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Abstract

Background: Existing methods of predicting DNA-binding proteins used valuable features of physicochemical
properties to design support vector machine (SVM) based classifiers. Generally, selection of physicochemical
properties and determination of their corresponding feature vectors rely mainly on known properties of binding
mechanism and experience of designers. However, there exists a troublesome problem for designers that some
different physicochemical properties have similar vectors of representing 20 amino acids and some closely related
physicochemical properties have dissimilar vectors.

Results: This study proposes a systematic approach (named Auto-IDPCPs) to automatically identify a set of
physicochemical and biochemical properties in the AAindex database to design SVM-based classifiers for predicting
and analyzing DNA-binding domains/proteins. Auto-IDPCPs consists of 1) clustering 531 amino acid indices in
AAindex into 20 clusters using a fuzzy c-means algorithm, 2) utilizing an efficient genetic algorithm based
optimization method IBCGA to select an informative feature set of size m to represent sequences, and 3) analyzing
the selected features to identify related physicochemical properties which may affect the binding mechanism of
DNA-binding domains/proteins. The proposed Auto-IDPCPs identified m=22 features of properties belonging to
five clusters for predicting DNA-binding domains with a five-fold cross-validation accuracy of 87.12%, which is
promising compared with the accuracy of 86.62% of the existing method PSSM-400. For predicting DNA-binding
sequences, the accuracy of 75.50% was obtained using m=28 features, where PSSM-400 has an accuracy of 74.22%.
Auto-IDPCPs and PSSM-400 have accuracies of 80.73% and 82.81%, respectively, applied to an independent test
data set of DNA-binding domains. Some typical physicochemical properties discovered are hydrophobicity,
secondary structure, charge, solvent accessibility, polarity, flexibility, normalized Van Der Waals volume, pK (pK-C,
pK-N, pK-COOH and pK-a(RCOOH)), etc.

Conclusions: The proposed approach Auto-IDPCPs would help designers to investigate informative
physicochemical and biochemical properties by considering both prediction accuracy and analysis of binding
mechanism simultaneously. The approach Auto-IDPCPs can be also applicable to predict and analyze other protein
functions from sequences.
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Background
DNA-binding domains/proteins are functional proteins
in a cell, which plays a vital role in various essential bio-
logical activities, such as DNA transcription, replication,
packaging, repair and rearrangement [1]. In past,
numerous computational methods predict DNA-binding
domains/proteins using informative features from pro-
tein structure and amino acid sequence. The structure-
based prediction methods such as [2,3] are accurate, but
not capable for high throughput annotation. In this
study, the sequence-based prediction methods for DNA-
binding domains/proteins are investigated.
The computational methods using support vector

machine (SVM) in conjunction with evolutionary infor-
mation of amino acid sequence in terms of their posi-
tion-specific scoring matrices (PSSMs) for predicting
DNA-binding sites were successfully developed [4]. Sev-
eral methods of using machine learning approaches
were developed to predict DNA-binding domains/pro-
teins from given sequences of variable lengths [5-9],
shown in Table 1.
Due to different design aims and data sets used, it is

difficult to assess which feature type is the most infor-
mative cooperated with SVM by comparing with predic-
tion accuracies only. The PSSM profile was first used
with SVM to successfully predict DNA-binding domains
and proteins from query amino acid sequences in the
method PSSM-400 [7]. The PSSM is an effective feature
type of representing DNA-binding sequences, but its
ability of interpretability is not satisfactory enough in
analyzing the binding mechanism. Besides PSSMs, phy-
sicochemical properties with characteristics of high
interpretability were commonly used [5,6,8,9]. Some
issues are concerned in designing prediction methods,
described below.
1) Selection of physicochemical properties. Generally,

effective physicochemical properties of amino acids are
selected as prediction features by using known proper-
ties of DNA-binding mechanism and binding knowledge
[5,6,8,9]. However, it is desirable to explore undiscov-
ered properties by machine learning approaches to

further advance prediction accuracy and understand the
binding mechanism.
2) Representation of sequences. How to effectively

represent sequences of variable lengths as a feature vec-
tor using physicochemical properties plays an important
role in advancing prediction accuracy. The pseudo-
amino acid composition is an efficient representation
method of coupling physicochemical properties, which
was used to represent a sequence as a 40-dimensional
feature vector for discriminating DNA-binding from
non-binding proteins [5]. The combined descriptor was
proposed using amino acid composition and a series of
associated physicochemical properties to form a 132-
dimensional feature vector [9]. The conjoint triad
descriptor of using a 343-dimensional feature vector was
proposed that 20 amino acids were clustered into seven
classes according to their dipoles and volumes of side
chains [8].
3) Values of amino acids for specific physicochemical

properties. The AAindex database [10,11] collected 531
physicochemical and biochemical properties (ignoring
13 properties without available values) with correspond-
ing values of amino acids. How to select an effective fea-
ture vector of 20 amino acid values to represent a given
property by using experience of designers is not
straightforward. Recently, some computational methods
of predicting protein functions were successfully devel-
oped by mining informative physicochemical properties
with their corresponding values from AAindex [12,13].
4) Tradeoffs between prediction accuracy and knowl-

edge acquisition. Besides pursuit of high prediction
accuracy, discovering potential properties to further
understand the binding mechanism should be also taken
into account. Although ensemble classifiers with hybrid
feature types and boosting techniques are commonly
used to improve prediction performance, it is more
desirable to find effective, interpretable physicochemical
properties with strong discrimination abilities under
using a simple SVM classifier.
This study presents a troublesome problem in using

the AAindex database and proposes an effective method

Table 1 Related works of predicting DNA-binding domains/proteins from sequences

Reference Sequence type Identity Feature number Representation Feature type Classifier

Shao et al. 2009 [8] protein 25% 343 Seven class Conjoint triad PCP SVM

Fang et al. 2008 [6] protein 35% 40 Pseudo-AA composition PCP SVM

Yu et al. 2006 [9] protein 25% 132 Combined descriptors PCP SVM

Cai et al 2003 [5] protein 40% 40 Pseudo-AA composition PCP SVM

Kumar et al. 2007 [7] domain and protein 25% 400 PSSM PSSM SVM

Auto-IDPCPs domain and protein 25% m* Mean value of sequence# PCP SVM

PCP: physicochemical property and biochemical property.

*: a small number (<30) of feature vectors selected from 531 vectors.

#: The averaged value of amino acids in a sequence for one property.
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to solve. We found that some different physicochemical
properties have similar vectors of representing 20 amino
acids and some closely related physicochemical proper-
ties have dissimilar vectors. For example, several dissimi-
lar vectors in AAindex are available in coupling the
hydrophobicity property to represent a sequence and
their corresponding performance is significantly differ-
ent. Similarly, if a different property with a similar vec-
tor replaces the known one without significantly
degrading prediction performance, it means that the
replaced property may be also relative to the binding
mechanism from the viewpoint of machine learning.
The detailed explanation by using a real quantization
example is described below.
Figure 1 shows an illustration example. The 402 prop-

erties in AAindex were classified into six groups accord-
ing to their biological meanings classified by Tomii and
Kanehisa [11], as shown in Fig. 2 obtained from [10].
According to the numerical indices representing 531
properties of amino acids, we clustered them into 20
clusters by using a fuzzy c-means algorithm based on
their Euclidean distances between two indices [14]. The
properties H88 and A392 are two different properties
belonging to the same cluster 7, but their distance of
0.0178 is relatively small. On the other hand, H88 and
H178 belonging to the same group, named Hydrophobi-
city in AAindex, have a large distance of 0.0877 belong-
ing to clusters 7 and 18, respectively. Although H88 and
H151 (used in [5]) are in the same group Hydrophobi-
city and the same cluster 7, their distance 0.0299 is also
larger than that between H88 and A392.
For the aim of designing accurate prediction methods,

the major concern is to identify feature vectors with
high discrimination abilities for classifying positive and
negative samples. This task can be done well for compu-
tational methods by using an optimization approach to
feature selection from a large set of candidate features.
If the feature vectors were identified by predetermined

properties based on prior knowledge, the selected vec-
tors of representing amino acids may be not the best.
Considering the other aim of discovering potential prop-
erties to further look insight the binding mechanism, we
propose a systematic, optimization approach (named
Auto-IDPCPs) to automatically identify a set of feature
vectors and analyze the feature vectors to find properties
of affecting the DNA-binding mechanism.
The proposed approach Auto-IDPCPs can identify a

small number m of feature vectors cooperated with a
single SVM classifier, and discover the related hydro-
phobicity properties with comparable performance,
compared with the PSSM feature. Auto-IDPCPs would
help designers to investigate informative physicochem-
ical and biochemical properties by considering both pre-
diction accuracy and analysis of binding mechanism
simultaneously. Auto-IDPCPs can be also applicable to
predict and analyze other protein functions from
sequences.

Methods
The flowchart of the proposed approach Auto-IDPCPs
is shown in Fig. 3. The input of the method comprises
the AAindex database and three data sets, including
DNA-binding domains and sequences, and one indepen-
dent test data set. The output has two parts: 1) a predic-
tor for DNA-binding domains/proteins with a set of m
informative feature vectors and the parameter setting of
SVM by using an efficient feature selection algorithm
IBCGA, and 2) an analyzer with a set of promising phy-
sicochemical and biochemical properties in the AAindex
database for analyzing the DNA-binding mechanism.

Data sets
To evaluate effectiveness of the identified physico-
chemical properties by comparing with the famous
PSSM features, we used the benchmark data sets used
in the PSSM-400 method [7], as shown in Table 2.

Figure 1 An illustration example. The properties H88 and A392 are two different properties but their distance 0.0178 is relatively small. On the
other hand, H88 and H178 belonging to the same group Hydrophobicity in AAindex have a large distance 0.0877. H88 and H151 in the same
group have a larger distance 0.0299 than that between H88 and A392.
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The data set DNAset has 146 non-redundant DNA-
binding domains (or protein chains) and 250 non-
binding domains. No two domains have similarity
more than 25%. The data set DNAaset consists of
1153 DNA-binding proteins and 1153 non-binding
proteins. No two proteins have similarity more than
25%. An independent data set DNAiset is additionally
used, having 92 DNA-binding domains and 100 non-
DNA-binding proteins [7].

Feature vector representation
All the domains/sequences have a variable length l.
A sequence forms an l-dimensional profile where the
value of each amino acid is obtained from the AAindex
database for encoding a specific physicochemical prop-
erty. The l-dimensional profiles are transformed into
vectors with the same constant length L for utilizing
SVM. The transformation can be any known effective
representation provided that the L features can

Figure 2 The minimum spanning tree of the amino acid indices stored in the AAindex1 release 9.0 [10]. Each rectangle is an amino acid
index. Coloured nodes represent the indices classified by Tomii and Kanehisa [11] Red (A): alpha and turn propensities, Yellow (B): beta
propensity, Green (C): composition, Blue (H): hydrophobicity, Cyan (P): physicochemical properties, Gray (O): other properties. White: the indices
added to the AAindex after the release 3.0 by Tomii and Kanehisa [11].

Figure 3 The flowchart of the proposed approach Auto-IDPCPs.
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effectively classify the l-dimensional profiles of positive
and negative sequences. The simplest feature is the
mean of the profile that L=1 [12,13]. Therefore, the
sequences with m properties are represented as an m-
dimensional feature vectors. Finally, all values of the
feature vectors are normalized into [-1, 1] to apply
SVM.

Feature selection by IBCGA
Selecting a minimal number of informative features
while maximizing prediction accuracy is a bi-objective
0/1 combinatorial optimization problem. An efficient
inheritable bi-objective combinatorial genetic algo-
rithm IBCGA [15] bases on an intelligent genetic
algorithm IGA [16] is utilized to solve this optimiza-
tion problem. IGA based on orthogonal experimental
design uses a divide-and-conquer strategy and a sys-
tematic reasoning method instead of the conventional
generate-and-go method to efficiently solve the com-
binatorial optimization problem C(n , m) having a
huge search space of size n!/(m!(n-m)!)), where n=531
in this study. IBCGA can efficiently search the space
of C(n , r±1) by inheriting a good solution in the
space of C(n, r) [15]. Therefore, IBCGA can econom-
ically obtain a complete set of high-quality solutions
in a single run.
The chromosome encoding scheme of IGA consists of

n binary IGA-genes gi for selecting informative features
(physicochemical properties) and two 4-bit IGA-genes
for encoding g and C of SVM parameters, where g Î{2-
7, 2-6…, 28} and C Î{2-7, 2-6…, 28} [12]. The ith feature
is used in the SVM classifier if gi=1; otherwise, the ith

feature is excluded (gi=0). The performance of selected
properties associated with the parameter values of SVM
is measured by five-fold cross-validation (5-CV) for
comparing with the method PSSM-400 [7]. IBCGA with
the fitness function f(X) of 5-CV prediction accuracy
can simultaneously obtain a set of solutions, Xr, where
r=rstart, rstart+1, …, rend in a single run. In this study,
the parameter settings rstart =10, rend =30, Npop =50,
pc =0.8, and pm =0.05. The output contains a set of m
selected properties from AAindex and an SVM classifier
with associated parameter settings g and C. The custo-
mized IBCGA algorithm used in Auto-IDPCPs is given
below.

Step 1: (Initiation) Randomly generate an initial popu-
lation of Npop individuals. All the n binary genes have
r 1’s and n-r 0’s where r = rstart.
Step 2: (Evaluation) Evaluate the fitness values of all

individuals using f(X).
Step 3: (Selection) Use the traditional tournament

selection that selects the winner from two randomly
selected individuals to form a mating pool.
Step 4: (Crossover) Select pc·Npop parents from the

mating pool to perform orthogonal array crossover on
the selected pairs of parents where pc is the crossover
probability.
Step 5: (Mutation) Apply the mutation operator to the

randomly selected pm·Npop individuals in the new popu-
lation where pm is the mutation probability. To prevent
the best fitness value from deteriorating, mutation is not
applied to the best individual.
Step 6: (Termination test) If the stopping condition

for obtaining the solutions Xr is satisfied, output the
best individual as Xr. Otherwise, go to Step 2.
Step 7: (Inheritance) If r <rend, randomly change one

bit in the binary genes for each individual from 0 to 1;
increase the number r by one, and go to Step 2.
Step 8: (System uncertainty) Perform Steps 1-7 for

R (=30 in this study) independent runs and obtain the
best one of R solutions. The best solution can be deter-
mined by considering the most accurate one Sa with the
highest prediction accuracy or the robust one Sr with
the highest score, where the scores St, t=1, …, R are
derived using the following procedure Appscore.
The procedure Appscore is described as follows:
Step 1: Calculate the appearance frequency f(pi) of

each feature pi from all features in the R sets, where
i=1, …, mt. There are mÂ¬t features in the t-th set.
Step 2: Calculate score St,t=1, …, R for each of R solu-

tions:

S p mt i

i

m

t

t

=
=
∑( ( )) /f

1

(1)

Clustering properties by fuzzy c-means
The physicochemical properties can be classified into six
groups according to their biological meanings [11].
From the viewpoint of machine learning, two properties
are similar if the distance between their feature vectors
is small. To identify informative physicochemical prop-
erties and obtain effective feature vectors with strong
discriminative abilities, we cluster the 531 vectors of
physicochemical properties into 20 clusters using a
fuzzy c-means (FCM) method [14].
A feature vector of amino acids is a set of 20 numeri-

cal values representing a physicochemical property of
amino acids. To apply the FCM method, all data were
normalized in such a way that every physicochemical

Table 2 The statistic data of the three data sets

Datasets Sequence No. of DNA-
binding

No. of non-DNA-
binding

DNAset domain 146 250

DNAaset protein 1153 1153

DNAiset domain /
protein

92 100
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Table 3 The 20 clusters and their corresponding physicochemical and biochemical properties in the AAindex database

Cluster No. The label of 531 physicochemical and biochemical properties

C1 2 P: 118 O: 156

C2 2 P: 504 505

C3 6 H: 10 11 446 447 448 449

C4 3 P: 9 112 150

C5 4 C: 116 H: 34 127 P: 117

C6 6 A: 313 H: 129 145 364 P: 177 O: 312

C7 147 A: 19 25 49 50 52 74 166 258 259 260 261 262 263 264 265 266 267 268 269 270 274 286 287 288 289 290 291 292293 294 295 296
341 346 347 348 350 351 359 362 376 392 424 454 455487 524
B: 20 196 221 275 276 277 278 279
C: 30 134
H: 8 14 35 36 57 68 71 85 88 89 113 115 131 146 149 151 152 153 198 210 213 215 220 239 240 249 271 272273 283 284 285 314
317 318 320 340 356 360 365 377 378 379 380 381 386 387 389 390 435 438 439 476 484 489 490 503 507 509 510 511 512 513 514
516 518 520 525 526 527 528 529 531
P: 22 159 214 216 217 280 281 282 316 361 397 485 486 488
O: 51 250 385

C8 3 P: 65 135 517

C9 132 A: 5 7 24 37 40 44 47 48 53 62 93 104 105 107 121 122 124 162 165 176 188 227 228 229 230 235 236 237 238 255 303 309 334 335
337 338 345 367 369 375 413 417 418 420 428 429 430 432 433 436 498
B: 106
C: 31 144
H: 6 41 86 87 92 94 95 110 114 125 142 143 182 183 297 298 299 300 302 325 326 327 354 355 357 371 373 384 403 404 405 406
407 408 421 422 425 427 431 453 482 491 492 493 494 496 497 499 506 530
P: 15 28 59 219 383 391
O: 21 27 43 79 123 126 173 174 175 251 301 305 308 322 323 324 336 370 372 374 409 419

C10 123 A: 38 42 60 91 97 98 99 100 119 138 140 160 163 171 186 223 224 231 253 256 307 311 328 330 331 333 339 342 349 363 366 410
411 412 414 415 416 426
B: 39 45 46 61 101 102 103 120 139 141 161 164 167 168 169 172 187 218 225 226 232 234 254 257 310 343 344 368 445 495
C: 190 304
H: 2 3 4 23 54 55 56 58 66 67 69 70 76 77 108 130 132 133 192 194 201 211 212233 243 315 321 329 332 352 358 398 477 478 480
481 508 515 519 521 522 523
P: 26 29 78 82 96 154 157 473 479
O: 306 437

C11 6 P: 32 72 109 353 474 475

C12 2 H: 128 483

C13 1 C: 137

C14 15 H: 170 241 244 245 246 393 395 396 400 402 423 444
P: 399 502
O: 84

C15 1 H: 73

C16 43 A: 18
C: 64 136 189 191 193 195 197 199 200 202 203 204 205 206 207 208 209 440 441 442 443 456 457 458 459 460 461 462 463 464
465 466 467 468 469 470 471 472
H: 147 148 222 252

C17 3 H: 450 451 452

C18 28 A: 16 90
H: 12 13 111 178 179 180 181 185 242 247 248 382 388 394 401 500 501
P: 1 17 63 80 81 83 158 434
O: 75

C19 2 H: 184
O: 155

C20 2 P: 33 319

A: Alpha and turn propensities. B: Beta propensity. C: Composition. H: Hydrophobicity. P: Physicochemical properties. O: Other properties.
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property had an averaged profile value of zero and a
standard deviation equal to 1. The FCM method has an
objective functional of the form [14]:

J X U v; , ( , )( ) =
==

∑∑ u d v xij
s

i j

j

n

i

K
2

11

(2)

where n=531 is the number of data vectors, K is the
number of clusters to be found, uijÎ[0, 1] is the mem-
bership degree of jth data vector xj in the ith cluster,
the ith cluster represented by the cluster prototype vi,
sÎ[1,∞) is a weighting exponent called the fuzzifier
and d(vi, xj) is the distance of xj from the cluster pro-
totype vi. Dembélé and Kastner [17] suggested the
parameters setting s=1.12 and K=20 clusters, adopted
in this study.

Identifying physicochemical properties
It is not easy to discover related physicochemical prop-
erties for analyzing DNA-binding mechanism by compu-
tational methods using relatively small-size data sets.
Therefore, we present a hybrid method by combining
evidences from the viewpoints of both machine learning
and biological meanings. Auto-IDPCPs identifies m
properties belong to c out of 20 clusters. We examine
each property P1 of the 531 properties and each prop-
erty P2 of the identified m properties. If they satisfy the
following two criteria, P1 is a promising property to be
further investigated: 1) the distance between the feature
vectors of P1 and P2 is small, and 2) P2 is replaced with
P1 one at a time and the prediction accuracy is not sig-
nificantly decreased.
Only 402 of 531 properties were classified into six

groups [11], (A): Alpha and turn propensities, (B): Beta
propensity, (C): Composition, (H): Hydrophobicity, (P):
Physicochemical properties, and (O): Other properties.
We classified the other 129 properties into the six
groups according to their distances of vectors using a
nearest-neighbour rule. The 531 featured IDs and their
corresponding AAindex IDs are listed in Table S1 (see
Additional File 1). The 20 clusters and their correspond-
ing physicochemical and biochemical properties belong-
ing to six groups in the AAindex database are given in
Table 3. The statistical result of the 531 physicochemical
properties distributed upon the 20 clusters and six
groups is given in Table 4. The large clusters 7, 9 and
10 have properties belonging to six groups. The valuable
information in Tables 3 and 4 integrating classification
results of both biological meanings and similarity mea-
sure is very helpful in identifying informative properties.
The statistical results of property distribution in the six
groups for 531 and 402 amino acid indices are given in
Fig. 4. The largest group is Hydrophobicity having 149
indices and the second largest group is Alpha and turn

propensities having 118 indices (Fig. 4b). The sizes of
the other four groups are relatively small.

Results
Identified properties by IBCGA
The statistical result of St in selecting property sets from
R =30 independent runs on DNAset and DNAaset is
given in Fig. 5. The 18th and 6th runs having the highest
scores for DNAset and DNAaset respectively are
selected, and their prediction accuracies for various
numbers of selected features are given in Fig. 6. The
robust solutions S18 and S6 having m=22 and 28 features
with accuracies of 87.12% and 75.50% for DNAset and
DNAaset, respectively, are given in Tables 5 and 6,
where the AAindex identity numbers and their property
descriptions are provided.
An efficient way to study effects of several factors

simultaneously is to utilize orthogonal experimental
design used in IGA [16]. The main effect difference
(MED) of orthogonal experimental design can estimate
effects of individual features according to the value of
MED [12,16]. The most effective property has the lar-
gest value of MED. The m properties ranked by using
MED are shown in Fig. 7. The properties of rank 1 are
identity numbers H86 (FAUJ880109, Number of hydro-
gen bond donors) and B39 (CHOP780202, Normalized

Table 4 The statistical result of the 531 physicochemical
properties distributed upon the 20 clusters and six groups

Cluster A B C H P O TOTAL

C1 1 1 2

C2 2 2

C3 6 6

C4 3 3

C5 1 2 1 4

C6 1 3 1 1 6

C7 47 7 2 74 14 3 147

C8 3 3

C9 51 1 3 50 6 21 132

C10 38 30 2 42 9 2 123

C11 6 6

C12 2 2

C13 1 1

C14 12 2 1 15

C15 1 1

C16 1 38 4 43

C17 3 3

C18 3 17 8 28

C19 1 1 2

C20 2 2

TOTAL 141 38 47 217 58 30 531

RATE 0.266 0.072 0.089 0.409 0.109 0.056

A: Alpha and turn propensities. B: Beta propensity. C: Composition. H:
Hydrophobicity. P: Physicochemical properties. O: Other properties.

Huang et al. BMC Bioinformatics 2011, 12(Suppl 1):S47
http://www.biomedcentral.com/1471-2105/12/S1/S47

Page 7 of 13



Figure 4 The statistical results of property distribution in the six groups (a) 531 amino acid indices (b) 402 amino acid indices.

Figure 5 The statistical result of St in selecting property sets from R =30 independent runs on DNAset and DNAaset.

Figure 6 Prediction accuracies for various numbers of selected properties (a) DNAset and (b) DNAaset.
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frequency of beta-sheet) for DNAset and DNAaset,
belonging to the groups Hydrophobicity and Beta pro-
pensity, respectively.

Prediction performance evaluation
To evaluate the effectiveness of the identified m infor-
mative feature vectors (PCPs), we implemented the pre-
dictor using the same single classifier SVM with the
feature types, amino acid composition (AAC) and PSSM
[7]. Additionally, the selected PCPs combined with AAC
and PSSM were also evaluated, as shown in Table 7.
AAC is a 20-dimensional vector of amino acid composi-
tion. PSSM is the feature representation of 400 features.
PCPs +AAC and PCPs +PSSM are two hybrid feature
types.
Considering the DNA-binding domain data set DNA-

set, the set of m=22 informative properties (PCPs) iden-
tified by Auto-IDPCPs performs best where the robust
solution Sr with accuracy of 87.12% is used. The four
compared methods AAC, PSSM, PCPs+AAC, and PCPs
+PSSM have accuracies of 80.30%, 86.62%, 81.82% and
86.62%, respectively. For the DNA-binding protein data
set DNAaest, the method using PCPs with m=28 infor-
mative properties (75.50%) is slightly better than the
PSSM-400 (74.22%). However, PCPs+PSSM can improve
both PCPs and PSSM to the accuracy of 80.27%. When

the method using the trained SVM with PCPs was eval-
uated by the independent test data set DNAiset, the
method using selected PCPs has the accuracy of 80.73%
(=155/192), slightly worse than the method PSSM-400
with the accuracy of 82.81% (=159/192) [7].
A small, high-performance features set of size c that

one property is selected from each of the identified c
clusters using the optimization algorithm IGA is given
in Table 8, where c=5 and 8 for DNAset and DNAaset,
respectively. The accuracies of the robust solutions
using the c features with SVM are 83.59% and 73.24%
for DNAset and DNAaset, respectively. The properties
and their descriptions are given in Tables 9 and 10.
The experimental results reveal that the identified

small set of m physicochemical properties with a simple
sequence representation and a single SVM classifier is
promising, compared with the PSSM feature type. How-
ever, the identified physicochemical properties are inter-
pretable for further understanding the DNA-binding
mechanism.

Analyzing physicochemical properties for binding
mechanism
The selected features of the conducted 30 runs are very
different in terms of feature ID from 531 properties.
The appearance frequency of each identified cluster in

Table 5 The robust solution S18 with a set of m=22 features for DNAset

Feature ID AAindex ID Description

53 CHOP780216 Normalized frequency of the 2nd and 3rd residues in turn (Chou-Fasman, 1978b)

56 CIDH920103 Normalized hydrophobicity scales for alpha+beta-proteins (Cid et al., 1992)

64 DAYM780101 Amino acid composition (Dayhoff et al., 1978a)

86 FAUJ880109 Number of hydrogen bond donors (Fauchere et al., 1988)

91 FINA770101 Helix-coil equilibrium constant (Finkelstein-Ptitsyn, 1977)

188 NAGK730103 Normalized frequency of coil (Nagano, 1973)

202 NAKH920101 AA composition of CYT of single-spanning proteins (Nakashima-Nishikawa, 1992)

227 PALJ810105 Normalized frequency of turn from LG (Palau et al., 1981)

228 PALJ810106 Normalized frequency of turn from CF (Palau et al., 1981)

255 PRAM900104 Relative frequency in reverse-turn (Prabhakaran, 1990)

262 QIAN880105 Weights for alpha-helix at the window position of -2 (Qian-Sejnowski, 1988)

274 QIAN880117 Weights for beta-sheet at the window position of -3 (Qian-Sejnowski, 1988)

286 QIAN880129 Weights for coil at the window position of -4 (Qian-Sejnowski, 1988)

363 SUEM840101 Zimm-Bragg parameter s at 20 C (Sueki et al., 1984)

383 WEBA780101 RF value in high salt chromatography (Weber-Lacey, 1978)

388 WOEC730101 Polar requirement (Woese, 1973)

412 AURR980110 Normalized positional residue frequency at helix termini N5 (Aurora-Rose, 1998)

430 MUNV940102 Free energy in alpha-helical region (Munoz-Serrano, 1994)

434 WIMW960101 Free energies of transfer of AcWl-X-LL peptides from bilayer interface to water (Wimley-White, 1996)

443 KUMS000104 Distribution of amino acid residues in the alpha-helices in mesophilic proteins (Kumar et al., 2000)

486 BASU050102 Interactivity scale obtained by maximizing the mean of correlation coefficient over single-domain globular proteins
(Bastolla et al., 2005)

513 JACR890101 Weights from the IFH scale (Jacobs-White, 1989)
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the 30 runs is shown in Fig. 8. From the statistic result,
the clusters 7, 9, 10, 16 and 18 with very high selection
frequencies are more informative for predicting DNA-
binding domains and proteins. The selected clusters of
the 30 runs are very similar in terms of cluster ID from
20 clusters. The m=22 properties (Table 5) belong to

five clusters which are the same with the five clusters 7,
9, 10, 16 and 18. For predicting DNA-binding proteins,
the m=28 properties (Table 6) belong to eight clusters,
which are the same five clusters and additional three
clusters 3, 14 and 17. The results reveal that the identi-
fied features of the robust solution Sr belong to

Table 6 The robust solution S6 with a set of m=28 features for DNAaset

Feature
ID

AAindex ID Description

39 CHOP780202 Normalized frequency of beta-sheet (Chou-Fasman, 1978b)

56 CIDH920103 Normalized hydrophobicity scales for alpha+beta-proteins (Cid et al., 1992)

58 CIDH920105 Normalized average hydrophobicity scales (Cid et al., 1992)

86 FAUJ880109 Number of hydrogen bond donors (Fauchere et al., 1988)

88 FAUJ880111 Positive charge (Fauchere et al., 1988)

95 FINA910104 Helix termination parameter at posision j+1 (Finkelstein et al., 1991)

100 GEIM800104 Alpha-helix indices for alpha/beta-proteins (Geisow-Roberts, 1980)

102 GEIM800106 Beta-strand indices for beta-proteins (Geisow-Roberts, 1980)

139 KANM800102 Average relative probability of beta-sheet (Kanehisa-Tsong, 1980)

146 KLEP840101 Net charge (Klein et al., 1984)

147 KRIW710101 Side chain interaction parameter (Krigbaum-Rubin, 1971)

167 LIFS790101 Conformational preference for all beta-strands (Lifson-Sander, 1979)

178 MEEJ800101 Retention coefficient in HPLC, pH7.4 (Meek, 1980)

214 OOBM770102 Short and medium range non-bonded energy per atom (Oobatake-Ooi, 1977)

229 PALJ810107 Normalized frequency of alpha-helix in all-alpha class (Palau et al., 1981)

280 QIAN880123 Weights for beta-sheet at the window position of 3 (Qian-Sejnowski, 1988)

299 RACS770103 Side chain orientational preference (Rackovsky-Scheraga, 1977)

321 RADA880108 Mean polarity (Radzicka-Wolfenden, 1988)

356 ROSM880102 Side chain hydropathy, corrected for solvation (Roseman, 1988)

365 SWER830101 Optimal matching hydrophobicity (Sweet-Eisenberg, 1983)

399 ZIMJ680102 Bulkiness (Zimmerman et al., 1968)

401 ZIMJ680104 Isoelectric point (Zimmerman et al., 1968)

422 AURR980120 Normalized positional residue frequency at helix termini C4’ (Aurora-Rose, 1998)

431 MUNV940103 Free energy in beta-strand conformation (Munoz-Serrano, 1994)

449 NADH010104 Hydropathy scale based on self-information values in the two-state model (20% accessibility) (Naderi-Manesh et al., 2001)

451 NADH010106 Hydropathy scale based on self-information values in the two-state model (36% accessibility) (Naderi-Manesh et al., 2001)

512 GUYH850105 Apparent partition energies calculated from Chothia index (Guy, 1985)

528 MIYS990104 Optimized relative partition energies - method C (Miyazawa-Jernigan, 1999)

Figure 7 The m properties ranked by using main effect difference (MED) (a) m=22 for DNAset and (b) m=28 for DNAaset.
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informative clusters. Therefore, the informative clusters
can provide informative properties to be further investi-
gated if these properties were not selected by the feature
selection method.
An illustration example for exploring promising

properties is given in Fig. 9. The both feature sets S1
(H88, H86, H67, C209, H178) and S2 (A392, A303,
A307, C440, H178) are selected for predicting DNA-
binding domains in DNAset that one property is
selected from one of five clusters 7, 9, 10, 16 and 18.
The identified properties H88 and A392 belong to the

Hydrophobicity, and Alpha and turn propensities
groups respectively, but they belong to the same clus-
ter 7 with a relatively small distance 0.0178. The pre-
diction accuracy of S3 by replacing H88 with H151 is
81.05 %. On the other hand, H151 belonging to the
cluster 7 and Hydrophobicity group used in [5] can be
inferred from feature sets S1 and S2. After analyzing
all candidate properties, we identify some properties in
the five identified clusters for analyzing DNA-binding
domains, shown in Table 11. Some typical properties
discovered are hydrophobicity, secondary structure,
charge, solvent accessibility, polarity, flexibility, nor-
malized Van Der Waals volume, pK (pK-C, pK-N, pK-
COOH and pK-a(RCOOH)), etc.
Most of identified properties were used in previous

works [5,6,8,9], but a few properties such as the flexibil-
ity property H8: BHAR880101 in cluster 7 “Average
flexibility indices (Bhaskaran-Ponnuswamy, 1988)” are
not utilized yet in existing method of predicting DNA-
binding domains. The correlation between protein flex-
ibility and protein function suggests a link between
DNA-binding activity and the conformational freedom
of the DNA-binding domain [18].

Table 7 The overall accuracies (%) of 5-CV for three
feature types and two hybrid feature types with SVM

Dataset Sen. Spe. MCC PCPs AAC PSSM* PCPs
+AAC

PCPs
+PSSM

DNAset Sa 88.89 91.20 0.76 88.89 80.30 86.62 81.57 83.59

Sr 82.19 90.00 0.53 87.12 81.82 86.62

DNAaest Sa 82.74 70.08 0.72 76.41 72.46 74.22 74.20 79.88

Sr 81.96 69.04 0.51 75.50 73.59 80.27

Sa: accurate solution, Sr: robust solution, Sen.: sensitivity, Spe.: specificity, MCC:
Matthew’s correlation coefficient, PCPs: the m informative properties, PSSM*:
obtained from [7].

Table 8 A small, high-performance features set of size c from c clusters. The feature number c=5 and 8 for DNAset
and DNAaset, respectively

DNAset ACC 83.59% Cluster C7 C9 C10 C16 C18
Feature ID H88 H86 H67 H209 H178

DNAaset ACC 73.24% Cluster C7 C9 C10 C16 C18 C3 C14 C17
Feature ID P159 H87 A99 C197 P63 H11 H396 H451

Table 9 The m=5 features selected from the five clusters identified from DNAset that one best feature is selected from
one cluster by IGA

Feature ID AAindex ID Description

H88 FAUJ880111 Positive charge (Fauchere et al., 1988)

H86 FAUJ880109 Number of hydrogen bond donors (Fauchere et al., 1988)

H67 DESM900102 Average membrane preference: AMP07 (Degli Esposti et al., 1990)

C209 NAKH920108 AA composition of MEM of multi-spanning proteins (Nakashima-Nishikawa, 1992)

H178 MEEJ800101 Retention coefficient in HPLC, pH7.4 (Meek, 1980)

Table 10 The m=8 features selected from the eight clusters identified from DNAaset that one best feature is selected
from one cluster by IGA

Feature
ID

AAindex ID Description

P159 LEVM760107 van der Waals parameter epsilon (Levitt, 1976)

H87 FAUJ880110 Number of full nonbonding orbitals (Fauchere et al., 1988)

A99 GEIM800103 Alpha-helix indices for beta-proteins (Geisow-Roberts, 1980)

C197 NAKH900109 AA composition of membrane proteins (Nakashima et al., 1990)

P63 DAWD720101 Size (Dawson, 1972)

H11 BIOV880102 Information value for accessibility; average fraction 23% (Biou et al., 1988)

H396 YUTK870104 Activation Gibbs energy of unfolding, pH9.0 (Yutani et al., 1987)

H451 NADH010106 Hydropathy scale based on self-information values in the two-state model (36% accessibility) (Naderi-Manesh et al.,
2001)
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Although most identified properties were mentioned in
literature, it is not easy to know which amino acid index is
the best feature in designing accurate prediction method.
For example, the two feature vectors of properties H8:
BHAR880101 and A:124 KARP850101 “Flexibility para-
meter for no rigid neighbours (Karplus-Schulz, 1985)”
belonging to different clusters 7 and 9 are dissimilar. From

Table 11, it can be found that the four clusters 7, 9, 10 and
16 has properties, H115: HOPT810101 (Hydrophilicity
value (Hopp-Woods, 1981)), H355: ROSM880101 (Side
chain hydropathy, uncorrected for solvation (Roseman,
1988)), H398: ZIMJ680101 (Hydrophobicity (Zimmerman
et al., 1968)), and H252: PRAM900101 (Hydrophobicity
(Prabhakaran, 1990)), respectively, belonging to the

Figure 8 The appearance frequency of each identified cluster in the 30 runs. The clusters 7, 9, 10, 16 and 18 are more informative.

Figure 9 An illustration example for exploring promising properties. H151 can be inferred from feature sets S1 and S2.

Table 11 Some typical properties in the five identified clusters for analyzing DNA-binding domains

Cid AAindex ID PCP Cid AAindex ID PCP

7 BHAR880101 Flexibility 10 FASG760105 pK-C

7 BURA740101 Secondary structure 10 JOND750102 pk- (-COOH)

7 CHOC760103 Solvent accessibility 10 RADA880108 Polarity

7 HOPT810101 Hydrophobicity 16 PRAM900101 Hydrophobicity

7 FAUJ880111 Charge 16 FUKS010104 Solvent accessibility

9 KARP850101 Flexibility 16 KUMS000103 Secondary structure

9 PALJ810115 Secondary structure 18 PONP800107 Solvent accessibility

9 ROSM880101 Hydrophobicity 18 GRAR740102 Polarity

9 KUHL950101 Solvent accessibility 18 FASG760104 pK-N

10 ZIMJ680101 Hydrophobicity 18 FAUJ880113 pK-a(RCOOH)

10 EISD860101 Solvent accessibility 18 FAUJ880103 Normalized van der

10 GEIM800101 Secondary structure Waals volume

Cid: Cluster ID. PCP: physicochemical and biochemical property.
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Hydrophobicity group. The scenario reveals that more than
one feature vectors may be needed in utilizing one physico-
chemical property to advance prediction accuracy.

Discussion
To avoid from overfitting the small-scale data sets in
identifying physicochemical properties using an optimi-
zation approach, this study proposes a hybrid computa-
tional method of combining evidences by considering
robust features and biological meanings from literature.
These discovered properties in predicting and analyzing
the DNA-binding mechanism can be further investigated.
In this study, the proposed approach Auto-IDPCPs aims

to identify an informative feature set of physicochemical
and biochemical properties, rather than proposing an
accurate method for predicting DNA-binding domains/
proteins. Some techniques can be used to improve the
prediction accuracy such as using ensemble classifiers with
hybrid feature types and boosting techniques.

Conclusions
This study has proposed a systematic approach Auto-
IDPCPs to automatically identify an informative set of
physicochemical and biochemical properties in the AAin-
dex database to design SVM-based classifiers for predict-
ing and analyzing DNA-binding domains/proteins. Since
the AAindex database contains 531 physicochemical and
biochemical properties of 20 naturally occurring amino
acids that are the building-blocks of proteins, the pro-
posed approach Auto-IDPCPs using an optimization
method of feature selection can be useful and efficient
for selecting informative physicochemical and biochem-
ical properties, which is helpful in designing prediction
methods for protein functions from sequences.

Additional material

Additional file 1: Table S1 - The 531 feature IDs used in this study
and their corresponding AAindex IDs.
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