X s ——y Gz X s ——y
G3 x—— ... ——2 G3 x
priority 2 priority 3 priority 4
g T B S S,
—_——— —— 2 e ——
o /-\ /\ /\
by (3 PP VRV O <N VSRRV g
X v e e ——7 X—— s+ ——Z jre——— X iee ——z X e ——Z X—— e+ ——Z
y—— - ——s y——-+s ——s y—— i+ ——s  Yy—— - —=S y—— s ——s
y—— e ——S
1-cycle pathgroups
G1 X—— ... ——y G1 x—— ... ——y
G2 Xx—— -+ ——2 G2 x
G3 X—— .-+ ——s5 G3 x
priority 5 priority 6 priority 7
?:: o ::g X_/__..}y X—— e ——y Xﬁy X vee ——y xﬁy
X s ——7Z D T X s ——7 X v v ——7 X s ——7 X v e ——7
o= Commibbes S Y ¢ S - Comtm
X+ e s ——G X=—=— ++:s ——§ X+ e s ——G e+ s ——G X+ e s ——G X v e ——G
y—— e — y—— e m—T y—— . —— y—— e — y—— . —— y—— e ——
Figure 2 Priorities of all pathgroups of form [(x, a), (x, b), (x, ©)] for inserting red edges, for each ancestral vertex in the median problem. Includes
sketch of three paths in “x" pathgroup plus other paths involved in calculating priority. For example, completing the pathgroup [(x, ), (x, y), (x, 2)]
by adding the red edge xy always produces two cycles, but can set up a pathgroup with 3 potential cycles (priority 2), 2 potential cycles (priority
3) or 1 potential cycles (priority 4).

3. one cycle setting up a) three, b) two or c) one in
the look-ahead.

Note that when a red edge is defined, the pathgroup is
emptied, either by the creation of cycles, or by the inte-
gration of x as a non-endpoint of some path.

An example of the solution to the median problem is
given as Additional File 1.

Small phylogeny

To apply PATHGROUPS to the small phylogeny pro-
blem, we set up an entire set of pathgroups for every
internal (ancestral) node. Initially, in the pathgroups for
those ancestral nodes connected to two given genomes,
one of the paths will be missing and replaced by a single

vertex of the breakpoint graph, as illustrated in Figure 2.
Those ancestral nodes connected to only one given gen-
ome will have two missing paths in each pathgroup,
both replaced by the vertex. Finally those ancestral
nodes connected only to other internal nodes will have
all paths missing in each pathgroup, all replaced by the
vertex.

As the algorithm executes, a pathgroup with the high-
est priority found among any of the internal nodes is
chosen to be processed next. Pathgroups connected to
two given nodes will tend to be processed first, building
up all three paths and combining the pathgroups one by
one. Each time a red edge is added to a path, this



Zheng and Sankoff BMC Bioinformatics 2011, 12(Suppl 1):54
http://www.biomedcentral.com/1471-2105/12/51/54

becomes a blue edge in the corresponding pathgroup for
ancestral genome(s) connected to it.

Eventually even the nodes furthest from any given
genomes will accumulate enough edges in their
pathgroups so that cycles can be formed and so that
fragments of the associated genomes begin their
reconstruction.

Results and discussion

We implemented makeCycles, adapted for the small
phylogeny problem, so that it could achieve its worst
case linear run time capability.

Improving accuracy

As mentioned in the Introduction, we do not expect to
guarantee exact solutions for NP-hard problems using a
linear time algorithm. Moreover, because this is a sin-
gle-pass method, we cannot even expect to find locally
optimal solutions. Thus we must investigate how close
is the approximation and what are the prospects for
improvement.

We undertook a series of simulations of the method
and of its improvements as described below. All gen-
omes had length n = 5000. Each data point represents
the average of ten simulations. Trees were generated
from a ten-chromosome ancestor by 90 % chromosomal
inversions at randomly and independently chosen break-
points, and 10 % reciprocal translocations. The simula-
tions were performed on a MacBook Pro with 3.06 GHz
processor speed.

In Figure 3, we assess the accuracy of the method by
comparing, on the vertical axis, d, the total distance
inferred by our method, with 7, the true number of rear-
rangements inherent in the simulated tree, as measured
along all branches, whether they connect given or simu-
lated genomes. The notation 7 is used slightly differently
on the horizontal axis, where it represents the number
of rearrangements actually performed on each branch of
the tree. The figure depicts (dotted lines) how the
results of our method, which is accurate (i.e., d/z = 1)
for 3-trees (medians) and for rearrangement rates up to
about 0.2#, but increasingly inaccurate for larger trees.

Note that the large decrease in d/7, starting at z/n in
the range of 0.35 to 0.4, is illusory. Since d for any one
branch cannot exceed #, a well-known property of rear-
rangement distance, while we can increase 7 indefinitely,
inference algorithms inevitably find shorter derivations
of ancestral genomes than were actually used in generat-
ing them. Thus the entire right hand area of the figures,
reproduced here for completeness, is of little interest.
Refining the priorities
As a first improvement, we refine the priority levels as
follows. We retain the number of cycles created as the
primary classification, so that for example a two-cycle

Page 5 of 9

pathgroup always has higher priority than a one-cycle
pathgroup. And we continue to refine this classification
by taking account of the best new pathgroup that would
be set up by processing the pathgroup under examina-
tion. In addition, however, to provide another level of
refinement, we check all the pathgroups that would be
affected by processing the pathgroup under examination
and count the net change, positive or negative, in poten-
tial cycles among all these. This leads to 55 priority levels.
As is seen in Figure 3, this refinement has a dramatic
effect both in decreasing d/z and in postponing the value
of 7/n where d begins to rise much faster than z.

Two-step look-ahead

As a further refinement, we considered the configura-
tion that would be produced two algorithmic steps
beyond the current step. Here, after identifying which
one or several of the potential (after one step)
pathgroups could produce the largest number of cycles
by the addition of a red edge, we check what would
happen after processing such a pathgroup, namely of
the new (second step) pathgroups created, what is the
largest number of cycles (1, 2 or 3) any one of them
could produce by adding a red edge. This sub-classifies
the 55 priorities three ways, creating a system with 165
priority levels.

As is clear in Figure 3, this additional step improves
the accuracy even more than the first refinement did.
The effect on reducing d/7 is especially strong, while
there is little additional effect in delaying the point at
which d begins to rise more quickly than .

The increase in run time caused by the two-step look-
ahead is substantial, as we will learn from the next
experiment. However, given that these results are based
on rather highly arranged genomes containing 5000
genes, and a moderately large phylogeny (15-trees), the
cost is hardly prohibitive.

Iterative local improvement based on the median
Searching for improvements in ancestral genome recon-
struction by iteratively applying the median version at
each ancestral node, accepting the changes only if they
lower the objective function, is a time-honoured strategy
in phylogenetics, including in rearrangement phylogeny
[3,11]. This would seem particularly appropriate in the
present context since the median version of pathgroups
is rapid and, as we have seen, relatively accurate.

Preliminary trials indicated that this procedure would
be susceptible to premature capture by local minima.
Experimenting with various regimes of simulated
annealing, we settled on simply accepting every median
reconstruction that was better than or equal to the
existing reconstruction, and stopping after a predeter-
mined number of steps.

Figure 4 depicts the results of this experiment (on 10-
trees) up to 50 iterations. It can be seen that there is



Zheng and Sankoff BMC Bioinformatics 2011, 12(Suppl 1):54
http://www.biomedcentral.com/1471-2105/12/51/54

Page 6 of 9

medians

- - 7 priority levels
— — 55 priority levels
—— 2-step look-ahead

0.9

0.8

6-trees

0.34 0.42 0.50 0.58

t/n

0.26

0.1 0.26 0.34

©/n

0.42 0.5

1.4

9-trees

0.9 1

0.8

15-trees

1.3

1.2

0.9

0.8

0.34 0.42 0.5 0.58

z/n

0.1 0.18 0.26

Figure 3 Effect of refined priority and two-step look-ahead on error. r = total branch length in tree with known simulated ancestors, n =
number of genes per genome, d = total branch length in tree with reconstructed ancestors. Averages of 10 runs.

0.34 0.42 0.5

o/n

0.1 0.18 0.26

again a dramatic improvement in accuracy, both in
reducing d/z but also in delaying the point at which d
begins to rise more quickly than z. Simulations up to
100 iterations showed very small increases in accuracy
over these results.

A time analysis (Figure 5) show that the iterative pro-
cedure exacts a higher cost than the other refinements.
Run times for 50 iterations are ten times those shown,
but again not enough to impede regular use of this
method.

To what extent is the improvement seen here due to the
initialization of the tree using PATHGROUPS and to what
extent is it due to the iterative use of the median (also
making use of PATHGROUPS of course)? After the
necessary 50 or 100 iterations, the process no longer
“remembers” its initialization, and neither approach seems
more susceptible to falling into local optima. What about
computing time? Figure 5 also shows what happens when
the reconstructions are initialized with random genomes.
With less rearranged genomes, there is a distinct time sav-
ing with the PATHGROUPS initialization, especially with

larger phylogenies, but this disappears with more highly
rearranged genomes.

Comparison to exact algorithm

The best current method for solving the gene order
median problem is ASMedian_linear [12]. This relies on
the detection of an “adequate subgraph” in the break-
point graph, which allows the decomposition of the pro-
blem into easier instances. When this method finds
adequate subgraphs, it is very efficient; otherwise execu-
tion time may be prohibitive. The latter case tends to
occur for instances of the median problem where the
input genomes are highly rearranged with respect to
each other.

For median problems where z/n is less than about
0.3, we have shown that the PATHGROUPS approach,
with all its improvements, rapidly produces median
solutions are that within a few tenths of one percent
of optimal. But as ©/n gets larger than 0.3, the solu-
tions become less precise, although execution time
remains small.



Zheng and Sankoff BMC Bioinformatics 2011, 12(Suppl 1):54
http://www.biomedcentral.com/1471-2105/12/51/54

Page 7 of 9

N
1.2
iterations:
1.15
Co1a
% .
1.05
1
0.1 0.14 18 0.22 0.26 0.3 0.34 0.38 0.42 0.46
t/n
Figure 4 [terative improvement of solution to small phylogeny as a function of rearrangement rate. The median reconstruction is based on the
two-step look-ahead. Each data point represents the average of 10 runs.

We compared PATHGROUPS with ASMedian_linear
for n = 5000 and 7 = 500,1000 and 1500 random rear-
rangements on each of the three branches leading from
a given median. For twenty runs at each condition, the
results were,

« for T = 500, the PATHGROUPS run took about 250
milliseconds each, except one which took around 500,
while the ASMedian_linear generally ran in 375 millise-
conds, except for two runs requiring several seconds,
and one run that did not terminate after 10 minutes.

25

20
two-step look-ahead

run time (seconds)

55 priorities

ﬁ

7 priorities

running time (seconds)

100

Initialization:
pathgroups
random

90

80

70

60

50 /

40 4

30

4-trees
20

0.2 0.3 0.4

rearrangements t/n

0.5 0.6

Figure 5 (left)increase in run time due to refined priority and look-ahead. Based on 15-trees. (right) Dependence of average time for first five
iterations on number of leaves in phylogeny and rearrangement rate on branches.

0.05 0.25 0.35

rearrangement rate t/n

0.45 0.55




Zheng and Sankoff BMC Bioinformatics 2011, 12(Suppl 1):54
http://www.biomedcentral.com/1471-2105/12/51/54

The PATHGROUPS solutions were on the average two
tenths of one percent worse than the optimal solutions
found by ASMedian_linear.

« for 7 = 1000, the PATHGROUPS run took about 475
milliseconds each, but only seven of the ASMedian_-
linear runs terminated in less than a second, and five of
them did not terminate, even after an hour. Again the
PATHGROUPS solutions were only a few tenths of one
percent worse than the optimal solutions found by
ASMedian_linear.

« for © = 1500, the PATHGROUPS run took about
920 milliseconds each, but none of the ASMedian_linear
runs terminated in less than an hour. The PATHGROUPS
solutions were generally just as good as the best solutions
found to date by ASMedian_linear after an hour of
searching.

In sum, in trading off precision against efficiency,
PATHGROUPS sacrifices very little accuracy for gen-
omes that are not highly rearranged, but also continues
to give good results for median problems which are too
highly rearranged to be solved exactly. Recall that for
the small phylogeny problem, the median algorithm is
called iteratively, so that execution times of several min-
utes or hours disqualifies the exact method.

Yeast small phylogeny including both rapidly and slowly
evolving genomes

Saccharomyces cerevisiae and its closest relatives are
descendants of a whole genome duplication (WGD)
event more than 100 million years ago [13]. In a maxi-
mum likelihood phylogeny of 79 yeast species inferred
from eight gene sequences [14], there are six relatives of
S. cerevisiae whose genomes have been sequenced, but
that diverged before the WGD. These six, plus the
manually reconstructed ancestral genome [13] that
underwent WGD are depicted on the left of Figure 6.
Since their divergence these genomes have evolved at
very different rates, with E. gossypii, for example, show-
ing a substitution rate over three times as great as
L. kiuyveri, making phylogenetic inference prone to
various biases.

Page 8 of 9

We extracted gene orders involving the 4011 sets of
orthologous genes these genomes all have in common
from the Yeast Gene Order Browser [13]. Gene order
rearrangement distances between them shows that the
evolution rate for gene order varies in much the same
way as for gene sequence, with E. gossypii, for example,
changing gene order much more rapidly than L. kiuyveri.

We used PATHGROUPS and the associated algorithm
to show that maximum likelihood phylogeny in [14] is
also the optimal gene order phylogeny, as depicted on
the right of Figure 6, where branch lengths are drawn
proportional to the values indicated as inferred by the
algorithm. Despite the small branch length defining the
Lachancea clade, all other phylogenies have excess cost
of at least 5, including those where L. kluyveri branches
from the K. lactis - E. gossypii grouping or before the
divergence of the latter from the other two Lachancia
species.

Conclusions

For genomes that are moderately rearranged,
PATHGROUPS an extremely rapid and rather accurate
reconstruction of the ancestral genomes in the small
phylogeny problem. This is especially true of the two-
step look-ahead version of the algorithm. With a small
loss of precision, it can rapidly handle instances of the
median problem where an exact algorithm may take
hours. Thus it can be integrated into a small phylogeny
search where the exact algorithm cannot.

We have not investigated efficient memory handling
procedures, and this will be required to analyze large
phylogenies, since every gene requires two pathgroups
for every tree node, and our present implementation
associates memory in an unnecessarily profligate way to
each of these pathgroups, as well as to the chromosome
fragments, in order to achieve time efficiencies.

For small phylogeny problems with more highly rear-
ranged genomes, the question arises of how to use
PATHGROUPS. For the iterative approach, if enough
computing power is available, it suffices to initialize with
random genomes, though of course the PATHGROUPS

Saccharomyces ancestor

5
Saccharomyces ancestor

130

_: Zygosaccharomyces rouxii

Zygosaccharomyces rouxii

247 Kluyveromyces lactis

,— Kluyveromyces lactis

30
47 —|

209

L

Eremothecium gossypii
_E Lachancea waltii
Lachancea thermotolerans

Lachancea kluyveri

35

Lachancea waltii
69
5 Lachancea thermotolerans

Lachancea kluyveri

Figure 6 Phylogeny of seven yeasts [14], including pre-WGD Saccharaomyces ancestor, from gene sequences (left) and gene order (right).

Eremothecium gossypii
77




Zheng and Sankoff BMC Bioinformatics 2011, 12(Suppl 1):54
http://www.biomedcentral.com/1471-2105/12/51/54

median remains essential. If a single pass is desirable,
however, it is clear that the two-step look-ahead greatly
increases the accuracy of the approach.

Availability

The code for using PATHGROUPS for small phylogeny
may be downloaded from http://137.122.149.195/
Softwares/

Additional material

[ Additional File 1: Solution of a median problem by PATHGROUPS ]

Acknowledgements

CZ thanks Nadia El-Mabrouk for her support. Research supported by a
postdoctoral fellowship to CZ from the Natural Sciences and Engineering
Research Council of Canada, and a Discovery grant to DS from the same
agency. DS holds the Canada Research Chair in Mathematical Genomics.
This article has been published as part of BMC Bioinformatics Volume 12
Supplement 1, 2011: Selected articles from the Ninth Asia Pacific
Bioinformatics Conference (APBC 2011). The full contents of the supplement
are available online at http://www.biomedcentral.com/1471-2105/127
issue=ST.

Author details
'Département d'informatique et de recherche opérationnelle, Université de
Montréal, Canada. “Department of Mathematics and Statistics, University of
Ottawa, Canada.

Competing interests
The authors declare they have no competing interests.

Published: 15 February 2011

References

1. Sankoff D, Blanchette M: The median problem for breakpoints in
comparative genomics. In Computing and Combinatorics (COCOON). 3rd
Annual Conference, LNCS Jiang T, Lee DT 1997, 1276:251-263.

2. Zheng C Pathgroups, a dynamic data structure for genome
reconstruction problems. Bioinformatics 2010, 26:1587-1594.

3. Sankoff D, Blanchette M: Multiple genome rearrangement and breakpoint
phylogeny. J Comput Biol 1998, 5:555-570.

4. El-Mabrouk N, Sankoff D: The reconstruction of doubled genomes. SIAM J
Comput 2003, 32:754-92.

5. Warren R, Sankoff D: Genome aliquoting with double cut and join. BMC
Bioinformatics 2009, 10(Suppl 1):S2.

6. Caprara A: On the practical solution of the reversal median problem. In
Algorithms in Bioinformatics. Proceedings of WABI 2001. LNCS Gascuel O,
Moret BME 2001, 2149:238-251.

7. Siepel AC: Exact algorithms for the reversal median problem. MSc thesis
U New Mexico; 2001.

8. Tannier E, et al: Multichromosomal median and halving problems under
different genomic distances. BMC Bioinformatics 2009, 10:120.

9. Fertin G, et al: Combinatorics of Genome Rearrangements MIT Press; 2009.

10.  Yancopoulos S, et al: Efficient sorting of genomic permutations by
translocation, inversion, and block interchange. Bioinformatics 2005,
21:3340-3346.

11. Adam Z, Sankoff D: The ABCs of MGR with DCJ. Evol Bioinform Online
2008, 4:69-74.

12. Xu AW: DCJ median problems on linear multichromosomal genomes:
graph representation and fast exact solutions. In Comparative Genomics
(RECOMB CG). 7th Annual RECOMB Satellite Workshop, LNSC Ciccarelli FD,
Miklos | 2009, 5817:7083 [http://sites.google.com/site/andrewweixu/Home/
software].

Page 9 of 9

13. Byrne KP, Wolfe KH: The Yeast Gene Order Browser: combining curated
homology and syntenic context reveals gene fate in polyploid species.
Genome Res 2005, 15:1456-1461.

14. Hedtke SM, et al- Resolution of phylogenetic conflict in large data sets by
increased taxon sampling. Syst Biol 2006, 55:522-529.

doi:10.1186/1471-2105-12-51-54
Cite this article as: Zheng and Sankoff: On the PATHGROUPS approach
to rapid small phylogeny. BMC Bioinformatics 2011 12(Suppl 1):54.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://137.122.149.195/Softwares/
http://137.122.149.195/Softwares/
http://www.biomedcentral.com/content/supplementary/1471-2105-12-S1-S4-S1.pdf
http://www.biomedcentral.com/1471-2105/12?issue=S1
http://www.biomedcentral.com/1471-2105/12?issue=S1
http://www.ncbi.nlm.nih.gov/pubmed/20483815?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20483815?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9773350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9773350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19208119?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19386099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19386099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15951307?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15951307?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19204809?dopt=Abstract
http://sites.google.com/site/andrewweixu/Home/software
http://sites.google.com/site/andrewweixu/Home/software
http://www.ncbi.nlm.nih.gov/pubmed/16169922?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16169922?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16861214?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16861214?dopt=Abstract

	Abstract
	Background
	Methods
	Preliminaries
	Genomes and rearrangement operations

	Data structure and algorithm
	Paths and fragments
	Pathgroups
	Priorities
	The makeCycles algorithm
	Small phylogeny


	Results and discussion
	Improving accuracy
	Refining the priorities
	Two-step look-ahead
	Iterative local improvement based on the median

	Comparison to exact algorithm
	Yeast small phylogeny including both rapidly and slowly evolving genomes

	Conclusions
	Availability
	Acknowledgements
	Author details
	Competing interests
	References

