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Abstract

Background: Recent technology advances have enabled sequencing of individual genomes, promising to
revolutionize biomedical research. However, deep sequencing remains more expensive than microarrays for
performing whole-genome SNP genotyping.

Results: In this paper we introduce a new multi-locus statistical model and computationally efficient genotype
calling algorithms that integrate shotgun sequencing data with linkage disequilibrium (LD) information extracted
from reference population panels such as Hapmap or the 1000 genomes project. Experiments on publicly available
454, Illumina, and ABI SOLiD sequencing datasets suggest that integration of LD information results in genotype
calling accuracy comparable to that of microarray platforms from sequencing data of low-coverage. A software
package implementing our algorithm, released under the GNU General Public License, is available at http://dna.
engr.uconn.edu/software/GeneSeq/.

Conclusions: Integration of LD information leads to significant improvements in genotype calling accuracy
compared to prior LD-oblivious methods, rendering low-coverage sequencing as a viable alternative to microarrays
for conducting large-scale genome-wide association studies.

Background
Recent advances in massively parallel sequencing have
dramatically increased throughput compared to the clas-
sic Sanger technology, with several commercially avail-
able platforms including 454, Illumina, ABI SOLiD, and
Helicos delivering billions of bases per day. This has
enabled sequencing of several individual genomes [1-8],
ushering the era of personal genomics. Thousands of
other individual genomes are currently being sequenced
as part of large scale projects such as the international
1000 genomes project [9], and whole genome sequen-
cing is likely to become routine as sequencing costs
continue to decrease. However, analysis of whole gen-
ome sequencing data remains challenging [10] and
experimental design optimization has only recently
started to receive attention [11].

In this paper we focus on one of the most fundamen-
tal genomic analyses, namely determining the genotypes
at known loci of genome variation such as single
nucleotide polymorphisms (SNPs). Diploid organisms
including humans inherit two (possibly identical) var-
iants or alleles at autosomal loci, and most medical
applications of personal genomics require accurate iden-
tification of both variants, the combination of which is
referred to as genotype. Of particular interest are loci
that are heterozygous, i.e., loci for which the two chro-
mosomes carry different alleles. However, identifying
heterozygous loci from low-coverage whole-genome
sequencing data poses a significant challenge. Sequen-
cing data is obtained using the so called “shotgun”
approach, whereby millions of short DNA fragments
called reads are generated from randomly selected loca-
tions on the two chromosomes. If, for example, there
are only two reads generated from a heterozygous locus,
there is a 50% chance that one allele would be missed.
To compensate for sequencing errors, existing methods
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for detecting heterozygous loci have even higher mini-
mum allele coverage requirements, e.g., in [3,8], calling
an allele requires the presence of at least two reads sup-
porting it. Consequently, due to the relatively low
sequencing depth used in these two studies (about
7.5×), the reported sensitivity of detecting heterozygous
SNPs was of only 75%.
A simple way to improve genotype calling accuracy is

to increase sequencing depth, as the probability of
“missing” an allele decreases with the number of reads.
After taking into account the effect of sequencing errors
it has been estimated that, in the absence of additional
information, achieving 99% sensitivity at detecting het-
erozygous SNPs would require an average sequencing
depth of over 21× [12]. Our main contribution is to
demonstrate that high accuracy SNP genotypes can be
inferred from shotgun sequencing data of much lower
depth by exploiting the correlation between alleles at
nearby SNP sites, commonly referred to as linkage dise-
quilibrium (LD).
LD patterns over millions of common SNPs have been

mapped for several populations as part of the Hapmap
project [13]. The strong LD observed in human popula-
tions has already been exploited by methods for imputa-
tion of genotypes at untyped SNP loci based on nearby
SNP genotypes [14-19], see [20] for a recent review, and
more recently, for improving genotype calling accuracy
from microarray hybridization signals [21]. Another
striking demonstration of the power of LD has been the
inference of Watson’s APOE status [22] despite the
removal of sequencing reads covering this region from
the published dataset [8]. In this work we introduce a
novel hierarchical factorial Hidden Markov Model
(HMM) that allows integrated analysis of LD informa-
tion extracted from reference population panels such as
Hapmap and short-read sequencing data generated by
current technologies. Although the ensuing multilocus
genotype inference is computationally hard, we develop
a scalable heuristic similar to the posterior decoding
algorithm for HMMs. A software package implementing
this algorithm has been released under the GNU Gen-
eral Public License and is available at http://dna.engr.
uconn.edu/software/GeneSeq/. We also present experi-
mental results on publicly available 454, Illumina, and
ABI SOLiD whole-genome sequencing datasets showing
that integration of LD information leads to significant
improvements in genotype calling accuracy compared to
prior LD-oblivious methods. For example, at 6× average
mapped read coverage, our algorithm calls heterozygous
SNP genotypes with about 96% accuracy, and accuracy
can be further increased to 98-99% by leaving uncalled a
small percentage of SNP genotypes with low posterior
probabilities. This accuracy is comparable to that
achieved by microarray-based genotyping platforms.

Coupled with continued decreases in sequencing costs,
the reduced sequencing depth required when using LD
information renders low-coverage sequencing as a poten-
tially more cost-effective alternative to microarrays for
the next generation of genome wide association studies
(GWAS). For example, the ABI SOLiD 4hq is expected
to deliver 300Gb of sequencing data per run, or the
equivalent of 16 individual genomes at 6× coverage, with
a cost of only $600 per genome [23]. Undoubtedly, cost
will be an important factor in future GWAS studies,
which are expected to use much higher sample sizes
compared to past studies in order to enable the study of
gene-gene and gene-environment interactions [24].

Methods
In this section we begin by describing a simplified statis-
tical model that assumes independence between loci,
then extend it to include dependences between alleles at
different SNPs due to LD. We next formalize the multi-
locus genotype calling problem in the context of the
extended model and show that computing the most
likely multilocus genotype is computationally hard.
Finally, we present a posterior decoding heuristic which
independently selects the most likely genotype at each
locus conditional on the entire set of reads.

Notations
We use uppercase italic letters (e.g., X) to denote ran-
dom variables and lowercase italic letters (e.g., x) to
denote generic values taken by them. Vectors of random
variables and generic values are denoted by boldface
uppercase (e.g., X), respectively boldface lowercase let-
ters (e.g., x). When there is no ambiguity on the under-
lying probabilistic event we use P(x) to denote P(X = x),
with similar shorthands used for joint and conditional
probabilities of multiple events. For simplicity we con-
sider only bialelic SNPs on autosomes. For every SNP
locus, we denote the two possible alleles by 0 and 1, and
the three genotypes by 0,1, and 2, with 0 and 2 denoting
the homozygous 0 and homozygous 1 genotypes, and 1
denoting the heterozygous genotype.

Single SNP genotype calling
In this section we describe a genotype inference model
that assumes the SNPs to be unlinked as in [8], but
further incorporates allele uncertainty quantified by
sequencing quality scores, read mapping uncertainty,
and population genotype frequencies estimated from a
reference panel.
Let r be a read mapped onto the genome. If r covers

SNP locus i, we denote by r(i) the allele observed in the
read at this locus. Since our focus is on genotyping
SNPs represented in a reference panel, we further
assume that panel SNPs at which the individual under
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study has novel allele variants (observed in [8] at only
0.02% of the markers) have been identified in a prelimin-
ary analysis, e.g., by using binomial probability test of [8].
Based on this assumption, all reads with alleles not
represented in the panel population are ignored, and for
remaining reads r we have that r(i) Î {0,1}. The probabil-
ity that allele r(i) is affected by a sequencing error
is denoted by εr(i). In our experiments we set εr(i) =
10-qr(i)/10, where where qr(i) denotes the Phred quality
score of r(i) [25].
Let Gi be a random variable denoting the unknown

SNP genotype at locus i, and let ri = {ri,1, … ,ri,ci} be the
arbitrarily ordered set of shotgun reads covering locus i,
where ci is the coverage at this locus. Since for a homozy-
gous genotype the allele of origin for a read is the same
regardless of which chromosome is sampled, we get:
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For a read r covering a heterozygous SNP locus i allele
r(i) can be observed either as the result of sampling r
from the chromosome bearing allele r(i) and correctly
sequencing it, or as the result of sampling the other
chromosome followed by a sequencing error. Hence:
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A natural approach to single-locus SNP genotyping is
to call a genotype of ĝi = argmax giÎ{0,1,2}P(gi|ri) for
every SNP locus i, where the posterior probabilities P(gi|
ri) are obtained from (1)-(3) by applying Bayes’ formula:
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and P(Gi = g) denotes the population frequency of
genotype g, estimated from the reference panel. If read
mapping uncertainty is available in the form of
probabilities m(r) that read r is mapped at the correct
position, such information can be accounted for in
genotype calling by replacing the above conditional prob-
abilities with genotype weights obtained from (1)-(3) by
rising the terms corresponding to read r to power m(r).
Although the resulting weights can no longer be
interpreted as conditional genotype probabilities, they
naturally allow interpreting the presence of a read r with

mapping confidence m(r) < 1 as the equivalent of
observing an m(r) fraction of an identical read mapped
with confidence 1.

A statistical model for multilocus genotype inference
In this section we introduce a statistical model that
allows us to integrate shotgun sequencing data and LD
information in the inference of SNP genotypes. Our
model, represented graphically in Fig. 1, can be
thought of as a hierarchical factorial HMM
(HF-HMM). Indeed, we use a distributed state (charac-
teristic of factorial HMMs [26]) to exploit the indepen-
dence between maternal and paternal chromosomes
(implied by the assumption of random mating), while
also employing a multilevel state representation as in
hierarchical HMMs [27] to capture the structured nat-
ure of the data. This structure leads to a reduced num-
ber of model parameters and enables highly scalable
inference algorithms.
At the core of the model are two left-to-right HMMs

M and M′ (dotted boxes in Fig. 1), each emitting haplo-
types with frequencies corresponding to those in the
populations of origin for the sequenced individual’s
parents. Under M and M′, each haplotype is viewed as a
mosaic formed as a result of historical recombination
among a set of K founder haplotypes, where K is a
population specific model parameter. Formally, for every
SNP locus i Î {1, … , n}, we let H Hi i′( ) be a random
variable representing the allele observed at this locus on
the maternal (paternal) chromosome of the individual
under study, and F Fi i′( ) be a random variable denoting
the founder haplotype from which Hi (respectively ′Hi )
originates. As in previous works [15,17,28-30], we
assume that Fi form the states of a first order HMM
with emissions Hi, and estimate probabilities P(f1), P(fi
+1|fi), and P(hi|fi)) using the classical Baum-Welch
algorithm [31] based on haplotypes inferred from a
panel representing the population of origin of the
individual’s mother. Probabilities P f P f fi i′( ) ′ ′( )+1 1, ,
and P h fi i′ ′( ) are estimated in the same way based on
haplotypes inferred from a panel representing the popu-
lation of origin of the individual’s father.
We define P g h hi i i, ′( ) to be 1 if g h hi i i= + ′ and 0

otherwise. Finally, assuming that each read covers no
more than a SNP locus, we set
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This implies that P(ri|gi) are given by equations
(1)-(3), and in the following we will assume that prob-
abilities P(ri|gi) are precomputed in O(m) time, where
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is bounded above by the total number of

reads. We can now formulate the following:

Multilocus Genotyping Problem (MGP)
Given:Trained HMM models M, M′ and set of shotgun
readsr = (r1, … , rn)
Find:Multilocus genotypeg* Î {0,1,2}n with maximum

posterior probability, i.e.,
g* = argmaxgP(g|r, M, M′) (6)

Computational complexity
In this section we show that MGP is NP-hard. Let
Maximum Multilocus Genotype Probability Problem
(MMGPP) denote the optimization version of MGP that
requires finding maxgP(g|r, M, M′).
Theorem 1. For any ∊ > 0, MMGPP cannot be

approximated withinO n( )
1
2

−∈ unless P=NP, and it can-
not be approximated withinO n( )1−∈ unless ZPP=NP.
Furthermore, this holds even if M′ = M.
Proof. Lyngsø et al. [32] give an approximation preser-

ving reduction from the clique problem to the problem
of computing the maximum probability of a string
emitted by an HMM. It is not difficult to modify their

construction to show that this reduction holds for left-
to-right HMMs that emit 0/1 strings of fixed length.
Next, we show that computing the maximum probabil-
ity of a string emitted by such an HMM M0 can be
reduced in approximation preserving manner to
MMGPP with M′ = M. The haplotype models M and M′

are obtained from M0 as follows (see the schematic state
diagram in Fig. 2):
• The number of SNPs n is set to one plus the length

of the strings emitted by M0.
• At the first SNP, for two founder states f1

1 and f1
2

we have P f i1 1 2( ) = / ; all other founder states have
zero initial probability.
• For every SNP locus i > 1 we add a new founder f i1

as well as a set of founders corresponding to the states
at “column” i — 1 of M0.
• All founder f i ni

1 1, , ,=  , emit 0 with probability 1.

Furthermore, P f fi i
1

1
1 1−( ) = for every i = 2, … , n.

• Founder f1
2 emits 1 with probability 1, and has

transitions to founders f jj
2 1, > , according to the initial

probabilities of M0.
• All other emission and transition probabilities are

identical to those for the corresponding states of M0.

F1 F2 Fn…M

H1 H2 Hn

F'1 F'2 F'n…M'

H'1 H'2 H'n

G1 G2 Gn

…r1,1 r2,1r1,c … r2,c …rn,1 rn,c1 2 n

Figure 1 HF-HMM model for multilocus genotype inference.
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Finally, we set r = {r0, r1} where r0 is a read that sup-
ports allele 0 at first SNP and r1 is a read that supports
the allele 1 at first SNP. Error probabilities for both
alleles are set to zero.
Note that P(g|r, M, M′) ≠ 0 only for multilocus geno-

types with g1 = 1 and gi Î {0,1} for i = 2, … , n.
Furthermore, for such a genotype g,
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The last equality comes from the fact that g can only
be observed when the maternal haplotype is 0n and the
paternal haplotype is g or vice-versa, and each of these
configurations have a probability of P(g2, … , gn|M0)/4.
The innaproximability result follows from [32] since,
by (7), P(g|r, M, M′) is constant fraction of P(g2, … ,
gn|M0).
Since an algorithm similar to the forward algorithm

for HMMs can be used to compute in polynomial time
the marginal probability of a given genotype, Theorem 1
implies the following:
Corollary 2.MGP is NP-Hard.

Posterior decoding algorithm
We next present an MGP heuristic similar to the pos-
terior decoding algorithm for HMMs. Specifically, the

algorithm selects for each SNP locus i the genotype ĝi with
maximum posterior probability given the read data r. Note
that, unlike the single SNP genotype calling method,
where we condition only on the set ri of reads overlapping
locus i, in the posterior decoding algorithm we take into
account the entire set of reads:
Posterior decoding algorithm
Step 1. For each i = 1, … , n, ĝi ¬ argmaxgiP(gi|r)
Step 2. Returnĝ = (ĝ1, … , ĝn)
Below we detail an O(m + nK3) implementation of the

posterior decoding algorithm. Since P(gi|r) ∝ P(gi, r), for
implementing the maximization in Step 1 it suffices to
compute marginal probabilities P(gi, r) for every i = 1,
… , n and gi Î {0,1,2}. For each SNP locus i and each
pair of founders f fi i, ′( ) we let the forward probability
be Ff f

i
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backward probability be
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Thus all probabilities P(gi, r) can be computed in O
(nK2) once the forward and backward probabilities
Ff f
i
i i, ′ and B f f

i
i i, ′ are available.

…0 0 0 0 0

1 2 3 n-1 nf1 f1 f1 f1 f1

1 M0

f21f
2

Figure 2 Schematic state diagram for the HMMs M and M′ used in the reduction of the consensus string problem to MMGPP.
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The forward probabilities can be computed using the
recurrence:

Ff f P f P f
1 1

1
1 1, ′ = ( ) ′( ) (8)

F F Ef f
i

f f
i

f f
i

i i i ii i i i i i
P f f P f f, , ,′ ′

−
′

−
− −= ( ) ′ ′( )( − − − −1 1 1 1

1 1
1 1 ))

= ( )

′ ==

− ′
−

′
−

−−

− − − −

∑∑
f

K

f

K

i i f f
i

f f
i

ii

i i i i
P f f P

11

1 1 1 1

11

1
1 1F E, , ′′ ′( )( )−

′ == −−

∑∑ f fi i

f

K

f

K

ii

1

11 11

(9)

for every f f Ki i, , ,′ ∈{ }1 and i = 2, … , n, where
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The inner sum in equation (9) is independent of fi,
and so its repeated computation can be avoided by
replacing (9) with:
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A similar optimization can be applied when comput-
ing the backward probabilities, resulting in the following
recurrence:

B f f
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Forward and backward probabilities can thus be
computed in O(nK3) by using recurrences (8), (11),
and (12), respectively (13), (14), and (15), resulting in
an overall runtime of O(m + nK3), where m is the
number of reads, n is the number of SNPs, and K is a
user selected parameter denoting the number of foun-
ders in the HMM models of haplotype diversity in
the parental populations (we used K = 7 in our
experiments).

Results and discussion
Datasets
We evaluated the HMM-based posterior decoding algo-
rithm on shotgun sequencing datasets generated using
three different sequencing technologies, as follows:
1. Watson 454: A set of 74.4 million reads down-

loaded from the NCBI SRA database (submission num-
ber: SRA000065). The reads, with an average length of
~265 bp, were generated using the Roche 454 FLX plat-
form as part of James Watson’s personal genome pro-
ject. This is a subset of the 106.5 million 454 reads
analyzed in [8]. Unless noted otherwise, the haplotype
panel used to train identical HMM models for the
maternal and paternal populations was obtained by
phasing CEU trio genotypes from Hapmap r23a [13]
using the ENT algorithm of [33] and retaining parent
haplotypes from each trio. As in [8], genotype calling
accuracy was assessed using the SNP genotypes deter-
mined using duplicate hybridization experiments with
Affymetrix 500k microarrays (only concordant geno-
types were retained in the test set).
2. NA18507 Illumina: A set of 525 million paired-end

reads downloaded from the NCBI SRA database (sub-
mission number: SRA000271). These 36bp reads, which
were generated using the Illumina Genome Analyzer
from a Hapmap Yoruban individual identified as
NA18507, are a subset of the dataset analyzed in [1].
For the analysis of this dataset the HMM models for
maternal and paternal populations were trained using
YRI haplotypes from Hapmap r22, excluding the haplo-
types of the YRI trio that contains NA18507. As gold
standard we used the genotypes published as part of
Hapmap r22 for individual NA18507.
3. NA18507 SOLiD: A set of 900 million single ABI

SOLiD reads generated from Hapmap individual
NA18507 was kindly provided by the authors of [4].
Reads varied in length between 20 and 44 bp, and
were already mapped to the reference genome. Corre-
sponding raw reads are available for download from
the NCBI SRA database (submission number:
SRA000272). HMM models and gold standard geno-
types were determined in the same way as for the
NA18507 Illumina dataset.

Read mapping
We mapped 454 reads on build 36.3 of the reference
human genome using the NUCMER tool of the MUM-
mer package [34] with default parameters. We discarded
alignments matching less than 90% of the reference or
with 10 or more errors (mismatches or indels). We then
discarded surviving reads with multiple matching posi-
tions. We mapped the Illumina reads using MAQ ver-
sion 0.68 [35] with default parameters. We discarded
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alignments with mapping probability less than 0.9 or
with sum of quality scores of mismatching bases higher
than 60 (filtering was performed using the “submap”
command of MAQ). SOLiD reads were mapped using
the SOLiD System Analysis Pipeline Tool (Corona Lite)
as described in [4]. Table 1 shows for each dataset the
numbers of test SNPs, initial and mapped reads, and the
average coverage per SNP after mapping.

Genotyping accuracy
To evaluate the effects of read coverage on genotype call-
ing for each dataset of m mapped reads we created four
subsets of sizes m/16, m/8, m/4 and m/2 by picking reads
at random. For each subset we called genotypes using the
HMM-based posterior decoding algorithm, the binomial
test of [8] (with a threshold of 0.01), and the single SNP
posterior probability described under Methods. We also
included in the comparison genotype calls obtained by
SOAPsnp [36] and MAQ [35], two widely used LD-obliv-
ious Bayesian methods implemented in the SAMtools
package [37]. Unfortunately we could not compare our
method with similar tools developed as part of the 1000
genomes project [38,39], which have only become pub-
licly available when this article was in press. We mea-
sured the accuracy of each genotype calling method by
computing the percentage of SNP genotype calls that
match the gold standard available for each dataset. As in
previous papers [1,3,4,8], we separately report accuracy
for homozygous and heterozygous SNPs.
Fig. 3 shows genotype calling accuracy of the com-

pared methods for varying average mapped read cover-
age on the NA18507 Illumina dataset; similar results
were obtained on the other two datasets. For both
homozygous and heterozygous SNPs, the posterior
decoding algorithm has the highest accuracy of the
compared methods at every considered coverage. The
improvement in accuracy is most pronounced for het-
erozygous SNPs and at low average coverage. This is
not surprising since, as previously noted in [3,4,8], at
low average coverage there is an increasingly high prob-
ability of leaving uncovered at least one of the alleles of
a heterozygous SNP, and a minimum coverage of each
called allele is required by the binomial test, SOAPsnp,
and MAQ. For example, the binomial test used in [3,8]
requires that each allele be covered at least twice; in all
our results we used the more relaxed requirement of
covering each allele at least once. In contrast, the single-

SNP posterior and the HMM-based posterior decoding
algorithm do not have a minimum coverage require-
ment. By leveraging population allele frequencies esti-
mated from the reference panel, the single-SNP
posterior method already outperforms the binomial test,
SOAPsnp, and MAQ at low average coverage. The
HMM posterior decoding algorithm further improves
accuracy by capturing LD information between neigh-
boring SNPs.
Fig. 4(a) shows the accuracy achieved by the HMM

posterior decoding algorithm when varying the average
mapped read coverage for all three datasets. Genotyping
accuracy achieved on the NA18507 Illumina reads
matches that observed on Watson 454 reads for homo-
zygous SNPs, and is only slightly lower for heterozygous
SNPs. The accuracy achieved on the NA18507 SOLiD
reads is consistently lower than that achieved for the
other two datasets over the tested range of average cov-
erages. We found that this difference is due to a bias
towards the reference allele during color-to-base transla-
tion for reads mapped with Corona Lite. This bias is
likely to induce incorrect heterozygous calls for some
homozygous non-reference SNPs and homozygous refer-
ence calls for some heterozygous SNPs. The presence of
this bias can be observed in Fig. 4(b), which shows the
distribution of reference allele coverage ratios (i.e., ratios
between the number of reference allele calls and the
total number of mapped reads covering a locus) for het-
erozygous SNPs in the Watson 454, NA18507 Illumina,
and NA18507 SOLiD datasets. In the absence of allele
call biases, the average of reference allele coverage ratios
over heterozygous SNPs should be close to 50%. We
found that this was indeed the case for both the Watson
454 and NA18507 Illumina datasets (with averages of
51.39% and 51.02%, respectively) but not for the
NA18507 SOLiD dataset (for which the average ratio is
63.02%). Fig. 5 shows the concordance of genotypes
called by HMM posterior decoding on the NA18507
Illumina dataset for groups of SNPs with varying rates
of local recombination, respectively minor allele fre-
quency, both estimated from the YRI panel of Hapmap.
The percentage of SNPs in each group is also plotted
using dashed lines. For both homozygous and heterozy-
gous SNPs concordance is relatively stable over the
entire range of local recombination rates (see Fig. 5(a)),
dropping below 96% only for heterozygous SNPs in
regions with local recombination rate of over 10 cM/

Table 1 Summary statistics for the three datasets used in evaluation

Dataset Test SNPs Raw Reads Raw Sequence Mapped Reads Avg. Mapped SNP coverage

Watson 454 443K 74.2M 19.7Gb 49.8M (67%) 5.85×

NA18507 Illumina 2.85M 525M 18.9Gb 397M (78%) 6.10×

NA18507 SOLiD 2.85M 2.45G 75Gb 900M (37%) 9.85×
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Mb. The effect of minor allele frequency is more pro-
nounced (see Fig. 5(b)), with heterozygous SNPs concor-
dance dropping to 83% for SNPs with minor allele
frequency below 0.05. However, the overall accuracy is
not affected too much since only 2% of heterozygous
SNPs of NA18507 have an estimated allele frequency in
this range.
To assess the effect of the size of the reference panel

on genotyping accuracy, we conducted additional
experiments on the Watson 454 reads using N = 242
CEU haplotypes available in Hapmap3. Similar to
experiments with varying read coverage, we generated
subsets of approximately N/16, N/8, N/4, and N/2 ran-
domly selected reference haplotypes, and compared the
accuracy achieved by running the HMM posterior
algorithm using these subsets to that obtained using all
N reference haplotypes. Fig. 6(a) gives the genotype

call concordance obtained for different panel sizes.
The results suggest that no significant improvement is
achieved by increasing the reference panel size beyond
60-90. Thus – in contrast to methods for imputing
untyped SNPs, which continue to benefit from increas-
ing the panel size to several hundreds of haplotypes
[40] – highly accurate genotype calling from sequen-
cing data is possible with relatively small reference
panels.
Since our algorithm computes a posterior probability

for each SNP genotype, further increases in calling accu-
racy can be obtained at the expense of leaving uncalled
a small percentage of SNP genotypes with low posterior
probability. Such “no-calls” are commonly used in
microarray-based genotyping for SNPs for which hybri-
dization signals are ambiguous. Fig. 6(b) shows the tra-
deoffs achievable between the concordance and call rate

(a) (b)

Figure 3 Genotype calling accuracy of compared methods for homozygous (a) and heterozygous (b) SNPs of the NA18507 Illumina dataset.

(a) (b)

Figure 4 HMM posterior decoding accuracy (a) and distribution of reference allele coverage ratios for heterozygous SNPs (b) on the Watson 454,
NA18507 Illumina, and NA18507 SOLiD datasets.
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when running the HMM posterior decoding algorithm
on the full set of Watson 454 reads. Over all SNPs, con-
cordance with the duplicate Affymetrix genotypes
reaches 99.4% at a no-call rate of only 6%.

Conclusions
In this paper we introduced a statistical model for
multi-locus genotyping that integrates shotgun sequen-
cing data with LD information extracted from a refer-
ence panel. Although finding the multi-locus genotype
with maximum posterior probability under the inte-
grated model is NP-Hard, experimental results suggest
that a simple posterior decoding algorithm produces
highly accurate genotype calls even from low-coverage
sequencing data. Compared to current LD-oblivious
genotype calling methods, our method allows research-
ers to achieve a desired accuracy target with reduced
sequencing costs. For example, genotype calling accu-
racy achieved at 5-6× average coverage by a previously

proposed binomial test is matched by the HMM-based
posterior decoding algorithm using less than 1/4 of the
reads. While a full comparison of sequencing and
microarray based genotyping in the context of GWAS is
beyond the scope of this paper, experimental results on
three publicly available datasets generated using the 454,
Illumina, and ABI SOLiD sequencing platforms suggest
that at a mapped coverage depth of 5-6× our algorithm
achieves an accuracy that is comparable to that of
microarray platforms. Concordance rates reported for
microarrays often exceed 99.9% (see, e.g., [41]), and are
even higher for methods that integrate hybridization sig-
nals with LD information [21]. However, due to cost
constraints, microarrays typically assay only a fraction of
the SNPs represented in reference panels. For example,
the next generation of Illumina microarrays is expected
to assay only 5 million of the estimated 35 million SNPs
generated by the 1000 genomes project [42]. Genotypes
for the untyped SNPs would have to be inferred based

(a) (b)

Figure 5 Effect of local recombination rate (a) and minor allele frequency (b) on concordance of genotypes called by the HMM posterior
decoding algorithm on the NA18507 Illumina dataset.

(a) (b)

Figure 6 Effect of the reference panel size (a) and tradeoff between concordance and calling rate (b) for genotypes called by the HMM
posterior decoding algorithm on the Watson 454 dataset.
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solely on LD information, and even the best imputation
methods have error rates of 5-6% [20], or 2-3% when
leaving 10% of SNPs uncalled. Since the majority of
SNPs must be imputed, this results in an overall accu-
racy below that achieved by the HMM posterior algo-
rithm on the Watson 454 dataset.
In ongoing work we are exploring efficient algorithms

for LD-based haplotype reconstruction from paired
shotgun sequencing reads. We also plan to empirically
compare our method with similar tools developed as
part of the 1000 genomes project [38,39].
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